IV. BIỂU ĐỒ H - R (HERTZSPRUNG - RUSSELL DIAGRAMS). Năm 1910, hai nhà thiên văn Đan Mạch là Hertzsprung và Mỹ là Russell đã xác lập được mối quan hệ giữa quang phổ (tức nhiệt độ) và độ trưng (hay cấp sao tuyệt đối) của các sao bằng biểu đồ. Hình 98 Các sao được biểu diễn trên biểu đồ thơng qua cặp thơng số của chúng là cấp sao tuyệt đối M và nhiệt độ (T) hay độ trưng L L và quang phổ. Người ta thấy các sao hợp thành những nhóm trên biểu đồ, trong các nhóm đó các sao có đặc tính khác nhau. Phần lớn các sao tập trung theo một đường kéo dài theo đường chéo (trái trên - dưới phải) gọi là dải chính-dải I (Main - Sequence). Một số tập trung ở phía trên bên phải-dải II và phía dưới bên trái- dải III. Mặt trời được biểu diễn như một sao nằm giữa dải chính (dấu +). Như vậy, dựa trên biểu đồ người ta phân loại các sao như sau: 1. Các sao trên dải chính (Dwarfs). Gọi là sao lùn (dwarfs). Chúng là những sao thường. Mặt trời là một sao lùn loại G. Một số sao dải chính khơng “lùn”, lắm có nghĩa là chúng lớn và sáng (trên trái) Độ sáng của chúng bằng những sao kềnh II. Một số ở góc phải dưới ứng với nhiệt độ thấp gọi là lùn đỏ (nhỏ và có nhiệt độ thấp). 2. Sao kềnh - kềnh đỏ - Siêu kềnh II (Giants, Red Giants, Super Giants). Các sao thuộc dải II ứng với nhiệt độ khơng lớn (quang phổ G -M, nhiệt độ 6000o – 3000oK), tức ứng với cấp sao tuyệt đối cở bằng 0 (hay độ trưng là 100 L ) là những sao có kích thước rất lớn, được gọi là sao kềnh. Phổ của chúng thường là đỏ nên gọi là kềnh đỏ. Trên chúng còn có các sao có độ trưng lớn hơn rất nhiều. Đó là những sao có kích thước rất lớn, gọi là siêu kềnh. Tỷ l ệ trên biểu đồ cho thấy: Ứng với 1 sao siêu kềnh có khoảng 1000 sao kềnh và hàng chục triệu sao thường. 50000 10000 6000 3500 15 5 10 0 −5 10000 1 1 1000 1 100 10000 Siêu à Kềnh đỏ Lùn trắng Đ ỏ Lùn Dải Chính (Lùn) T o L L B G MK A III I Trắng xanh đỏ M II Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m 3. Sao lùn trắng (white dwarfs). Là những sao thuộc dải III. Chúng có nhiệt độ rất cao (Quang phổ B - A - F hay T = 20.000 – 8000oK) với cấp sao cao (cỡ +5 → + 10), tức ứng với độ trưng thấp. Vậy chúng phải có kích thước rất nhỏ tức rất lùn, vì có màu trắng nên gọi là lùn trắng. Ngoài ra, cùng các tên gọi sao như trên ta còn có các tên lùn nâu, lùn đen, các sao biến quang, các sao nổ Thực ra có khi các tên đó chỉ để mô tả cùng một ngôi sao, nhưng trong các giai đoạn tiến hóa khác nhau của nó. V. CÁC SAO BIẾN QUANG. 1. Sao biến quang do che khuất. Chúng thường là các hệ sao kép (Double - stars) hay sao đôi (Binary - stars). Độ sáng của từng sao không thay đổi, nhưng trong quá trình chuyển động quanh khối tâm chung chúng có lúc che khuất nhau, dẫn đến quang thông tổng cộng đến trái đất (và do đó là cấp sao) biến thiên tuần hoàn. Tiêu biểu là sao Angon trong chòm Thiên vương (Cepheus). Hình 99. Sao biến quang do che khuất 2. Sao biến quang co nở. (Variable - Stars) Sao này có độ sáng (cấp sao) thực sự biến đổi một cách tuần hoàn do sự vận động vật chất của sao tạo nên: Các lớp vỏ của sao co nở như một con lắc cầu khổng lồ, làm cho cấp sao biến thiên tuần hoàn. Các sao này thường nằm giữa giải chính và dải sao kềnh trên biểu đồ H - R. Càng gần dải sao kềnh chúng có chu kỳ co nở càng lớn. Tức là khối lượng riêng càng nhỏ, chu kỳ co nở càng lớ n. Người ta đã xây dựng được lý thuyết mô tả sự co nở này, nhưng chưa hiểu rõ được nguyên nhân của nó. 3. Sao biến quang đột biến - Sao mới và sao siêu mới (Novae - Supernovae). Có những sao bình thường chỉ có thể nhìn thấy qua kính thiên văn cực mạnh bỗng bùng sáng lên một cách đột ngột. Độ sáng có thể tăng lên hàng chục vạn lần (sao mới) hoặc cỡ triệu lần rồi lại tắt đi. Đó là các sao mới và sao siêu mới. a) Sao mới (Novae). Sao mới thực ra không phải là sao mới sinh ra, mà là các sao đã già (ta sẽ hiểu rõ hơn khi học đến quá trình tiến hóa của sao). Khi một sao trong hệ sao đôi trở thành sao lùn trắng còn sao kia vẫn ở giai đoạn bình thường thì sao lùn trắng có thể hút vật chất của sao thường (vì mật độ vật chất của lùn trắng rất lớn, nên lực hút rất mạnh). Vật chất của sao thường phần lớn là Hydrô chưa bị đốt. Khi b ề mặt sao lùn trắng tích lũy được lượng Hydro ở mức một phần vạn khối lượng mặt trời, mật độ và nhiệt độ ở đây đủ để xảy ra phản ứng tổng hợp Hydrô thành Heli. Vụ bộc phát được châm ngòi như vậy làm cho sao lùn trắng sáng Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m bùng lên một cách đột ngột gọi là bộc phát sao mới. Trong Ngân hà 1 năm có thể có 50 vụ bộc phát sao mới. b) Sao siêu mới (Supernovae). Sự bộc phát sao siêu mới diễn ra mãnh liệt hơn sao mới rất nhiều. Nó để lại tàn dư trong vũ trụ cùng với nhiều bức xạ Synchrotron mà ta còn có thể quan sát được hàng ngàn năm sau. Nổi tiếng là vụ sao Khách, tức sao lạ theo thiên văn Trung Quốc cổ - là vụ nổ sao siêu mới ở chòm sao Kim ngưu (Taurus) tạo nên tinh Vân cua (Crab) năm 1054. Hay gần đây, 1987, vụ nổ trong thiên hà đại tinh vân Magellan. Sao siêu mới có 2 loại I, II với các đặc tính khác nhau. Ta sẽ hiểu rõ vai trò sao siêu mới trong sự tiến hóa của các sao, đặc biệt hiểu được cơ chế tạo thành các nguyên tố nặng và cả sự tạo thành một loại sao đặc biệt: Sao Nơtron. Hình 100 Bảng 8. Các loại sao siêu mới Loại I Loại II Nguồn Quang phổ Độ sáng Địa điểm Tốc độ nổ Bức xạ vô tuyến Lùn trắng trong sao đôi không có vạch Hydro sáng hơn loại II 1,5 cấp Trong tất cả các loại thiên hà 10000 km/s không có Sao nặng, trẻ Có vạch Hydro Chỉ có trong thiên hà xoắn ốc. 5000km/s có V. SAO NƠTRON (NEUTRON(STARS) VÀ LỖ ĐEN (BLACK HOLES). Trong thiên văn còn có những thiên thể mà việc mô tả nó được xây dựng trên lý thuyết. Đó là sao Nơtron và lỗ đen (Stellar black holes). 1. Sao Nơtron (Neutron-Stars) và sao xung (Pulsars). Năm 1932 nhà vật lý người Anh là J. Chadwick đã phát hiện ra một hạt cơ bản cấu tạo nên hạt nhân. Đó là hạt Nơtron (neutron), là hạt không mang điện, có khối lượng xấp xỉ ( lớn hơn) hạt proton. Cũng năm đó, nhà vật lý Liên Xô (cũ) Landau cho rằng trong vũ trụ có thể tồn tại một loại thiên thể đặc biệt, có mật độ cao, do hạt nơtron tạo thành. Năm 1934 các nhà thiên văn M ỹ như Baode đã đưa ra giả thuyết về sao nơtron như cái lõi còn sót lại sau khi sao siêu mới bộc phát và bị nén chặt lại tạo thành nơtron. Năm 1939 nhà vật lý Mỹ Oppenheimer đã xây dựng mô hình kết cấu đầu tiên cho sao nơtron. Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Muốn hiểu rõ sự tạo thành sao nơtron ta phải xem q trình tiến hóa của sao. Trong đó, ở giai đoạn cuối của cuộc đời các sao có thể tiến hóa thành một trong 3 loại: Lùn trắng (sau đó là lùn đen), sao nơtron và lỗ đen, tùy theo khối lượng của nó. Chandrasekhar (nhà thiên văn Mỹ gốc Ấn Độ - Nobel vật lý năm 1983) đã tìm ra được giới hạn khối lượng cho từng loại dựa vào ngun lý loại trừ Pauli trong cơ học l ượng tử. Đó là giới hạn M gh = 1,4 M . - Các sao có khối lượng M <Mgh (tức < 1,4M ) sẽ chuyển hóa thành sao lùn trắng. - Các sao có khối lượng từ 1,4 -2 M sau khi đến giai đoạn cuối cùng sẽ bị co lại dưới tác dụng của lực hấp dẫn của bản thân, sinh ra một lớp áp lực lớn đến mức đẩy các electron (e-) bên ngồi hạt nhân tọt vào trong hạt nhân. Sau đó, các proton bên trong hạt nhân sẽ kết hợp với electron để tạo thành nơtron: 1 p 1 + −1 e o → o n 1 + ν Kết quả là tạo nên sao nơtron có cấu tạo khác thường: Ở lớp vỏ ngồi là một lớp sắt (tinh thể) dày 1km. Sau đó là chất lỏng nơtron siêu chảy (một trạng thái vật lý đặc biệt) có mật độ rất cao cỡ 1 tỷ tấn/cm3. Hình 101. Hình sao Nơtron Như vậy, bán kính của sao nơtron rất nhỏ. Một sao có khối lượng cỡ 2 lần mặt trời M = 2M có bán kính cỡ 12km. Vì kích thước nhỏ nên sao nơtron quay rất nhanh (sinh viên tự chứng minh lấy), đồng thời cảm ứng từ trên bề mặt của nó cũng rất lớn. Như vậy sao nơtron là sao siêu đặc cấu tạo chủ yếu từ nơtron, tự quay rất nhanh và có từ trườ ng rất mạnh. Do vậy nó phát sóng điện từ ở vùng vơ tuyến. Vì trục từ khơng trùng với trục quay của nó nên trái đất có thể bắt được sóng của nó dưới dạng các xung đều đặn. Do đó các sao nơtron còn được gọi là các sao xung hay punxa (pulsar). Năm 1967 ở Anh người ta đã ghi nhận được những xung vơ tuyến lạ và cho rằng đó là dấu hiệu của những người ngồi hành tinh. Té ra đó chỉ là các xung của một pulsar. (Do một nữ sinh viên Anh là Jocelyn Burnell ghi nhận được, và thầy cơ là A. Hewish đã nhận được giải Nobel vì phát kiến này). Hình 102. Sao Nơtron (pulsar) Lõi rắn (10km) Chất lỏng Nơtron Võ rắn (1km) Khí qyển (1cm) Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m 2. Lỗ đen (Stellar - Black holes). Mô hình lỗ đen được xây dựng dựa vào thuyết tương đối rộng, bởi các nhà bác học như Oppenheimer, Penrose, Hawking. Theo đó, bản chất của lực hấp dẫn được biểu hiện qua độ cong của không - thời gian, trong đó độ lệch khỏi không gian Euclide phụ thuộc vào khối lượng của vật và khoảng cách đến vật. Hệ quả của thuyết là: lực hấp dẫn lên một vật khối l ượng M có thể tăng lên vô cực nếu bán kính vật là: 2 2 g GM R c = (khi r → R g thì F hd → ∞) Rg gọi là bán kính hấp dẫn của vật M (hay bán kính Schwarzschild). Với mặt trời Rg = 2,96km Trái đất Rg = 0,9cm Mặt cầu bán kính Rg bao quanh M được gọi là cầu hấp dẫn. Với giả thiết một sao có khối lượng M co rút lại vào trong cầu hấp dẫn của nó thì khối lượng riêng trung bình của nó sẽ là: )cm/g( M M . 3 2 16 102 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ =ρ − trong đó M là khối lượng mặt trời. Với mặt trời ρ = 2.10 16 g/cm 3 = 2.10 10 tấn/cm 3 nghĩa là lớn hơn khối lượng riêng của hạt nhân nguyên tử ρ hn = 10 14 g/cm 3 . Thật là một khối lượng khủng khiếp. Theo cách tiến hóa thứ 3 của sao, những sao lớn hơn giới hạn Chandrasekhar nhiều lần (M = 8 ÷10 M ) có thể co mãi đến mức tới hạn, tạo thành lỗ đen. Vì sao lại gọi là lỗ đen : Ta lý giải như sau : Theo thuyết tương đối thì quanh vật thể có khối lượng lớn thì không - thời gian bị biến đổi. Giả sử ∆t là khoảng thời gian giữa hai sự kiện xảy ra trên thiên thể có khối lượng M và bán kính r (thời gian riêng), (t’ là khoảng thời gian giữa hai sự kiện đó được người quan sát ở ngoài thiên th ể ghi nhận (thời gian tọa độ) thì: 2 ' 2 1 1 g tt t GM R rc r ∆∆ ∆= = − − Ta thấy nếu r >> Rg thì ∆’t = ∆t Nhưng nếu r → Rg thì ∆t’ → ∞ , tức khi thiên thể có bán kính co rút đến gần trị số bán kính hấp dẫn Rg của nó thì thời gian tọa độ sẽ trở nên vô cùng lớn, thời gian kéo dài ra. Như vậy, giả sử sao khi bình thường phát sóng λo = cTo (trong đó: To- chu kỳ sóng) thì khi sao co rút đến bán kính r = Rg thì: 1 ==∞ − o g g T T R R Vậy bước sóng λ = cT = ∞ Điều đó có nghĩa khi sao biến thành lỗ đen thì ta không thể thu được sóng điện từ của nó - tức là cả ánh sáng - Sao đã tắt ngấm và được gọi là lỗ đen. Thậm chí vật chất cũng không thoát ra được khỏi lỗ đen. Hay lỗ đen là một con quái vật hút tất cả những gì đến gần nó. Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m . bán kính hấp dẫn của vật M (hay bán kính Schwarzschild). Với mặt trời Rg = 2,96km Trái đất Rg = 0,9cm Mặt cầu bán kính Rg bao quanh M được gọi là cầu hấp dẫn. Với giả thiết một sao có khối. gian Euclide phụ thuộc vào khối lượng của vật và khoảng cách đến vật. Hệ quả của thuyết là: lực hấp dẫn lên một vật khối l ượng M có thể tăng lên vô cực nếu bán kính vật là: 2 2 g GM R c =. Như vậy, bán kính của sao nơtron rất nhỏ. Một sao có khối lượng cỡ 2 lần mặt trời M = 2M có bán kính cỡ 12km. Vì kích thước nhỏ nên sao nơtron quay rất nhanh (sinh viên tự chứng minh lấy),