P là một lăng kính phản xạ 32 mặt. Chùm tia sáng từ nguồn S, đi qua gương bán trong suốt G, phản chiếu ở p và b tới một gương lõm M1. Gương này tạo thành chùm tia phản xạ song song. Chùm tia song song này phản xạ nhiều lần liên tiếp trên hai gương phẳng M2 và M3 gần như song song nhau. Lần phản xạ sau cùng trên gương M2 thẳng góc với gương này để tia sáng đi về theo đường cũ, ló ra khỏi ống chân không, phản xạ trên lăng kính P và trên gương bán trong suốt G tới kính nhắm. Nguyên tắc đo C giống như phương pháp trên. Thí nghiệm này được tiến hành suốt năm 1930 cho tới gần nửa năm 1931 (khi Michelson mất) với hàng trăm lần đo. Sau khi Michelson mất, Pease và Pearson tiếp tục công việc cho tới năm 1933. Tính cả thảy 2885 lần đo đã được thực hiện trong một thời gian 3 năm với kết quả là : C = 299.774 ( 11 km / giây Trị số đ o được bởi các thí nghiệm của Michelson và các cộng sự viên đã khá chính xác. Sau này, người ta còn thực hiện nhiều thí nghiệm bằng các phương pháp khác nhau, để cố gắng đạt được các kết quả chính xác hơn nữa. Hiện nay chúng ta thừa nhận vận tốc của ánh sáng trong chân không là: C = 299.793 km / giây. Với sai số nhỏ hơn 1 km / giây. §§5. VẬN TỐC ÁNH SÁNG TRONG MÔI TRƯỜNG ĐỨNG YÊN. Năm 1850, Foucault dùng phương pháp gương quay để so sánh vận tốc ánh sáng trong không khí và trong nước. Nguyên tắ c của thí nghiệm được mô tả trong đoạn SS.3. Sơ đồ của thí nghiệm như hình vẽ 6. Chùm tia sáng phát suất từ nguồn S được hội tụ trên các gương cầu lõm B1.B2 (có tâm là J) khi gương quay qua các vị trí M1 và M2. Ống T chứa đầy nước. Khi gương quay đứng yên ở vị trí M1, chùm tia sáng tới và phản chiếu trên gương lõm B1, ta có ảnh cuối cùng ở vị trí s. Khi gương quay đứng yên ở vị trí M2, chùm tia sáng tới và phản chiếu trên gương lõm B2 (đi qua nướ c trong ống T), ảnh cuối cùng cũng ở vị trí s. Khi cho gương quay quay, ảnh cuối cùng ở vị trí s1 (đối với chùm tia tới B1) và ở vị trí s2 (đối với chùm tia tới B2). Foucault nhận thấy ss2 > ss1. Điều này chứng tỏ thời gian ánh sáng đi về trên đoạn đường JB2 lớn hơn thời gian đi về trên đoạn đường JB1. Từ đó suy ra vận tốc v của ánh sáng trong nước nhỏ hơn vận t ốc ánh sáng trong không khí (coi như bằng C). . S M 3 M 1 M 2 b a P G Kính nhaém H .5 Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Giáo trình giải thích thí nghiệm fizeau bằng thuyết tương đối trong bức xạ nhiệt Năm 1888, Michelson làm lại thí nghiệm của Foucault và tìm được v = c/1,33 nghĩa là bằng chiết suất tuyệt đối n của nước đối với ánh sáng thấy được : v = c/n. Thực ra, ta thấy trong các phép đo vận tốc ánh sáng, người ta đã đo vận tốc truyền biên độ, nghĩa là vận tốc nhóm V, chứ không phải vận tốc pha v. dv Vv d λ λ =− Nhưng trong chân không :Ġ, ta có v = V. Trong các môi trường như không khí hay nước thìĠ nên ta có thể lấy v ( V. Trái lại trong nhiều môi trường, v và V có thể khác nhau nhiều. Trong trường hợp này ta cần hiệu chính lại kết quả trong phép đo vận tốc ánh sáng. Thí dụ khi đo vận tốc ánh sáng trong CS2 (Sulfur Carbon) là một môi trường tán sắc mạnh. Michelson thấy vận tốc là C / 1,758 trong khi chiết suất trung bình của CS2 là 1,635. §§6. VẬN TỐC ÁNH SÁNG TRONG MỘT MÔI TRƯỜNG CHUYỂN ĐỘNG. Fizeau đã thực hiệ n thí nghiệm như hình vẽ (đã đơn giản hóa). Nguồn sáng S đặt ở tiêu điểm của thấu kính L1, do đó ta có chùm tia sáng song song chiếu thẳng góc tới màn chắn sáng D có hai khe hẹp. Hai chùm tia sáng qua hai khe này được cho đi qua hai nhánh T1 và T2 của một ống chữ U chứa đầy nước. Vân giao thoa được một thấu kính L2 làm hiện lên một màn E đặt ở vị trí mặt phẳng tiêu của nó. Lúc đầu để nước trong ống chữ U đứ ng yên, hệ thống vân giao thoa chiếm một vị trí nào đó trên màn E. Cho nước trong ống chuyển động với vận tốc V, ta thấy hệ thống vân bị dời chỗ, chứng tỏ có sự thay đổi về quang lộ đi qua các nhánh T1, T2 so với trường hợp nước đứng yên. Ban đầu người ta nghĩ rằng có thể giải thích hiện tượng bằng cách cộng vận tốc như trường hợp âm thanh truyền trong không khí chuyển độ ng. Như vậy, vớiĠ là vận tốc của ánh sáng trong nước đứng yên (n là chiết suất của nước) thì trong trường hợp nước chuyển T 1 (E) S L 1 L 2 T 2 o D H .7 J T G M 1 M 2 I B 1 B 2 l S s s 1 H .6 s 2 göông quay Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m động theo chiều như hình vẽ, vận tốc ánh sáng trong nhánh T1 làĠ, và trong nhánh T2 làĠ. Thời gian để ánh sáng đi qua hai nhánh T1 và T2 lần lượt làĠ,Ġ, ( là chiều dài chung của T1 và T2. 21 222 22 2 1 v tt t cnv nc ∆= − = ⎛⎞ − ⎜⎟ ⎝⎠ l 2 2 2vn t c ∆≈ l vì 22 2 0 nv c ≈ Xét điểm O, hiệu quang lộ của hai chùm tia là : ∆δ = c . ∆t Ứng với sự biến thiên về bậc giao thoa là : 2 2nct v p c δ λ λλ ∆∆ ∆≤ = = l Nhưng trên thực tế, thí nghiệm cho thấy độ biến thiên của bậc giao thoa tại O khơng phải là (p mà là một trị số (p’. ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −∆=∆ 2 ' 1 1 n pp Nghĩa là hiện tượng xảy ra giống như vận tốc ánh sáng trong các nhánh T1 và T2 là : 2 1 1 c v nn ⎛⎞ ±− ⎜⎟ ⎝⎠ chứ khơng phải như lý luận ở trên. 2 1 1 n −= α được gọi là hệ số kéo sóng ánh sáng của môi trường chuyển động. §§7. GIẢI THÍCH THÍ NGHIỆM FIZEAU BẰNG THUYẾT TƯƠNG ĐỐI. Xét một hệ thống qui chiếu S (x, y, z, t) và một hệ thống qui chiếu S’ (x’, y’, z’, t’) chuyển động thẳng đều với vận tốc v theo phương Oz (Oz trùng với O’z’, Ox // O ’ x ’ , Oy // O ’ y ’ ) Theo cơ học cổ điển, ta có phép biến đổi Galiée như sau : t ’ = t x ’ = x y ’ = y (7.1) z ’ = z - vt Trong đó t là thời gian tuyệt đối, khơng tùy thuộc vào hệ qui chiếu S hay S’. Nhưng theo thuyết tương đối của Einstein, ta có các phương trình biến đổi của các tọa độ khơng gian và thời gian là : x ’ = x y ’ = y (7.2) z ’ = 2 1 β − − vtz t’ =Ġ vớiĠ hay x = x ’ y o o ’ x x ’ z ’ z y ’ H.8 Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m y = y ’ (7.3) z = 2 '' 1 β − − vtz t =Ġ đó là phép biến đổi Lorentz Ta thấy, theo quan điểm tương đối của Einstein thì ý niệm về thời gian cũng có tính tương đối: thời gian tùy thuộc vào hệ qui chiếu. Xét một vật chuyển động theo phương Oz, có vận tốc u’ đối với hệ qui chiếu S’, và có vận tốc u đối với hệ qui chiếu S. Ta có : u’ =Ġ và u =Ġ Từ hai công thức cuối của nhóm (7.3) ta có : dz = '' 2 1 dz vdt β + − dt = 2 ' 1 β β − + dz c dt Suy ra : '' '' dz dz vdt dt dt dz c β + = + hay : u = ' ' ' ' 1. dz v dt dz cdt β + + u = ' ' 2 1 uv v u c + + (7.4) Nếu v và u’ rất nhỏ so với c :Ġ, ta thấy lại công thức về phép cộng vận tốc trong động học cổ điển : u = u’ + v. Nếu u’ = c, ta suy ra u = c. Vậy vận tốc ánh sáng c không tùy thuộc hệ qui chiếu. Trở lại thí nghiệm Fizeau, xét nhánh T1 và giả sử chiều dương từ trái sang phải, ta có v = V (vận tốc của nước), u’ =Ġ (vận tốc của ánh sáng đối với hệ qui chiếu S’ là nước), vậy v ận tốc của ánh sáng đối với hệ qui chiếu S, giả sử gắn liền với phòng thí nghiệm, là : u = 2 11 cc vv nn vc v cn cn + + = ++ hay u (Ġ vìĠ nhỏ Suy ra : u ≈ 2 1 (1 ) c v nn +− Nếu xét chùm tia truyền qua nhánh T2, ta có : v = -V, u’ =Ġ. Suy ra u (Ġ. Phù hợp với thí nghiệm. Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Chương VIII BỨC XẠ NHIỆT §§1. ĐỊNH NGHĨA. Một vật phát ra bức xạ được gọi là nguồn bức xạ. Sự phát bức xạ của một vật có thể là do nhiều nguyên nhân : vật bị kích thích bởi ánh sáng, bằng sự phóng điện, do tác dụng hóa học, Trong chương này, ta khảo sát sự bức xạ nhiệt. Đó là hiện tượng nhiệt bên trong vật biến thành năng lượng bức xạ phát ra. Thông thường, một vậ t phát ra bức xạ thấy được đưa lên một nhiệt độ trên 500oC. Nhiệt độ của vật càng cao thì năng lượng bức xạ phát ra càng nhiều. Ở các nhiệt độ thấp hơn, vật cũng phát bức xạ nhưng thuộc vùng hồng ngoại nên mắt ta không nhận thấy được. §§2. CÁC ĐẠI LƯỢNG TRONG PHÉP ĐO NĂNG LƯỢNG BỨC XẠ. * Công suất bức xạ: Người ta định nghĩa công su ất bức xạ của nguồn là năng lượng do nguồn phát ra không gian xung quanh trong một đơn vị thời gian. Nếu (W là năng lượng bức xạ toàn phần (gồm tất cả các độ dài sáng và phát ra theo tất cả mọi phương) phát ra trong thời gian (t thì công suất phát xạ (toàn phần) là : (2.1) Công suất phát xạ được tính ra Watt. * Năng suất phát xạ toàn phần: - Năng suất phát xạ toàn phần được định nghĩa là năng lượng bứ c xạ phát ra (gồm tất cả các độ dài sóng và theo tất cả mọi phương) bởi một đơn vị diện tích trên bề mặt của vật bức xạ trong một đơn vị thời gian. Nếu (W là năng lượng bức xạ toàn phần phát ra bởi một diện tích ds của bề mặt vật bức xạ trong một đơn vị thời gian thì năng suất phát xạ toàn phần là : (2.2) R đươc tính ra Watt/m2. * Hệ số phát xạ đơn sắc: Bấy giờ ta xét các bức xạ có độ dài sóng ở trong khoảng ( và ( + d( (d( rất nhỏ). Năng lượng (W( phát ra theo mọi phương bởi một diện tích ds trong một đơn vị thời gian mang bởi các đơn sắc trên, thì tỉ lệ với diện tích ds và với d(. Do đó ta có thể viết: (2.3) R( được gọi là hệ số phát xạ đơn sắc ứng với độ dài sóng ( và được tính ra Watt/m3 trong hệ thống đơn vị SI. Năng lượng toàn phần phát ra trong một đơn vị thời gian bởi diện tích ds là : dsdRWW . 0 ∫∫ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ == ∞ λδδ λλ so với : (W = Rds t W P ∆ ∆ = ds W R δ = λ δ λλ ddsRW = Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m . V i e w e r w w w . d o c u - t r a c k . c o m Giáo trình giải thích thí nghiệm fizeau bằng thuyết tương đối trong bức xạ nhiệt Năm 1888, Michelson làm lại thí nghiệm của Foucault và tìm. VIII BỨC XẠ NHIỆT §§1. ĐỊNH NGHĨA. Một vật phát ra bức xạ được gọi là nguồn bức xạ. Sự phát bức xạ của một vật có thể là do nhiều nguyên nhân : vật bị kích thích bởi ánh sáng, bằng sự. học, Trong chương này, ta khảo sát sự bức xạ nhiệt. Đó là hiện tượng nhiệt bên trong vật biến thành năng lượng bức xạ phát ra. Thông thường, một vậ t phát ra bức xạ thấy được đưa lên một nhiệt