1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI THỬ ĐẠI HỌC 2011 LẦN 3 pps

6 254 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 180,68 KB

Nội dung

SỞ GIÁO DỤC – ĐÀO TẠO HẢI PHÒNG ĐỀ THI THỬ ĐẠI HỌC LẦN 2 – THÁNG 12/2010 TRƯỜNG THPT CHUYÊN TRẦN PHÚ Môn thi: TOÁN HỌC – Khối A, B Thời gian: 180 phút ĐỀ CHÍNH THỨC Câu I: Cho hàm số   x 2 y C . x 2    1. Khảo sát và vẽ   C . 2. Viết phương trình tiếp tuyến của   C , biết tiếp tuyến đi qua điểm   A 6;5 .  Câu II: 1. Giải phương trình: cosx cos3x 1 2sin 2x 4            . 2. Giải hệ phương trình: 3 3 2 2 3 x y 1 x y 2xy y 2           Câu III: Tính   4 2 3x 4 dx I cos x 1 e        Câu IV: Hình chóp tứ giác đều SABCD có khoảng cách từ A đến mặt phẳng   SBC bằng 2. Với giá trị nào của góc  giữa mặt bên và mặt đáy của chóp thì thể tích của chóp nhỏ nhất? Câu V: Cho a,b,c 0:abc 1.   Chứng minh rằng: 1 1 1 1 a b 1 b c 1 c a 1          Câu VI: 1. Trong mặt phẳng Oxy cho các điểm         A 1;0 ,B 2;4 ,C 1;4 ,D 3;5   và đường thẳng d :3x y 5 0    . Tìm điểm M trên d sao cho hai tam giác MAB, MCD có diện tích bằng nhau. 2. Viết phương trình đường vuông góc chung của hai đường thẳng sau: 1 2 x 1 2t x y 1 z 2 d : ; d : y 1 t 2 1 1 z 3                 Câu VII: Tính: 0 0 1 1 2 2 3 3 2010 2010 2010 2010 2010 2010 2010 2 C 2 C 2 C 2 C 2 C A 1.2 2.3 3.4 4.5 2011.2012       ĐÁP ÁN ĐỀ THI THỬ ĐH LẦN 2 Câu I: 1. a) TXĐ:   \ 2  \ b) Sự biến thiên của hàm số: -) Giới hạn, tiệm cận: +) x 2 x 2 lim y , lim y x 2           là tiệm cận đứng. +) x x lim y lim y 1 y 1       là tiệm cận ngang. -) Bảng biến thiên :   2 4 y' 0 x 2 x 2       c) Đồ thị : -) Đồ thị cắt Ox tại   2;0  , cắt Oy tại   0; 1  , nhận   I 2;1 là tâm đối xứng. 2. Phương trình đường thẳng đi qua   A 6;5  là     d : y k x 6 5    . (d) tiếp xúc (C) khi và chỉ khi hệ sau có nghiệm :                      2 2 2 2 2 2 2 4 x 2 x 2 x 6 5 k x 6 5 x 2 x 2 x 2 4 4 k k x 2 x 2 4x 24x 0 4 x 6 5 x 2 x 2 x 2 x 0;k 1 4 4 1 k k x 6;k x 2 4 x 2                                                                         Suy ra có 2 tiếp tuyến là :     1 2 x 7 d : y x 1; d : y 4 2       Câu II:      2 1. cosx cos3x 1 2sin 2x 4 2cosxcos2x 1 sin2x cos2x 2cos x 2sin xcosx 2cosxcos2x 0 cosx cosx sinx cos2x 0 cosx cosx sinx 1 sinx cosx 0 x k 2 cosx 0 cosx sinx 0 x k 4 1 sinx cosx 0 sin x 4                                                           1 2 x k 2 x k 2 x k 4 x k 4 x k2 x k2 4 4 5 x k2 4 4                                                                         1 3 1 1 3 3 2x 2 x y y x y x x y 2. 1 3 1 3 2y 2x x y y x x y 4 x y 2 x y xy 2 xy 1 3 1 3 2x 2x y x y x x y 1 3 x y 1 2x x x x y 1 2 x 2,y 2 y x x 2,y 2 x 3 2x 2 x                                                                                                                      Câu III:     2 1 1 1 2 4 2 2 2 2 0 0 0 3 1 2 2 2 2 1 0 2 2 d x xdx 1 1 dt I x x 1 2 2 t t 1 x x 1 1 dt 1 du 2 2 1 3 3 t u 2 2 2                                      Đặt 2 3 3 dy u tan y, y ; du 2 2 2 2 cos y                 3 3 2 2 6 6 1 3 u y ;u y 2 6 2 3 3 dy 1 1 2 I dy 3 2 3 6 3 cos y 1 tan y 4                       Câu IV: Gọi M, N là trung điểm BC, AD, gọi H là hình chiếu vuông góc từ N xuống SM. Ta có:          2 ABCD 2 SABCD 2 2 2 2 2 2 2 2 2 2 SABCD SMN ,d A; SBC d N; SBC NH 2 NH 2 4 MN S MN sin sin sin tan 1 SI MI.tan sin cos 1 4 1 4 V 3 sin cos 3.sin .cos sin sin 2cos 2 sin .sin .2cos 3 3 1 sin .cos 3 V min sin .cos max s                                                 2 2 1 in 2cos cos 3       Câu V: Ta có: N M I D A B C S H               2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 a b a b a ab b ab a b a b 1 ab a b 1 ab a b abc ab a b c 1 1 c a b 1 a b c ab a b c                             Tương tự suy ra OK! Câu VI: 1. Giả sử   M x;y d 3x y 5 0.                  AB CD MAB MCD AB 5,CD 17 AB 3;4 n 4;3 PT AB:4x 3y 4 0 CD 4;1 n 1; 4 PT CD: x 4y 17 0 S S AB.d M;AB CD.d M;CD 4x 3y 4 x 4y 17 5 17 4x 3y 4 x 4y 17 5 17 3x y 5 0 4x 3y 4 x 4y 17 3x y 5 0 3x 7y 21 0                                                            1 2 7 M ;2 ,M 9; 32 3 3x y 5 0 5x y 13 0                            2. Gọi     1 2 M d M 2t;1 t; 2 t ,N d N 1 2t ';1 t';3                             1 1 MN 2t 2t' 1;t t'; t 5 2 2t 2t' 1 t t' t 5 0 MN.u 0 2 2t 2t' 1 t t' 0 MN.u 0 6t 3t ' 3 0 t t ' 1 3t 5t' 2 0 M 2;0; 1 , N 1;2;3 ,MN 1;2;4 x 2 y z 1 PT MN : 1 2 4                                                                  Câu VII: 0 0 1 1 2 2 3 3 2010 2010 2010 2010 2010 2010 2010 2 C 2 C 2 C 2 C 2 C A 1 2 3 4 2011       Ta có:                                   k k k k k 2010 k k 1 k 1 2011 1 2 2011 1 2 2011 2011 2011 2011 2011 0 0 2011 2 2010! 2 2010! 2 C 1 k 1 k! 2010 k ! k 1 k 1 ! 2010 k ! 2 2011! 1 1 2 C 2011 k 1 ! 2011 k 1 ! 4022 1 A 2 C 2 C 2 C 4022 1 1 2 1 2 C 4022 2011                                                 .      2 2 1 in 2cos cos 3       Câu V: Ta có: N M I D A B C S H               2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 a b a b a ab b ab a b a b. 1 2011 1 2 2011 1 2 2011 2011 2011 2011 2011 0 0 2011 2 2010! 2 2010! 2 C 1 k 1 k! 2010 k ! k 1 k 1 ! 2010 k ! 2 2011! 1 1 2 C 2011 k 1 ! 2011 k 1 ! 4022 1 A 2 C 2 C 2 C 4022 1 1 2 1 2 C 4022 2011   . SỞ GIÁO DỤC – ĐÀO TẠO HẢI PHÒNG ĐỀ THI THỬ ĐẠI HỌC LẦN 2 – THÁNG 12/2010 TRƯỜNG THPT CHUYÊN TRẦN PHÚ Môn thi: TOÁN HỌC – Khối A, B Thời gian: 180 phút ĐỀ CHÍNH THỨC Câu I: Cho hàm

Ngày đăng: 27/07/2014, 08:21

TỪ KHÓA LIÊN QUAN

w