Luận văn : BƯỚC ĐẦU ĐÁNH GIÁ MỨC ĐỘ ĐA DẠNG DI TRUYỀN CỦA QUẦN THỂ ĐIỀU (Anacardium occidental L.) TẠI TỈNH BÀ RỊA – VŨNG TÀU BẰNG KỸ THUẬT RAPD VÀ AFLP part 2 docx
10 Pt 100 R 0 là trị số điện trở định mức ở 0 o C. Ngoài ra, theo tiêu chuẩn IEC 751 còn xác định một trị số đặc trưng nữa, đó là hệ số nhiệt độ trung bình giữa 0 và 100 o C. Đó là tỉ lệ giữa sự thay đổi điện trở ở 0 và 100 o C với điện trở định mức R 0 . α = (R 100 – R 0 )/R 0 dt = 3,850.10 -3 0 C -1 (2.4) Trị số α của nhiệt điện trở platin theo DIN có sự khác biệt với trị số này. Theo tiêu chuẩn DIN, vật liệu platin dùng làm nhiệt điện trở có pha tạp. Do đó khi bị các tạp chất khác thẩm thấu trong quá trình sử dụng sự thay đổi trị số điện của nó ít hơn so với platin ròng nhờ thế nó tự ổn định lâu dài theo thời gian. Hình 2.6 Đặc tuyến điện trở Pt100 2.7.1.1. Cách tính nhiệt độ theo điện trở Trong khoảng nhiệt độ trên 0 o C nhiệt độ được tính theo sự thay đổi điện trở platin theo DIN IEC 751 như sau: t = -R 0 .A + [(R 0 .A) 2 – 4R 0 .B(R 0 - R)] 1/2 (2.5) R = điện trở đo được theo Ohm t = nhiệt độ được tính theo o C R 0 , A, B = thông số theo DIN IEC 751 400 350 300 250 200 150 100 0 100 200 300 400 500 600 700 800 900 Nhiệt độ ( 0 C) Điện trở (Ω) 11 2.7.1.2. Sai số cho phép Khi tính đến sai số, tiêu chuẩn DIN IEC 751 phân biệt hai đẳng cấp: A và B. Đẳng cấp A có giá trị cho nhiệt độ từ -200 đến 650 o C cho các máy đo nhiệt độ dùng 3 hay 4 dây đo. Đẳng cấp B có giá trị cho toàn thang từ -200 đến 850 o C. Đẳng cấp A: t = ± (0.15 + 0.002 . t) Đẳng cấp B: t = ± (0.30 + 0.005 . t) t = nhiệt độ với o C (không có dấu ±) Ngoài ra, còn nhiều đẳng cấp khác cho đo đạc chính xác hơn hay không chính xác lắm, rẻ tiền ta còn có các đẳng cấp: B 1/3 DIN, B ½ DIN, B2 DIN, B5 DIN. 2.7.1.3. Cấu trúc của cảm biến nhiệt platin Nhiệt điện trở với vỏ gốm: Sợi platine được giữ chặt bên trong ống gốm sứ với bột nhôm oxit. Dải đo từ 200 o C đến 800 o C Nhiệt điện trở với vỏ thuỷ tinh: Loại này có độ bền cơ học và độ nhạy cao. Dải đo từ -200 o C đến 400 o C. Được dùng trong môi trường hóa chất có độ ăn mòn cao. Nhiệt điện trở với vỏ nhựa: Giữa hai lớp polyamid dây platine có đường kính khoảng 30 μm được dán kín. Với cấu trúc mảng, cảm biến loại này được dùng để đo nhiệt độ bề mặt. Dải đo nhiệt độ từ -80 o C đến 230 o C. Nhiệt điện trở với kỹ thuật màng mỏng: Trên một nền oxit nhôm, một lớp platin dày khoảng 1 μm được phủ lên bằng phương pháp phun ion hay bốc hơi chân không. Sau đó, với phương pháp quang khắc hay tia laser, lớp platin có hình một đường gấp khúc và được chuẩn hoá cũng bằng tia laser. Sau đó, lớp platin được phủ bởi một lớp thủy tinh. Dải đo nhiệt độ từ -50 đến 400 o C. Các nhiệt điện trở với kỹ thuật màng mỏng đều có thời gian hồi áp rất bé (khoảng 1 giây) và quán tính nhiệt bé. Với kỹ thuật màng mỏng, nhiệt điện trở có sự ổn định lâu dài. 12 2.7.1.4. Kỹ thuật nối dây Nhiệt điện trở thay đổi điện trở theo nhiệt độ với một dòng điện không đổi đi qua điện trở ta có điện thế đo được U = I.R. Để cảm biến không bị nóng lên qua phép đo, dòng điện cần phải nhỏ khoảng 1mA (đối với Pt100) điện thế này cần được đưa đến máy đo qua dây đo, với sai số thấp nhất. Ta có 3 kỹ thuật nối dây đo: - Kỹ thuật 2 dây: Hình 2.7 Kỹ thuật nối 2 dây Với kỹ thuật nối 2 dây phép đo có sai số lớn do điện trở của dây dẫn và sự thay đổi của chúng theo nhiệt độ. - Kỹ thuật 3 dây: Hình 2.8 Kỹ thuật nối 3 dây Với cách nối này hai mạch đo được hình thành, một trong hai được dùng để làm mạch chuẩn. Với kỹ thuật 3 dây, sai số phép đo do nhiệt độ và điện trở dây dẫn không còn. Tuy nhiên 3 dây đo phải có cùng trị số kỹ thuật và cùng một nhiệt độ. - Kỹ thuật 4 dây: Hình2.9 Kỹ thuật nối 4 dây 13 Với kỹ thuật 4 dây, người ta đạt kết quả đo tốt nhất. Hai dây được dùng để cho một dòng điện không đổi đi qua, hai dây khác được dùng làm dây đo điện thế trên nhiệt điện trở (Dương Minh Trí,2001, trang 14 - 23). 2.7.2. Cặp nhiệt điện Những nguyên tắc hay lý thuyết về hiệu ứng nhiệt điện được xây dựng bởi nhiều nhà khoa học như Thomas Johann Seebeck (1821), Jean Charles Althanase Peltier (1843), William Thomson, Lord Kelvin … và trải qua một thời gian dài. Hiệu ứng Seebeck mô tả sự chuyển đổi năng lượng nhiệt sang năng lượng điện với sự xuất hiện một dòng điện. Do đó, việc đo nhiệt độ được chuyển thành đo điện. Trong thực tế, một cặp nhiệt điện là hai dây kim loại khác nhau được nối chung với nhau ở hai đầu. Do sự khác nhau giữa năng lượng liên kết của electron và các nguyên tử kim loại khác nhau, ta có một điện áp nhiệt. Điện áp nhiệt này có thể tạo nên một dòng điện khi hai đầu còn lại của kim loại được nối với nhau. Trong mạch điện khép kín này, ta có một dòng điện gây nên bởi hiệu ứng Seebeck. Do đầu nối thứ hai của cặp nhiệt điện một điện áp nhiệt cũng phát sinh. Nếu hai đầu có nhiệt độ giống nhau, dòng điện bằng 0. Như thế, một cặp nhiệt điện chỉ có thể cho ta một điện thế khi có sự chênh lệch về nhiệt độ. (Dương Minh trí, trang 61) 2.8. Cấu trúc và đặc tính của chip AT90S8535 Chip AT90S8535 của hãng ATMEL có những đặc điểm sau: Điện áp nguồn nuôi: 4V- 6V. Có 118 lệnh mạnh hầu hết được thực hiện trong 1 chu kỳ xung nhịp. RAM flash 8 kbyte lập trình được trong hệ thống. Chịu được 100000 lần ghi/xóa. Bộ nhớ EEPROM 512 byte. Chịu được 100000 lần ghi/xóa. Bộ nhớ SRAM bên trong 512 byte. Bộ biến đổi ADC 8 kênh, 10 bit. 32 đường vào/ra lập trình được. 32 thanh ghi đa năng. Bộ định thời gian watchdog lập trình được với bộ dao động bên trong. 14 Hình 2.10 Sơ đồ chân của AT90S8535. Chức năng các chân: VCC: điện áp nguồn nuôi GND: đất Cổng A (PA0 đến PA7): cổng vào/ra hai hướng 8 bit, có điện trở nối lên nguồn dương bên trong. Cổng A cung cấp các đường địa chỉ dữ liệu vào ra theo kiểu hợp kênh khi dùng bộ nhớ ở bên ngoài. Ngoài ra cổng A còn thêm chức năng chuyển đổi từ dạng tỷ biến sang dạng số. Cổng B (PB0 đến PB7): cổng vào/ra hai hướng 8 bit, có điện trở nối lên nguồn dương bên trong. Cổng B cung cấp các chức năng ứng với các tính năng đặc biệt của AT90S8535. Cổng C (PC0 đến PC7): cổng vào/ra hai hướng 8 bit, có điện trở nối lên nguồn dương bên trong. Cổng C cung cấp các địa chỉ lối ra khi dùng bộ nhớ ở bên ngoài. Cổng D (PD0 đến PD7): cổng vào/ra hai hướng 8 bit, có điện trở nối lên nguồn dương bên trong. Cổng D cung cấp các chức năng ứng với các tính năng đặc biệt của AT90S8535. RESET: lối vào được đặt lại XTAL1: lối vào bộ khuếch đại đảo và lối vào mạch tạo xung nhịp bên trong XTAL2: lối vào bộ khuếch đại đảo ICP: là chân vào cho chức năng bắt tính hiệu vào bộ định thời/đếm 1. OC1B: là chân ra cho chức năng so sánh lối ra bộ định thời/đếm 1. 15 ALE: là chân tín hiệu cho phép chốt địa chỉ được dùng khi truy nhập bộ nhớ ngoài. (www.atmel.com) 2.9. Ngôn ngữ Bascom Ngôn ngữ Bascom được viết trên ngôn ngữ C ++ của hãng Microsoft, có những ưu điểm vượt trội so với Assem, nó gần với ngôn ngữ người vì vậy dễ lập trình và kiểm soát lỗi, giúp cho chương trình viết đơn giản và dễ hiểu. Bascom còn có trợ giúp thêm chạy chương trình mô phỏng, trình biên dịch… 2.10. Mạch điện Mạch điện được thiết kế trên máy tính bởi phần mềm Orcad, mạch được thiết kế theo dạng board chức năng, mỗi board đảm nhận một chức năng riêng nên dễ kiểm tra, sửa chữa và nâng cấp. 2.11. Ứng dụng của PCR 2.11.1. PCR định lượng Việc áp dụng PCR số lượng luôn luôn đòi hỏi phải kèm theo một hồ sơ (protocol PCR) để giảm đến mức thấp nhất những yếu tố ảnh hưởng đến quá trình và kích hoạt. PCR phải duy trì trong 20 vòng để tạo kích hoạt mạch thẳng ( www.ykhoa.net). 2.11.2. PCR sản xuất đột biến (PCR mutagenesis) Có thể dùng kỹ thuật PCR để xóa đi hoặc cấy ghép một đột biến vào phân tử DNA mục tiêu. Kỹ thuật này giúp nghiên cứu cấu trúc chức năng tương lai trong các protein cuối cùng. Sự xóa đi có thể dùng primer nối với vòng cần phải xóa đi và tiến hành vị trí giới hạn trong quá trình tái tổ hợp với primer thứ hai. 2.11.3. PCR ứng dụng trong cloning tái tổ hợp (cloning of recombinant) Nếu trước đây, muốn đưa một đoạn gene vào plasmid để chuyển thể plasmid này vào một vi khuẩn thì công việc này đòi hỏi phải tốn nhiều thời gian và công sức. Trước hết là phải có một số lượng tế bào đích để từ đó người ta ly trích toàn bộ bộ gene 16 (genomic DNA). Sau đó, dùng nhiều loại enzyme cắt giới hạn để cắt bộ gene thành nhiều đoạn có kích thước khác nhau, điện di trên gel, dùng kỹ thuật Southern blotting và phát hiện đoạn gen muốn tìm bằng kỹ thuật lai với đoạn dò đặc hiệu. Từ kết quả đó, có thể định vị và trích được đoạn gen muốn tìm từ bản gel đã điện di để gắn vào plasmid rồi đưa vào vi khuẩn mang. Tuy nhiên, công việc như vậy cũng chưa đã hoàn tất, vì chưa chắc chúng ta đã gắn đúng đoạn gen mong muốn vào plasmid vì trên bản thạch chúng ta không thể chỉ lấy đúng đoạn gen đã định vị mà không lẫn các đoạn gene khác. Do vậy, phải chọn đúng vi khuẩn mang plasmid có gene mong muốn. Chúng ta gọi toàn bộ kỹ thuật này là clone tái tổ hợp, có khi phải thực hiện trong nhiều tháng, thậm chí nhiều năm, mà nhiều khi chưa chắc đã thành công. Ngày nay, các nhà nghiên cứu có thể dùng kỹ thuật PCR trong thí nghiệm này. Trước hết là từ một vài tế bào đích ban đầu (không cần phải có nhiều tế bào đích như kỹ thuật cũ), có thể sử dụng cặp mồi đặc hiệu để tổng hợp và khuếch đại đoạn gen muốn tìm thành hàng tỷ bản sao giống hệt nhau rồi đưa vào plasmid (không cần phải dùng một lượng lớn tế bào đích để ly trích được bộ gene và phân tích bằng restriction enzyme, rồi làm Southern blotting ). Lúc này plasmid mang đúng đoạn gen đích, không thể có lẫn lộn các đoạn gene khác. Vì vậy sau khi chuyển thể plasmid vào vi khuẩn mang, không cần phải làm kỹ thuật chọn dòng nữa. Như vậy, chúng ta thấy cũng cùng một mục đích, nhưng với PCR, công việc đã gọn lại rất nhiều ( www.ykhoa.net). 2.11.4. PCR nhân bản đoạn DNA mong muốn Với các kỹ thuật sinh học phân tử cổ điển, để có được một đoạn DNA mong muốn nào đó, nhà nghiên cứu phải có trong tay một số lượng lớn tế bào đích, để ly trích được bộ gene của tế bào. Sau đó từ bộ gene phức tạp này, ly trích đoạn DNA muốn tìm bằng hàng loạt các kỹ thuật sinh học phân tử phức tạp, tốn thời gian và công sức. Với kỹ thuật PCR, công việc được giải quyết một cách gọn gàng hơn nhiều. Chỉ cần một số lượng nhỏ bộ gene có trong mẫu thử, với một cặp mồi đặc hiệu, có thể tổng hợp và khuếch đại đoạn DNA đích trong bộ gen phức tạp thành hàng tỷ bản sao các đoạn DNA giống hệt nhau mà không cần phải làm động tác ly trích trở lại. Một trường hợp khác là nếu đoạn gen mong muốn đã nghiên cứu trước đó và đã được gắn vào một plasmid, chuyển thể vào một loại vi khuẩn mang. Nếu muốn có 17 đoạn gene để nghiên cứu thì phải xin tác giả của nó gởi cho mình vi khuẩn mang với plasmid có gắn đoạn gen trên. Tuy đơn giản hơn là phải ly trích ngay từ đầu đoạn gen trên, nhưng cũng tốn khá nhiều thời giờ chờ đợi. Với PCR thì công việc lại đơn giản hơn gấp nhiều lần. Chỉ cần có đoạn mồi cho gen mong muốn, rồi dùng kỹ thuật PCR để khuếch đại đoạn gen này thành hàng tỷ bản copy giống hệt nhau. Có rất nhiều đoạn gen mong muốn, rất thuần khiết, để làm nghiên cứu mà không cần phải chờ đợi, phải xin phép tác giả, Từ cấu trúc của protein với thứ tự các amino acid, có thể suy ra được cấu trúc của đoạn mồi cần tổng hợp để khuyếch đại được đoạn gene chịu trách nhiệm trong tổng hợp protein trên. Ngoài ra, nhờ kỹ thuật RT-PCR (Reverse Transciptase PCR), có thể dễ dàng khuếch đại mRNA, nhờ vậy có thể nghiên cứu được sự biểu hiện gene mà không cần phải sử dụng các kỹ thuật sinh học phân tử trước đây như ly trích mRNA từ một số lượng tế bào đích khá lớn rồi phát hiện nó bằng kỹ thuật Northern blotting. Phát hiện mRNA còn có một ứng dụng khác nữa là phát hiện xem vi sinh vật gây bệnh có kháng được với hóa trị liệu hay không, vì chỉ có vi khuẩn còn hoạt động mới tổng hợp được mRNA, nếu vi khuẩn đã chết thì khó phát hiện được mRNA vì cấu trúc này không bền dễ bị huỷ bởi các men RNase vốn dĩ rất bền và hiện diện sẵn trong môi trường ( www.ykhoa.net). 2.11.5. PCR dùng trong phát hiện các vi sinh vật gây bệnh Bằng cách khuếch đại đoạn nucleic acid đặc trưng của vi sinh vật gây bệnh trong mẫu bệnh phẩm, thử nghiệm PCR có thể phát hiện vi sinh vật gây bệnh với độ nhạy cực cao mà không có một thử nghiệm nào trước đây có thể so sánh được. Sở dĩ được như vậy vì chỉ cần dưới 1 vi sinh vật gây bệnh có mặt trong mẫu thử là có hiện diện acid nucleic đích và được PCR khuếch đại. Trong các thử nghiệm huyết thanh hay miễn dịch học, chìa khoá chính của thử nghiệm là có được trong tay các kháng thể hay kháng nguyên đặc hiệu. Nếu không muốn mua sản phẩm thương mại, phải tự chế, đây là một công việc rất công phu và tốn thời gian. Trong khi đó với PCR, chìa khóa chính của thử nghiệm là vấn đề tìm cho được các đoạn mồi đặc hiệu. Nhờ có máy vi tính trợ giúp mà công việc này trở nên đơn giản: với một đĩa CD có đầy đủ các dữ liệu về thư viện DNA của các vi sinh vật 18 mà các nhà nghiên cứu trước đã nghiên cứu được và với một phần mềm chuyên dùng, có thể tự chọn những cặp mồi theo đúng trình tự đã chọn. Sau đó chỉ cần đặt hàng cho một hãng tổng hợp đoạn mồi theo đúng trình tự đã chọn. Sau khi tổng hợp, hãng sản xuất có thể gởi đến người sử dụng theo đường bưu điện mà không cần phải có điều kiện bảo quản chặt chẽ, vì các đoạn mồi sau khi tổng hợp xong, làm đông khô có thể giữ rất bền trong điều kiện bình thường. Công việc lúc này là thử nghiệm xem các đoạn mồi được chọn đặc hiệu như mong muốn hay không, nếu không thì lại chọn một cặp mồi khác. Do phản ứng PCR quá nhạy, nên khi áp dụng trong chẩn đoán, một vấn đề rất quan trọng cần phải lưu tâm, đó là hiện tượng dương tính giả, chủ yếu là do mẫu thử bị nhiễm bởi các sản phẩm PCR trước đó. Chỉ cần mẫu thử bị nhiễm một hoặc vài mảnh sản phẩm PCR thì các mảnh này sẽ được khuếch đại và mẫu cho kết quả dương tính nhưng là dương tính giả. Ðể có thể tránh được kết quả dương tính giả, PCR chẩn đoán phải được thực hiện trong một phòng thí nghiệm có tổ chức chặt chẽ, các giai đoạn thí nghiệm phải được thực hiện tại những khu vực riêng, với các đồ dùng thí nghiệm riêng, sử dụng nhiều vật liệu chỉ dùng một lần (đầu pipette, ống nghiệm phản ứng, ống nghiệm chuẩn bị bệnh phẩm). Ngoài ra còn phải áp dụng nhiều biện pháp để loại trừ ngoại nhiễm. Hiện nay, có lẽ hiệu quả nhất là sử dụng phương pháp nội tại loại trừ ngoại nhiễm: đó là trộn sẵn trong ống nghiệm làm phản ứng PCR men Uracil N Glycosylase (UNG) là men có khả năng phá hủy các sản phẩm PCR ngoại nhiễm trước khi phản ứng PCR xảy ra. Chính nhờ việc sử dụng UNG mà các thử nghiệm PCR chẩn đoán phát hiện vi sinh vật gây bệnh có thể thực hiện được tại bất cứ phòng thí nghiệm nào, không cần phải tại một thí nghiệm được thiết kế đặc biệt cho PCR chẩn đoán. Ngoài ra, PCR còn có một biến thể là kỹ thuật Nested - PCR có thể làm tăng thêm độ nhạy cảm của thử nghiệm một khi nucleic acid đích hiện diện khá ít trong mẫu thử. Với kỹ thuật RT-PCR, có thể khuếch đại nucleic đích là RNA, nhờ vậy có thể phát hiện tác nhân gây bệnh mà acid nucleic đích là RNA chứ không chỉ hạn chế với acid nucleic là DNA. Tuy nhiên, cần phải lưu ý rằng kỹ thuật RT-PCR cũng như Nested - PCR là những kỹ thuật không thể dùng UNG là yếu tố nội tại chống ngoại nhiễm, vì vậy chỉ có thể thực hiện được trong những phòng thí nghiệm có kiểm soát chặt chẽ. . 3 kỹ thuật nối dây đo: - Kỹ thuật 2 dây: Hình 2. 7 Kỹ thuật nối 2 dây Với kỹ thuật nối 2 dây phép đo có sai số l n do điện trở của dây dẫn và sự thay đổi của chúng theo nhiệt độ. - Kỹ thuật. XTAL 2: l i vào bộ khuếch đại đảo ICP: l chân vào cho chức năng bắt tính hiệu vào bộ định thời/đếm 1. OC1B: l chân ra cho chức năng so sánh l i ra bộ định thời/đếm 1. 15 ALE:. trở nối l n nguồn dương bên trong. Cổng D cung cấp các chức năng ứng với các tính năng đặc biệt của AT90S8535. RESET: l i vào được đặt l i XTAL 1: l i vào bộ khuếch đại đảo và l i vào mạch