Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 Môn thi : toán khối B Đề chính thức Thời gian làm bài: 180 phút _______________________________________________ Câu 1 (2 điểm). Cho hàm số ( là tham số). 32 3 (1)yx x m= + m 1) Tìm để đồ thị hàm số (1) có hai điểm phân biệt đối xứng với nhau qua gốc tọa độ. m 2) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m =2. Câu 2 (2 điểm). 1) Giải phơng trình 2 otg tg 4sin 2 sin 2 xx xc x + = . 2) Giải hệ phơng trình 2 2 2 2 2 3 2 3. y y x x x y + = + = Câu 3 (3 điểm). 1) Trong mặt phẳng với hệ tọa độ Đêcac vuông góc Ox cho tam giác có y ABC n 0 , 90 .AB AC BAC== Biết (1; 1)M là trung điểm cạnh B C và 2 ; 0 3 G là trọng tâm tam giác . Tìm tọa độ các đỉnh . ABC , , ABC 2) Cho hình lăng trụ đứng có đáy là một hình thoi cạnh , góc .' ' ' 'ABCD A B C D ABCD a n 0 60BAD = . Gọi M là trung điểm cạnh và là trung điểm cạnh '. Chứng minh rằng bốn điểm ' NAA CC ', , , B MDN ' cùng thuộc một mặt phẳng. Hãy tính độ dài cạnh ' theo a để tứ giác AA B MDN là hình vuông. 3) Trong không gian với hệ tọa độ Đêcac vuông góc Ox cho hai điểm và điểm sao cho . Tính khoảng cách từ trung điểm yz 0)(2; 0; 0), (0; 0; 8)AB C (0; 6;AC = I của B C đến đờng thẳng OA . Câu 4 (2 điểm). 1) Tìm giá trị lớn nhất và nhỏ nhất của hàm số 2 4.yx x=+ 2) Tính tích phân 4 2 0 12sin 1sin2 x I dx x = + . Câu 5 (1 điểm). Cho là số nguyên dơng. Tính tổng n 23 1 012 21 21 2 1 23 1 n n nnn CCC n + ++++ + " n C (C là số tổ hợp chập k của phần tử). k n n Hết Ghi chú : Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh Số báo danh . B giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 Môn thi : toán khối B Đề chính thức Thời gian làm b i: 180 phút _______________________________________________. góc Ox cho tam giác có y ABC n 0 , 90 .AB AC BAC== Biết (1; 1)M là trung điểm cạnh B C và 2 ; 0 3 G là trọng tâm tam giác . Tìm tọa độ các đỉnh . ABC , , ABC 2) Cho hình lăng trụ. .' ' ' 'ABCD A B C D ABCD a n 0 60BAD = . Gọi M là trung điểm cạnh và là trung điểm cạnh '. Chứng minh rằng b n điểm ' NAA CC ', , , B MDN ' cùng thuộc