1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài giảng điện tử số part 2 pps

13 353 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 184,27 KB

Nội dung

Chng 2. i s BOOLE Trang 13 f. nh lí 6 (nh lý nut) ∀x, y ∈ B, ta có: x + x. y = x x.(x + y) = x g. nh lí 7 (Quy tc tính i vi hng) i 0, 1 ∈ B, ta có: 0 = 1 1 = 0 2.2. HÀM BOOLE VÀ CÁC PHNG PHÁP BIU DIN 2.2.1. Hàm Boole 1. nh ngha Hàm Boole là mt ánh x ti s Boole vào chính nó. Ngha là ∀x, y ∈ B c gi là các bin Boole thì hàm Boole, ký hiu là f, c hình thành trên c s liên kt các bin Boole bng các phép toán + (cng logic), x / . (nhân logic), nghch o logic (-). Hàm Boole n gin nht là hàm Boole theo 1 bin Boole, c cho nh sau: f(x) = x, f(x) = x , f(x) = α (α là hng s ) Trong trng hp tng quát, ta có hàm Boole theo n bin Boole c ký hiu nh sau: f(x 1 , x 2 , , x n ) 2. Các tính cht ca hàm Boole u f(x 1 , x 2 , , x n ) là mt hàm Boole thì: - α.f(x 1 , x 2 , , x n ) cng là mt hàm Boole. - f (x 1 , x 2 , , x n ) cng là mt hàm Boole. u f 1 (x 1 , x 2 , , x n ) và f 2 (x 1 , x 2 , , x n ) là nhng hàm Boole thì: - f 1 (x 1 , x 2 , , x n ) + f 2 (x 1 , x 2 , , x n ) cng là mt hàm Boole. - f 1 (x 1 , x 2 , , x n ).f 2 (x 1 , x 2 , , x n ) cng là mt hàm Boole. y, mt hàm Boole f cng c hình thành trên c s liên kt các hàm Boole bng các phép toán + (cng logic), x (.) (nhân logic) hoc nghch o logic (-). 3. Giá tr ca hàm Boole Gi s f(x 1 , x 2 , , x n ) là mt hàm Boole theo n bin Boole. Trong f ngi ta thay các bin x i bng các giá tr c th α i ( n,1i = ) thì giá tr f (α 1 , α 2 , , α n ) c gi là giá tr ca hàm Boole theo n bin. Ví d 2.3: Xét hàm f(x 1 , x 2 ) = x 1 + x 2 Xét trong tp B = B* ={0,1} ta có các trng hp sau (lu ý ây là phép ng logic hay còn gi phép toán HOC / phép OR): - x 1 = 0, x 2 = 0 → f(0,0) = 0 + 0 = 0 Bài ging N T S 1 Trang 14 - x 1 = 0, x 2 = 1 → f(0,1) = 0 + 1 = 1 - x 1 = 1, x 2 = 0 → f(1,0) = 1 + 0 = 1 - x 1 = 1, x 2 = 1 → f(1,1) = 1 + 1 = 1 Ta lp c bng giá tr ca hàm trên. Ví d 2.4 : Xét hàm cho bi biu thc sau: f(x 1 , x 2 , x 3 ) = x 1 + x 2 .x 3 Xét tp B = B* = {0,1}. Hoàn toàn tng t ta lp c bng giá tr ca hàm: x 1 x 2 x 3 f (x 1 , x 2 , x 3 ) = x 1 + x 2 .x 3 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 2.2.2. Các phng pháp biu din hàm Boole 1. Phng pháp biu din hàm bng bng giá tr ây là phng pháp thng dùng  biu din hàm s nói chung và cng c s dng  biu din các hàm logic. Phng pháp này gm mt bng c chia làm hai phn: - Mt phn dành cho bin  ghi các t hp giá tr có th có ca bin vào. - Mt phn dành cho hàm  ghi các giá tr ca hàm ra tng ng vi các t hp bin vào. Bng giá tr còn c gi là bng chân tr hay bng chân lý (TRUE TABLE). Nh vy vi mt hàm Boole n bin bng chân lý s có: - (n+1) t: n ct tng ng vi n bin vào, 1 ct tng ng vi giá tr ra ca hàm. - 2 n hàng: 2 n giá tr khác nhau ca t hp n bin. Ví d 2.5 : Hàm 3 bin f(x 1 , x 2 , x 3 ) có thc cho bng bng giá tr nh sau: x 1 x 2 x 3 f (x 1 , x 2 , x 3 ) 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 Trong các ví d 2.3 và 2.4 chúng ta cng ã quen thuc vi phng pháp biu din hàm bng ng giá tr. x 1 x 2 f(x 1 , x 2 ) = x 1 + x 2 0 0 1 1 0 1 0 1 0 1 1 1 Chng 2. i s BOOLE Trang 15 2. Phng pháp gii tích ây là phng pháp biu din hàm logic bng các biu thc i s. Phng pháp này có 2 dng: ng ca các tích s hoc tích ca các tng s. ng tng ca các tích s gi là dng chính tc th nht (Dng chính tc 1 – CT1). ng tích ca các tng s gi là dng chính tc th hai (Dng chính tc 2 – CT2). Hai dng chính tc này là i ngu nhau. ng tng các tích s còn gi là dng chun tc tuyn (CTT), dng tích các tng s còn gi là ng chun tc hi (CTH). a. Dng chính tc 1(Dng tng ca các tích s) Xét các hàm Boole mt bin n gin: f(x) = x, f(x) = x , f(x) = α (α là hng s). ây là nhng trng hp có th có i vi hàm Boole 1 bin. Chúng ta si chng minh biu thc tng quát ca hàm logic 1 bin si vi dng chính tc 1. Sau ó áp dng biu thc tng quát ca hàm 1 bin  tìm biu thc tng quát ca hàm 2 bin vi vic xem 1 bin là hng s. Cui cùng, chúng ta suy ra biu thc tng quát ca hàm logic n bin cho trng hp dng chính tc 1 (tng các tích s). Xét f(x) = x: Ta có: x =0. x + 1.x t khác: ( ) () ( )    = = ⇒= 00f 11f xxf Suy ra: f(x) = x có th biu din: f(x) = x = f(0). x + f (1).x trong ó: f (0), f (1) c gi là các giá tr ca hàm Boole theo mt bin. Xét f(x) = x : Ta có: x = 1. x + 0. x t khác: ( ) () ( )    = = ⇒= 10f 01f xxf Suy ra: f(x) = x có th biu din: f(x) = x = f(0). x + f(1).x Xét f(x) = α (α là hng s): Ta có: α = α.1 = α.(x + x ) = α. x + α.x t khác: ( ) () ( )    = = ⇒= 0f 1f xf Suy ra f(x) = α có th biu din: f(x) = α = f(0). x + f(1).x t lun : Dù f(x) = x, f(x) = x hay f(x) = α, ta u có biu thc tng quát ca hàm mt bin vit theo dng chính tc th nht nh sau: Bài ging N T S 1 Trang 16 f(x) = f(0). x + f(1).x y f(x) = f(0). x + f(1).x, trong ó f(0), f(1) là giá tr ca hàm Boole theo mt bin, c gi là biu thc tng quát ca hàm 1 bin vit  ng chính tc th nht (dng tng ca các tích). Biu thc tng quát ca hàm hai bin f(x 1 , x 2 ): Biu thc tng quát ca hàm 2 bin vit theo dng chính tc th nht cng hoàn toàn da trên cách biu din ca dng chính tc th nht ca hàm 1 bin, trong ó xem mt bin là hng s.  th là: nu xem x 2 là hng s, x 1 là bin s và áp dng biu thc tng quát ca dng chính tc th nht cho hàm 1 bin, ta có: f(x 1 ,x 2 ) = f(0,x 2 ). x 1 + f(1,x 2 ).x 1 Bây gi, các hàm f(0,x 2 ) và f(1,x 2 ) tr thành các hàm 1 bin s theo x 2 . Tip tc áp dng biu thc tng quát ca dng chính tc th nht cho hàm 1 bin, ta có: f(0,x 2 ) = f(0,0). x 2 + f(0,1).x 2 f(1,x 2 ) = f(1,0). x 2 + f(1,1).x 2 Suy ra: f(x 1 ,x 2 ) = f(0,0). x 1 x 2 + f(0,1). x 1 x 2 + f(1,0).x 1 x 2 + f(1,1).x 1 x 2 ây chính là biu thc tng quát ca dng chính tc th nht (dng tng ca các tích s) vit cho hàm Boole hai bin s f(x 1 ,x 2 ). Biu thc tng quát này có th biu din bng công thc sau: f(x 1 ,x 2 ) = 2  2 1  12 1 0 e 1 x)x,f( 2 2 ∑ − = Trong ó e là s thp phân tng ng vi mã nh phân (α 1 ,α 2 ) và: x 1 nu α 1 = 1 x 1 nu α 1 = 0 x 2 nu α 2 = 1 x 2 nu α 2 = 0 Biu thc tng quát cho hàm Boole n bin : T biu thc tng quát vit  dng chính tc th nht ca hàm Boole 2 bin, ta có th tng quát hoá cho hàm Boole n bin f(x 1 ,x 2 , ,x n ) nh sau: f(x 1 ,x 2 , ,x n ) = n n 2 21 xx)x, ,,f( n2 1 n 2 0e 1    1  ∑ − = trong ó e là s thp phân tng ng vi mã nh phân (α 1 ,α 2 , ,α n ); và: x i nu α i = 1 x i nu α i = 0 (vi i = 1, 2, 3,…,n) 1 1 x  = 2 2 x  = i i  x = Chng 2. i s BOOLE Trang 17 Ví d 2.6: Vit biu thc ca hàm 3 bin theo dng chính tc 1: f(x 1 ,x 2 ,x 3 ) = ∑ − = 12 0e 3 f (α 1 ,α 2 ,α 3 ).x 1 α1 .x 2 α2 .x 3 α3 ng di ây cho ta giá tr ca s thp phân e và t hp mã nh phân (α 1 ,α 2 ,α 3 ) tng ng: e α 1 α 2 α 3 0 0 0 0 1 0 0 1 2 0 1 0 3 0 1 1 4 1 0 0 5 1 0 1 6 1 1 0 7 1 1 1 Biu thc ca hàm 3 bin vit theo dng tng các tích nh sau: f(x 1 , x 2 , x 3 ) = f(0,0,0) x 1 x 2 x 3 + f(0,0,1) x 1 x 2 x 3 + f(0,1,0) x 1 x 2 x 3 + f(0,1,1) x 1 x 2 x 3 + f(1,0,0) x 1 x 2 x 3 + f(1,0,1)x 1 x 2 x 3 + f(1,1,0) x 1 x 2 x 3 + f(1,1,1) x 1 x 2 x 3 y dng chính tc th nht là dng tng ca các tích s mà trong mi tích s cha y  các bin Boole di dng tht hoc dng bù (nghch o). b. Dng chính tc 2 (tích ca các tng s): ng chính tc 2 là dng i ngu ca dng chính tc 1 nên biu thc tng quát ca dng chính tc 2 cho n binc vit nh sau: f(x 1 , x 2 , , x n ) = ∏ − = 12 0e n [f(α 1 ,α 2 ,α 3 ) + x 1 α1 + x 2 α2 + + x n αn )] trong ó e là s thp phân tng ng vi mã nh phân (α 1 ,α 2 , ,α n ); và: x i nu α i = 1 x i nu α i = 0 (vi i = 1, 2, 3,…,n) Ví d 2.7 : Biu thc ca hàm Boole 2 bin  dng tích các tng s (dng chính tc 2) c vit nh sau: f(x 1 ,x 2 )=[f(0,0)+x 1 +x 2 ][f(0,1)+x 1 + x 2 ][f(1,0)+ x 1 +x 2 ][f(1,1)+ x 1 + x 2 ] Ví d 2.8 : Biu thc ca hàm Boole 3 bin  dng chính tc 2: f(x 1 ,x 2 ,x 3 ) = [f(0,0,0)+x 1 + x 2 +x 3 ].[f(0,0,1)+x 1 +x 2 + x 3 ]. [f(0,1,0)+x 1 + x 2 +x 3 ].[f(0,1,1)+x 1 + x 2 + x 3 ]. [f(1,0,0)+ x 1 +x 2 +x 3 ].[f(1,0,1)+ x 1 +x 2 + x 3 ]. [f(1,1,0)+ x 1 + x 2 +x 3 ].[f(1,1,1)+ x 1 + x 2 + x 3 ] i i x  = Bài ging N T S 1 Trang 18 y, dng chính tc th hai là dng tích ca các tng s mà trong ó mi tng s này cha y  các bin Boole di dng tht hoc dng bù. Ví d 2.9 : Hãy vit biu thc biu din cho hàm Boole 2 bin f(x 1 ,x 2 )  dng chính tc 1, vi bng giá tr a hàm c cho nh sau: x 1 x 2 f(x 1 ,x 2 ) 0 0 0 0 1 1 1 0 1 1 1 1 Vit di dng chính tc 1 ta có: f(x 1 ,x 2 ) = f(0,0). x 1 x 2 + f(0,1). x 1 .x 2 + f(1,0).x 1 . x 2 + f(1,1).x 1 .x 2 = 0. x 1 x 2 + 1. x 1 .x 2 + 1.x 1 . x 2 + 1.x 1 .x 2 = x 1 .x 2 + x 1 . x 2 + x 1 .x 2 Nhn xét: • ng chính tc th nht, tng ca các tích s, là dng lit kê tt c các t hp nh phân các bin vào sao cho tng ng vi nhng t hp ó giá tr ca hàm ra bng 1 → ch cn lit kê nhng t hp bin làm cho giá tr hàm ra bng 1. • Khi lit kê nu bin tng ng bng 1 c vit  dng tht (x i ), nu bin tng ng ng 0 c vit  dng bù ( x i ). Ví d 2.10: Vit biu thc biu din hàm f(x 1 ,x 2 ,x 3 )  dng chính tc 2 vi bng giá tr ca hàm ra c cho nh sau: x 3 x 2 x 1 f(x 1 ,x 2, x 3 ) 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 Vit di dng chính tc 2 (tích các tng s): f(x 1 ,x 2 ,x 3 ) = (0+x 1 +x 2 +x 3 ).(0+x 1 +x 2 + x 3 ).(0+x 1 + x 2 +x 3 ). (1+x 1 + x 2 + x 3 ).(1+ x 1 +x 2 +x 3 ).(1+ x 1 +x 2 + x 3 ). (1+ x 1 + x 2 +x 3 ).(1+ x 1 + x 2 + x 3 ) Chng 2. i s BOOLE Trang 19 Áp dng tiên  v phn t trung hòa 0 và 1 ta có: x + 1 = 1, x . 1 = x x + 0 = x, x . 0 = 0 nên suy ra biu thc trên có th vit gn li: f(x 1 ,x 2 ,x 3 ) = (x 1 +x 2 +x 3 ).(x 1 +x 2 + x 3 ).(x 1 + x 2 +x 3 ) Nhn xét: • ng chính tc th hai là dng lit kê tt c các t hp nh phân các bin vào sao cho ng ng vi nhng t hp ó giá tr ca hàm ra bng 0 → ch cn lit kê nhng t p bin làm cho giá tr hàm ra bng 0. • Khi lit kê nu bin tng ng bng 0 c vit  dng tht (x i ), nu bin tng ng ng 1 c vit  dng bù ( x i ). Ví dn gin sau giúp SV hiu rõ hn v cách thành lp bng giá tr ca hàm, tìm hàm mch và thit k mch. Ví d 2.11 Hãy thit k mch n sao cho khi công tc 1 óng thì èn , khi công tc 2 óng èn , khi  hai công tc óng èn  ? i gii: u tiên, ta qui nh trng thái ca các công tc và bóng èn: - Công tc h : 0 èn tt : 0 - Công tc óng : 1 èn  : 1 ng trng thái mô t hot ng ca mch nh sau: Công tc 1 Công tc 2 Trng thái èn x 1 x 2 f(x 1 ,x 2 ) 0 0 1 1 0 1 0 1 0 1 1 1  bng trng thái có th vit biu thc ca hàm f(x 1 ,x 2 ) theo dng chính tc 1 hoc chính tc 2. - Theo dng chính tc 1 ta có: f(x 1 , x 2 ) = x 1 .x 2 + x 1 . x 2 + x 1 .x 2 = x 1 .x 2 + x 1 ( x 2 + x 2 ) = x 1 .x 2 + x 1 = x 1 + x 2 - Theo dng chính tc 2 ta có: f(x 1 , x 2 ) = (0+x 1 +x 2 ) = x 1 + x 2 T biu thc mô t trng thái /tt ca èn f(x 1 ,x 2 ) thy rng có th thc hin mch bng phn  logic HOC có 2 ngõ vào (cng OR 2 ngõ vào). Bài tp áp dng : Mt hi ng giám kho gm 3 thành viên. Mi thành viên có th la chn NG Ý hoc KHÔNG NG Ý. Kt qu gi là T khi a s các thành viên trong hi ng giám kho NG Ý, ngc li là KHÔNG T. Hãy thit k mch gii quyt bài toán trên. Bài ging N T S 1 Trang 20 3. Biu din hàm bng bng Karnaugh (bìa Karnaugh) ây là cách biu din li ca phng pháp bng di dng bng gm các ô vuông nh hình bên. Trên bng này ngi ta b trí các bin vào theo hàng hoc theo ct ca ng. Trong trng hp s lng bin vào là chn, ngi ta b trí s lng bin vào theo hàng ngang bng s lng bin vào theo ct dc ca bng. Trong trng hp s lng bin vào là l, ngi ta b trí s lng bin vào theo hàng ngang nhiu hn s lng bin vào theo ct dc 1 bin hoc ngc li. Các t hp giá tr ca bin vào theo hàng ngang hoc theo ct dc ca bng c b trí sao cho khi ta i t mt ô sang mt ô lân cn vi nó ch làm thay i mt giá tr ca bin , nh vy th t  trí hay sp xp các t hp giá tr ca bin vào theo hàng ngang hoc theo ct dc ca bng Karnaugh hoàn toàn tuân th theo mã Gray. Giá tr ghi trong mi ô vuông này chính là giá tr ca hàm ra tng ng vi các t hp giá tr ca bin vào.  nhng ô mà giá tr hàm là không xác nh (có th bng 0 hay bng 1), có ngha là giá tr a hàm là tùy ý (hay tùy nh), ngi ta kí hiu bng ch X. u hàm có n bin vào s có 2 n ô vuông . Phng pháp biu din hàm bng bng Karnaugh ch thích hp cho hàm có ti a 6 bin, nu t quá vic biu din s rt rc ri. i ây là bng Karnaugh cho các trng hp hàm 2 bin, 3 bin, 4 bin và 5 bin: 2.3. TI THIU HÓA HÀM BOOLE 2.3.1. i cng Trong thit b máy tính ngi ta thng thit k gm nhiu modul (khâu) và mi modul này c c trng bng mt phng trình logic. Trong ó, mc  phc tp ca s tùy thuc vào phng trình logic biu din chúng. Vic t c n nh cao hay không là tùy thuc vào phng trình logic biu din chúng  dng ti thiu hóa hay cha.  thc hin c u ó, khi thit k mch s ngi ta t ra vn  ti thiu hóa các hàm logic. u ó có ngha là phng f(x 1 ,x 2 ) x 1 x 2 0 1 0 1 f x 1 x 2 x 3 0 1 00 01 11 10 f x 1 x 2 x 3 x 4 00 01 11 10 00 01 11 10 f x 2 x 3 x 4 x 5 00 01 11 10 00 01 11 10 10 11 01 00 x 1 =0 x 1 =1 Chng 2. i s BOOLE Trang 21 trình logic biu din sao cho thc s gn nht (s lng các phép tính và s lng các sc biu din di dng tht hoc bù là ít nht). Các k thut t c s thc hin hàm Boole mt cách n gin nht ph thuc vào nhiu u t mà chúng ta cn cân nhc: t là s lng các phép tính và s lng các s (s lng literal) c biu din di dng tht hoc bù là ít nht, u này ng ngha vi vic s lng dây ni và s lng u vào ca mch là ít nht. Hai là s lng cng cn thit  thc hin mch phi ít nht, chính s lng cng xác nh kích thc ca mch. Mt thit kn gin nht phi ng vi s lng cng ít nht ch không phi s ng literal ít nht. Ba là s mc logic ca các cng. Gim s mc logic s gim tr tng cng ca mch vì tín hiu  qua ít cng hn. Tuy nhiên nu chú trng n vn  gim tr s phi tr giá s lng cng tng lên. i vy trong thc t không phi lúc nào cng t c li gii ti u cho bài toán ti thiu hóa. 2.3.2. Các bc tin hành ti thiu hóa • Dùng các phép ti thiu  ti thiu hóa các hàm s logic. • Rút ra nhng tha s chung nhm mc ích ti thiu hóa thêm mt bc na các phng trình logic. 2.3.3. Các phng pháp ti thiu hóa Có nhiu phng pháp thc hin ti thiu hoá hàm Boole và có tha v 2 nhóm là bin i i s và dùng thut toán. Phng pháp bin i i s (phng pháp gii tích) da vào các tiên , nh lý, tính cht ca hàm Boole  thc hin ti thiu hoá.  nhóm thut toán có 2 phng pháp thng c dùng là: phng pháp bng Karnaugh (còn i là bìa Karnaugh – bìa K) dùng cho các hàm có t 6 bin tr xung, và phng pháp Quine- Mc.Cluskey có th s dng cho hàm có s bin bt k cng nh cho phép thc hin tng theo chng trình c vit trên máy tính. Trong phn này ch gii thiu 2 phng pháp i din cho 2 nhóm: • Phng pháp bin i i s (nhóm bin i i s). • Phng pháp ng Karnaugh (nhóm thut toán). 1. Phng pháp bin i i s ây là phng pháp ti thiu hóa hàm Boole (phng trình logic) da vào các tiên , nh lý, tính cht ca i s Boole. Ví d 2.12 Ti thiu hoá hàm f(x 1 ,x 2 ) = x 1 x 2 + x 1 x 2 + x 1 x 2 f(x 1 ,x 2 ) = x 1 x 2 + x 1 x 2 + x 1 x 2 = ( x 1 + x 1 ).x 2 + x 1 x 2 = x 2 + x 1 x 2 = x 2 + x 1 Ví d 2.13 Ti thiu hoá hàm 3 bin sau f(x 1 ,x 2 ,x 3 ) = x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3 Bài ging N T S 1 Trang 22 = x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 ( x 3 + x 3 ) = x 1 x 2 x 3 + x 1 x 2 ( x 3 + x 3 ) + x 1 x 2 = x 1 x 2 x 3 + x 1 ( x 2 + x 2 ) = x 1 x 2 x 3 + x 1 = x 1 + x 2 x 3 Ví d 2.14 Rút gn biu thc: f = BCACAB +++ Áp dng nh lý De Morgan ta có: f = BCACAB ++. = BCACBA +++ ).( = BCACBCA +++ = CBCACA +++ = BCACA +++ ).1( = BACC ++ = CBA + + Vy,  thc hin mch này có th dùng cng OR 3 ngõ vào. 2. Phng pháp bng Karnaugh  ti thiu hóa hàm Boole bng phng pháp bng Karnaugh phi tuân th theo qui tc v ô k n: “Hai ô c gi là k cn nhau là hai ô mà khi ta t ô này sang ô kia ch làm thay i giá tr ca 1 bin.” Quy tc chung ca phng pháp rút gn bng bng Karnaugh là gom (kt hp) các ô k cn li i nhau. Khi gom 2 ô k cn s loi c 1 bin (2=2 1 loi 1 bin). Khi gom 4 ô k cn vòng tròn s loi c 2 bin (4=2 2 loi 2 bin). Khi gom 8 ô k cn vòng tròn s loi c 3 bin (8=2 3 loi 3 bin). ng quát, khi gom 2 n ô k cn vòng tròn s loi c n bin. Nhng bin b loi là nhng bin khi ta i vòng qua các ô k cn mà giá tr ca chúng thay i. Nhng u cn lu ý: Vòng gom c gi là hp l khi trong vòng gom ó có ít nht 1 ô cha thuc vòng gom nào. Các ô k cn mun gom c phi là k cn vòng tròn ngha là ô k cn cui cng là ô k cn u tiên. Vic kt hp nhng ô k cn vi nhau còn tùy thuc vào phng pháp biu din hàm Boole theo ng chính tc 1 hoc chính tc 2, c th là: • u biu din hàm theo dng chính tc 1 (tng các tích s) ta ch quan tâm nhng ô k n có giá tr bng 1 và tùy nh. Kt qu mi vòng gom lúc này s là mt tích rút gn. t qu ca hàm biu din theo dng chính tc 1 s là tng tt c các tích s rút gn ca t c các vòng gom. • u biu din hàm theo dng chính tc 2 (tích các tng s) ta ch quan tâm nhng ô k n có giá tr bng 0 và tùy nh. Kt qu mi vòng gom lúc này s là mt tng rút gn. [...]... Vòng gom 2: x1 + x2 t h p 2 vòng gom có k t qu c a hàm f vi t theo d ng chính t c 2 nh sau: f (x1,x2,x3) = (x1+x3).(x1+x2) = x1.x1 + x1.x2 + x1.x3 + x2.x3 = x1 + x1.x2 + x1.x3 + x2.x3 = x1(1+ x2 + x3) + x2.x3 = x1 + x2.x3 Nh n xét: Trong ví d này, hàm ra vi t theo d ng chính t c 1 và hàm ra vi t theo d ng chính t c 2 là gi ng nhau Tuy nhiên có tr ng h p hàm ra c a hai d ng chính t c 1 và 2 là khác... n x1 b lo i Vì x2=1 và x3=1 nên k t qu c a vòng gom 2 theo d ng chính c 1 s có x2 và x3 vi t d ng th t: x2.x3 t h p 2 vòng gom ta có k t qu t i gi n theo chính t c 1: f(x1,x2,x3) = x1 + x2.x3 Bài gi ng NT S 1 Trang 24 i thi u theo chính t c 2: Ta quan tâm n nh ng ô có giá tr b ng 0 và tùy nh (X), nh ng có 2 vòng gom (hình v ), m i vòng gom u g m 2 ô k c n i v i vòng gom 1: Có 2 ô = 21 nên lo i c 1... là 0, 1, 2 ng chính t c 2: Tích các t ng s Ph ng trình trên c ng t ng ng v i cách cho hàm nh sau: f(x1,x2,x3) = Π (0, 1, 2) + d(5, 6) Ch ng 2 Ví d 2. 17: i s BOOLE Trang 25 T i thi u hóa hàm 4 bi n cho d f(x1,x2,x3,x4) = Σ (2, 6,10,11, 12, 13) + d(0,1,4,7,8,9,14,15) f(x1,x2,x3,x4) x4 x3 x2 x1 00 00 01 11 10 i d ng bi u th c sau: X X 0 1 01 X 0 X 1 11 1 1 X X 10 X X 1 1 f(x1,x2,x3,x4) x4 x3 x2 x1 00 00... lo i c 1 bi n, bi n b lo i là x2 (vì có giá tr thay 0→1) Vì x1=0 và x3=0 nên k t qu c a vòng gom 1 theo d ng chính t c 2 s có x1 và x3 th t: x1+ x3 i v i vòng gom 2: Có 2 ô = 21 nên lo i c 1 bi n, bi n b lo i là x3 (vì có giá tr thay 0→1) Vì x1=0 và x2=0 nên k t qu c a vòng gom 2 theo d ng chính t c 2 s có x1 và x2 th t: x1+x2 f(x1,x2,x3) Vòng gom 1: x1 + x3 x ,x x3 1 2 00 01 11 10 0 1 0 0 0 1 1 1 1... 2: f(x1,x2) = x1 + x2 Ví d 2. 16: f(x1,x2,x3) x ,x x3 1 2 00 0 0 1 0 Vòng gom 1: x1 01 0 1 11 1 1 10 1 1 Vòng gom 2: x2.x3 i thi u theo chính t c 1: Ta ch quan tâm n nh ng ô có giá tr b ng 1 và tùy nh (X), nh y s có 2 vòng gom ph h t các ô có giá tr b ng 1: vòng gom 1 g m 4 ô k c n, và vòng gom 2 g m 2 ô k c n (hình v ) i v i vòng gom 1: Có 4 ô = 22 nên lo i c 2 bi n Khi i vòng qua 4 ô k c n trong vòng... chính t c 2) thì k t qu t i thi u hoá m i h p l Các tr ng h p ut → giá tr ut → giá tr t c các ô c a b ng Karnaugh c a hàm b ng 1 t c các ô c a b ng Karnaugh c a hàm b ng 0 Ví d 2. 15: c bi t: u b ng 1 và tu nh (X) ngh a là t t c các ô uk c n u b ng 0 và tu nh (X) ngh a là t t c các ô uk c n T i thi u hóa hàm sau f(x1,x2) x1 x2 0 1 0 0 1 1 1 1 i thi u hoá theo chính t c 2: f(x1,x2) = x1 + x2 Ví d 2. 16:... vào là duy nh t trong c 2 d ng chính t c Chú ý: Ng i ta th ng cho hàm Boole d i d ng bi u th c rút g n Vì có 2 cách bi u di n hàm Boole theo d ng chính t c 1 ho c 2 nên s có 2 cách cho giá tr c a hàm Boole ng v i 2 d ng chính t c ó: ng chính t c 1: T ng các tích s f(x1,x2,x3) = Σ (3,4,7) + d(5,6) Trong ó ký hi u d ch giá tr các ô này là tùy nh (d: Don’t care) f(x1,x2,x3) x1,x2 x3 00 0 0 1 0 01 0 1... bi n x2 thay i (t 1→0) và giá tr c a bi n x3 thay i (t 0→1) nên các bi n x2 và x3 b lo i, ch còn l i bi n x1 trong k t qu a vòng gom 1 Vì x1=1 nên k t qu c a vòng gom 1 theo d ng chính t c 1 s có x1 vi t d ng th t: x1 i v i vòng gom 2: Có 2 ô = 21 nên s lo i c 1 bi n Khi i vòng qua 2 ô k c n trong vòng gom giá tr c a bi n x2 và x3 không i, còn giá tr c a bi n x1 thay i (t 0→1) nên các bi n x2 và x3...Ch ng 2 i s BOOLE Trang 23 t qu c a hàm bi u di n theo d ng chính t c 2 s là tích t t c các t ng s rút g n c a t c các vòng gom Ta quan tâm nh ng ô tùy nh (X) sao cho nh ng ô này k t h p v i nh ng ô có giá tr b ng 1 (n u bi u di n theo d ng chính t c 1) ho c b ng 0 (n u bi u di n theo d ng chính t c 2) làm cho s ng ô k c n là 2n l n nh t u ý các ô tùy nh (X) ch là nh... f(x1,x2,x3,x4) x4 x3 x2 x1 00 00 01 11 10 Vòng gom 1 X X 0 1 01 X 0 X 1 11 1 1 X X 10 X X 1 1 Vòng gom 2 Th c hi n t i thi u hóa theo d ng chính t c 1: t b n Karnaugh ta có 2 vòng gom, vòng gom 1 m 8 ô k c n và vòng gom 2 g m 8 ô k c n K t qu t i thi u hóa nh sau: Vòng gom 1: x 1 Vòng gom 2: x4 y: f(x1,x2,x3,x4) = x 1 + x4 . Boole. Ví d 2. 12 Ti thiu hoá hàm f(x 1 ,x 2 ) = x 1 x 2 + x 1 x 2 + x 1 x 2 f(x 1 ,x 2 ) = x 1 x 2 + x 1 x 2 + x 1 x 2 = ( x 1 + x 1 ).x 2 + x 1 x 2 = x 2 + x 1 x 2 = x 2 + x 1 Ví d 2. 13 . có: f(x 1 , x 2 ) = x 1 .x 2 + x 1 . x 2 + x 1 .x 2 = x 1 .x 2 + x 1 ( x 2 + x 2 ) = x 1 .x 2 + x 1 = x 1 + x 2 - Theo dng chính tc 2 ta có: f(x 1 , x 2 ) = (0+x 1 +x 2 ) = x 1 + x 2 T biu. sau f(x 1 ,x 2 ,x 3 ) = x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3 Bài ging N T S 1 Trang 22 = x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 ( x 3 +

Ngày đăng: 27/07/2014, 12:20

TỪ KHÓA LIÊN QUAN

w