1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài giảng điện tử số part 5 potx

13 304 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 195,69 KB

Nội dung

Bài ging N T S 1 Trang 52 3.3. FLIP – FLOP (FF) 3.3.1. Khái nim Flip-Flop (vit tt là FF) là mch dao ng a hài hai trng thái bn, c xây dng trên c s các cng logic và hot ng theo mt bng trng thái cho trc. 3.3.2. Phân loi Có hai cách phân loi: - Phân loi theo tín hiu u khin. - Phân loi theo chc nng. 1. Phân loi FF theo tín hiu u khin ng b m có hai loi: - Không có tín hiu u khin ng b (FF không ng b). - Có tín hiu u khin ng b (FF ng b). a. FF không ng b ng 1: RSFF không ng b dùng cng NOR (s hình 3.43) a vào bng chân tr ca cng NOR  gii thích hot ng ca s mch này : - S = 0, R = 1 ⇒ Q = 0. Q=0 hi tip v cng NOR 2 nên cng NOR 2 có hai ngõ vào bng 0 ⇒ Q = 1. Vy, Q = 0 và Q = 1. - S = 1, R = 0 ⇒ Q= 0. Q= 0 hi tip v cng NOR 1 nên cng NOR 1 có hai ngõ vào bng 0 ⇒ Q = 1. Vy, Q = 1 và Q = 0. - Gi s ban u: S = 0, R = 1 ⇒ Q = 0 và Q = 1. u tín hiu ngõ vào thay i thành: S = 0, R = 0 (R chuyn t 1 → 0) ta có: + S = 0 và Q = 0 ⇒ Q = 1 + R = 0 và Q = 1 ⇒ Q = 0 ⇒ RSFF gi nguyên trng thái c trc ó. - Gi s ban u: S = 1, R = 0 ⇒ Q = 1 và Q = 0. u tín hiu ngõ vào thay i thành: R = 0, S = 0 (S chuyn t 1 → 0) ta có: + R = 0 và Q = 0 ⇒ Q = 1 + S = 0 và Q = 1 ⇒ Q = 0 ⇒ RSFF gi nguyên trng thái c trc ó. Q Q R S 1 2 S R Q 0 0 Q 0 0 1 0 1 0 1 1 1 X Hình 3.43. RSFF không ng b s dng cng NOR và bng trng thái Chng 3. Các phn t logic c bn Trang 53 ng 2: RSFF không ng b dùng cng NAND (s hình 3.44) a vào bng chân tr ca cng NAND:    =∃ =∀ = 0x1 1x0 y i i Ta có: - S = 0, R = 1 ⇒ Q = 1. Q = 1 hi tip v cng NAND 2 nên cng NAND 2 có hai ngõ vào ng 1 vy Q = 0. - S = 0, R = 1 ⇒ Q = 1. Q = 1 hi tip v cng NAND 1 nên cng NAND 1 có hai ngõ vào ng 1 vy Q = 0. - S = R = 0 ⇒ Q = Q = 1 ây là trng thái cm. - S = R = 1: Gi s trng thái trc ó có Q = 1, Q = 0 ⇒ hi tip v cng NAND 1 nên cng NAND 1 có mt ngõ vào bng 0 vy Q = 1 ⇒ RSFF gi nguyên trng thái c. Nh vy gi là FF không ng b bi vì ch cn mt trong hai ngõ vào S hay R thay i thì ngõ ra cng thay i theo.  mt kí hiu, các RSFF không ng bc ký hiu nh sau: R QS R Q S Hình 3.45. Ký hiu các FF không ng b a. R,S tác ng mc 1 - b. R,S tác ng mc 0 a) b) Hình 3.44. RSFF không ng b s dng cng NAND và bng trng thái S R Q 1 2 Q S R Q 0 0 X 0 1 1 1 0 0 1 1 Q 0 Bài ging N T S 1 Trang 54 b. FF ng b Xét s RSFF ng b vi s mch, ký hiu và bng trng thái hot ng nh hình 3.46. Trong ó: Ck là tín hiu u khin ng b hay tín hiu ng h (Clock). Kho sát hot ng ca ch: - Ck = 0: cng NAND 3 và 4 khóa không cho d liu a vào. Vì cng NAND 3 và 4 u có ít nht mt ngõ vào Ck = 0 ⇒ S = R =1 ⇒ Q = Q 0 : RSFF gi nguyên trng thái c. - Ck = 1: cng NAND 3 và 4 m. Ngõ ra Q s thay i tùy thuc vào trng thái ca S và R. + S = 0, R = 0 ⇒ S =1, R =1 ⇒ Q = Q 0 + S = 0, R = 1 ⇒ S =1, R = 0 ⇒ Q = 0 + S = 1, R = 0 ⇒ S = 0, R = 1 ⇒ Q = 1 + S = 1, R = 1 ⇒ S = 0, R = 0 ⇒ Q = X Trong trng hp này tín hiu ng b Ck tác ng mc 1. Trong trng hp Ck tác ng mc 0 thì ta mc thêm cng o nh sau (hình 3.47): Tùy thuc vào mc tích cc ca tín hiu ng b Ck, chúng ta có các loi tín hiu u khin: - Ck u khin theo mc 1. - Ck u khin theo mc 0. - Ck u khin theo sn lên (sn trc). - Ck u khin theo sn xung (sn sau). S R Ck Q X X 0 Q 0 0 0 1 Q 0 0 1 1 0 1 0 1 1 1 1 1 X S Q Ck R Q S R Q 1 2 Q 3 4 R S Ck Hình 3.46. RSFF ng b: S logic và ký hiu S R Q 1 2 Q 3 4 R S Ck S Q Ck R Q Hình 3.47 Chng 3. Các phn t logic c bn Trang 55 S R ch o sn lên Ck Xung sau khi qua ch to sn lên Ck t t 0 0 Hình 3.49. S khi FF tác ng theo sn lên và dng sóng Xét FF có Ck u khin theo sn lên (sn trc) : Sn lên và mc logic 1 có mi quan h vi nhau, vì vy mch to sn lên là mch ci tin ca ch tác ng theo mc logic 1. n lên thc cht là mt xung dng có thi gian tn ti rt ngn.  ci tin các FF tác ng theo mc logic 1 thành FF tác ng theo sn lên ta mc vào trc FF ó mt mch to sn lên nh hình 3.49.  mch to sn ngi ta li dng thi gian tr ca tín hiu khi i qua phn t logic. i vi ch to sn ngi ta li dng thi gian tr ca tín hiu khi i qua cng NOT. Xét s mch to sn lên và dng sóng nh hình 3.50 : Mch to sn lên gm mt cng AND 2 ngõ vào và mt cng NOT. Tín hiu x1 t cng NOT c a n cng AND cùng vi tín hiu x 2 i trc tip (x 2 = Ck). Do tính cht tr ca tín hiu Ck khi i qua cng NOT nên x 1 b tr mt khong thi gian, vì vy tín hiu ngõ ra ca cng AND có dng mt xung dng rt hp vi thi gian tn ti chính bng thi gian tr (tr truyn t) ca cng NOT. Xung dng hp này c a n ngõ vào ng b ca FF u khin theo mc logic 1. Ti các thi m có sn lên ca tín hiu xung nhp Ck s xut hin mt xung dng tác ng vào ngõ vào ng b ca FF u khin ngõ ra a. Mc 1 b. Mc 0 c. Sn lên d. Sn xung Hình 3.48. Các loi tín hiu u khin Ck khác nhau S Ck R y x 1 x 2 Ck t y 0 t x 1 0 t x 2 0 Ck t 0 Hình 3.50 Bài ging N T S 1 Trang 56 Q thay i trng thái theo các ngõ vào. S mch FF có tín hiu Ck u khin theo sn lên nh hình 3.51. Xét FF có Ck u khin theo sn xung (sn sau) : ch to sn xung là mch ci tin tác ng mc logic 0. S mch và dng sóng c cho  hình 3.52. Trên hình 3.53 là ký hiu trên s mch và s thc hin Flip-Flop tác ng theo n xung. (Sinh viên t gii thích hot ng ca các mch này). S R Q 1 2 Q 3 4 R S y Ck Hình 3.51. FF có tín hiu Ck u khin theo sn lên y x 1 x 2 Ck Ck t 0 t x 2 x 1 0 t 0 t y 0 Hình 3.52. Mch to sn xung a.  mch b. ng sóng a) b) S R Q 1 2 Q 3 4 R S y Ck S Q Ck R Q Hình 3.53 a.  mch thc hin b. Ký hiu a) b) Chng 3. Các phn t logic c bn Trang 57 Ý ngha ca tín hiu ng b Ck: i vi các FF ng b, các ngõ ra ch thay i trng thái theo ngõ vào DATA khi xung Ck tn ti c 1 (i vi FF tác ng mc 1), hoc xung Ck tn ti mc 0 (i vi FF tác ng mc 0), hoc xung Ck  sn lên (i vi FF tác ng sn lên), xung Ck  sn xung (i vi FF tác ng n xung), còn tt c các trng hp khác ca Ck thì ngõ ra không thay i trng thái theo các ngõ vào mc dù lúc ó các ngõ vào có thay i trng thái. Phng pháp u khin theo kiu ch t (Master - Slaver) :  i vi phng pháp này khi xung Ck tn ti mc logic 1 d liu sc nhp vào FF, còn khi Ck tn ti mc logic 0 thì d liu cha trong FF c xut ra ngoài. V mt cu to bên trong gm 2 FF: mt FF thc hin chc nng ch (Master) và mt FF thc hin chc nng t (Slaver). Hot ng ca FF u khin theo kiu ch/t: (hình 3.54) + Ck = 1: FF2 m, d liu c nhp vào FF2. Qua cng o Ck = 0 ( FF1 khóa nên gi nguyên trng thái c trc ó. + Ck = 0: FF2 khóa nên gi nguyên trng thái c trc ó. Qua cng o Ck = 1 ( FF1 m, d liu c xut ra ngoài. Chú ý: Tín hiu Ck có thc to ra t mch dao ng a hài không trng thái bn. 3.3.2.2. Phân loi FF theo chc nng a. RSFF ó là FF có các ngõ vào và ngõ ra ký hiu nh hình v. Trong ó: - S, R : các ngõ vào d liu. - Q, Q : các ngõ ra. - Ck : tín hiu xung ng b i S n và R n là trng thái ngõ vào Data  xung Ck th n. Q n , Q n+1 là trng thái ca ngõ ra Q  xung Ck th n và th (n+1). Lúc ó ta có bng trng thái mô t hot ng ca RSFF: R S Ck Q 1 2 Q 3 4 5 6 7 8 FF 1 FF 2 Hình 3.54. Phng pháp u khin theo kiu ch t S Q Ck R Q Hình 3.55. Ký hiu RSFF Bài ging N T S 1 Trang 58 S n R n Q n+1 0 0 Q n 0 1 0 1 0 1 1 1 X u ý rng trng thái khi c 2 ngõ vào S = R = 1 lúc ó c 2 ngõ ra có cùng mc logic, ây là trng thái cm ca RSFF (thng c ký hiu X). Tip theo chúng ta si xây dng bng u vào kích ca RSFF. ng u vào kích gm 2 phn, phn bên trái lit kê ra các yêu cu cn chuyn i ca FF, và phn bên phi là các u kin tín hiu u vào kích cn m bo t c các s chuyn i y. Nu các u kin u vào c m bo thì FF s chuyn i theo úng yêu cu. Thc cht bng u vào kích ca FF là  khai trin bng trng thái ca FF. Ta vit li bng trng thái ca RSFF  dng khai trin nh sau: S n R n Q n Q n+1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 X 1 1 1 X Trong bng này, tín hiu ngõ ra  trng thái tip theo (Q n+1 ) s ph thuc vào tín hiu các ngõ vào data (S, R) và tín hiu ngõ  ra trng thái hin ti (Q n ). T bng khai trin trên ta xây dng c bng u vào kích cho RSFF: Q n Q n+1 S n R n 0 0 0 X 0 1 1 0 1 0 0 1 1 1 X 0 ng t bng trng thái khai trin ta có th tìm c phng trình logic ca RSFF bng cách lp  Karnaugh nh sau: 00 01 11 10 0 0 0 X 1 1 1 0 X 1  bng Karnaugh này ta có phng trình logic ca RSFF: n Q n R n S 1n Q += + S n R n Q n Q n+1 Chng 3. Các phn t logic c bn Trang 59 Vì u kin ca RSFF là S.R= 0 nên ta có phng trình logic ca RSFF c vit y  nh sau: n Q n R n S 1n Q += + SR=0 ng sóng minh ha hot ng ca RSFF trên hình 3.56: b. TFF TFF là FF có ngõ vào và ngõ ra ký hiu và bng trng thái hot ng nh hình v (hình 3.57): Trong ó: - T: ngõ vào d liu - Q,: các ngõ ra - Ck: tín hiu xung ng b. i T n là trng thái ca ngõ vào DATA T  xung Ck th n. i Q n , Q n+1 là trng thái ca ngõ ra  xung Ck th n và (n+1). Lúc ó ta có bng trng thái hot ng khai trin ca TFF.  bng trng thái này ta có nhn xét: + Khi T=0: mi khi có xung Ck tác ng ngõ ra Q gi nguyên trng thái c trc ó. + Khi T=1: mi khi có xung Ck tác ng ngõ ra Q o trng thái. Hình 3.56.  th thi gian dng sóng RSFF Ck t t S t R 0 0 0 1 2 3 4 5 t 0 Q T Q Ck Q Q n Q n 0 1 T n Q n+1 Hình 3.57. Ký hiu TFF và bng trng thái hot ng Bài ging N T S 1 Trang 60 Ck t t T t Q 0 0 0 1 2 3 Hình 3.58 T n Q n Q n+1 0 0 1 1 0 1 0 1 0 1 1 0  bng trng thái khai trin ca TFF ta tìm c bng u vào kích ca TFF nh sau: Q n Q n+1 T n 0 0 1 1 0 1 0 1 0 1 1 0 Phng trình logic ca TFF: Q n+1 = nnnn Q.T.QT + (dng chính tc 1) Hoc: )QT)(Q(TQ nnnn1n ++= + (dng chính tc 2). Vit gn hn: nn1n QTQ ⊕= + (SV có th lp Karnaugh và ti thiu hóa  tìm phng trinh logic ca TFF). Trên hình 3.58 minh ha  th thi gian dng sóng ca TFF. - Tín hiu ra Q u tiên luôn luôn  mc logic 0 - Tín hiu Ck(1) u khin theo sn xung nhìn tín hiu T di mc logic 1. Theo bng trng thái : T 0 = 1 và Q 0 = 0 ⇒ Q 1 = 0 Q = 1. - Tín hiu Ck(2) u khin theo sn xung nhìn tín hiu T di mc logic 0. Theo bng trng thái : T 1 = 0 và Q 1 = 1 ⇒ Q 2 = Q 1 = 1 (Gi nguyên trng thái trc ó). - Tín hiu Ck(3) u khin theo sn xung nhìn tín hiu T di mc logic 1. Theo bng trng thái: T 2 = 1 và Q 2 = 1 ⇒ Q 3 = 2 Q = 0. Chng 3. Các phn t logic c bn Trang 61 Trng hp ngõ vào T luôn luôn bng 1 (luôn  mc logic 1): Khi T=1 thì dng sóng ngõ ra Q c cho trên hình v. Ta có nhn xét rng chu k ca ngõ ra Q ng 2 ln chu k tín hiu xung Ck nên tn s ca ngõ ra là: 2 f f CK Q = y, khi T=1 thì TFF gi vai trò mch chia tn s xung vào Ck. ng quát: Ghép ni tip n TFF vi nhau sao cho ngõ ra ca TFF trc s ni vi ngõ vào ca TFF ng sau (Ck i+1 ni vi Q i ) và lúc bây gi tt c các ngõ vào DATA T  tt c các TFF u gi mc logic 1, lúc ó tn s tín hiu ngõ ra s là: n CK Q 2 f f n = i Q n là tín hiu ngõ ra ca TFF th n; f CK là tn s xung clock  ngõ vào ng b TFF u tiên. c. DFF DFF là FF có ngõ vào và ngõ ra ký hiu nh hình 3.60. Trong ó: D là ngõ vào d liu. Q, Q : các ngõ ra. Ck: tín hiu xung ng b. i D n là trng thaïi ca ngõ vào DATA D  xung Ck th n. i Q n , Q n+1 là trng thái ca ngõ ra  xung Ck th n và (n+1). Khai trin bng trng thái ca DFF  tìm bng u vào kích ca DFF, ta có: D n Q n Q n+1 0 0 1 1 0 1 0 1 0 0 1 1 Ck t t T t Q 0 0 0 1 2 3 4 5 Hình 3.59. Dng sóng ngõ ra khi T=1 0 1 0 1 D n Q n+1 ng trng thái D Q Ck Q Hình 3.60. Ký hiu DFF [...].. .Bài gi ng ng NT S 1 Trang 62 u vào kích c a DFF: Qn 0 0 1 1 Qn+1 0 1 0 1 Dn 0 1 0 1 Ph ng trình logic c a DFF: Qn+1 = Dn Trên hình 3.61 là th th i gian d ng sóng c a DFF: Ck 1 3 2 0 4 t 5 D t 0 Q t Hình 3.61 th th i gian d ng sóng c a DFF Gi i thích d ng sóng c a tín hi u trên hình 3.61: - Tín... n i J , Kn là tr ng thái ngõ vào J,K xung Ck th n i Qn, Qn+1 là tr ng thái ngõ ra Q xung Ck th n và (n+1) Lúc ó ta có b ng tr ng thái mô t ho t ng c a JKFF: J K Qn+1 0 0 Qn 0 1 0 J Q Ck K Q Hình 3. 65 JKFF Bài gi ng NT S 1 Trang 64 1 1 Ph 0 1 1 Qn ng trình logic c a JKFF: Qn+1 = Jn Q n + K n Q n b ng tr ng thái ta th y JKFF kh c ph c c tr ng thái c m c a RSFF, khi J=K=1 ngõ ra tr ng thái k ti p o m c... Ck(3) 1 ⇒ Q3 = D4 = 0 - Tín hi u Ck(4) v v u khi n theo s u khi n theo s Trang 63 n xu ng nhìn tín hi u D3 d i m c logic 1 D3 = 1 ⇒ Q3 = n xu ng nhìn tín hi u D4 d i m c logic 0 ⇒ Q4 = 0 Ck 1 2 0 3 4 t 5 D t 0 Q t 0 Hình 3.63 th th i gian d ng sóng m ch hình 3.62 Nh n xét v t n s ngõ ra: f f Q = CK ⇒ DFF gi vai trò nh m ch chia t n s 2 ng d ng c a DFF: D0 - Dùng DFF chia t n s - Dùng DFF l u tr d li... 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 b ng khai tri n trên ta xây d ng Qn 0 0 1 1 c b ng Qn+1 0 1 0 1 u vào kích cho JKFF nh sau: Sn 0 1 X X Rn X X 1 0 th th i gian d ng sóng c a JKFF: Ck 1 0 2 3 4 t 5 J t 0 K t 0 Q t 0 Hình 3.66 th th i gian d ng sóng JKFF . ca RSFF: R S Ck Q 1 2 Q 3 4 5 6 7 8 FF 1 FF 2 Hình 3 .54 . Phng pháp u khin theo kiu ch t S Q Ck R Q Hình 3 .55 . Ký hiu RSFF Bài ging N T S 1 Trang 58 S n R n Q n+1 0 0 Q n 0. R y x 1 x 2 Ck t y 0 t x 1 0 t x 2 0 Ck t 0 Hình 3 .50 Bài ging N T S 1 Trang 56 Q thay i trng thái theo các ngõ vào. S mch FF có tín hiu Ck u khin theo sn lên nh hình 3 .51 . Xét FF có Ck u khin. trng thái. Hình 3 .56 .  th thi gian dng sóng RSFF Ck t t S t R 0 0 0 1 2 3 4 5 t 0 Q T Q Ck Q Q n Q n 0 1 T n Q n+1 Hình 3 .57 . Ký hiu TFF và bng trng thái hot ng Bài ging N T

Ngày đăng: 27/07/2014, 12:20

TỪ KHÓA LIÊN QUAN