100 Cho vách phẳng n lớp, mỗi lớp thứ i dày , có hệ số dẫn nhiệt , 2 mặt biên có nhiệt độ không đổi, phân bố đều và bằng t 0 , t n cho trớc. Tính dòng nhiệt q qua vách và nhiệt độ các mặt tiếp xúc t i , i = 1 ữ (n-1). 9.4.2.2. Lời giải Khi ổn định, dònh nhiệt q qua mọi lớp là không đổi: n n n1n i i 1ii 1 1 10 tttt tt q = = = + Đây là hệ n phơng trình đại số tuyến tính của ẩn số t i và q. bằng cách khử các ẩn số t i , i = 1 ữ (n-1), sẽ tìm đợc: = = = i n 1i i i n0 R t tt q , (W/m 2 ). Thay q vào lần lợt mỗi phơng trình ta tìm đợc nhiệt độ các mặt tiếp xúc: t i = t i-1 - x)tt( 1 i1i i , i = 1 ữ n. Phân bố nhiệt độ trong mỗi lớp thứ I là đoạn thẳng có dạng: t i (x) = t i-1 - x)tt( 1 i1i i , i = 1 ữ n. 9.4.3. Vách một lớp, biên loại 3 9.4.3.1. Bài toán Cho vách phẳng rộng vô hạn, dày , hệ số dẫn nhiệt = const, mặt x = 0 tiếp xúc với chất lỏng 1 có nhiệt độ t f1 với hệ số toả nhiệt 1 , mặt x = tiếp xúc với chất lỏng 2 có nhiệt độ t f2 với hệ số toả nhiệt 2 , tìm phân bố nhiệt độ t(x) trong vách. Mô hình bài toán có dạng: 101 [] [] = = = (3) (2) (1) dx )(dt t)(t dx )0(dt )0(tt 0 dx td )t( 2f2 1f1 2 2 9.4.3.2. Tìm phân bố t(x) Nghiệm tổng quát của (1) là: t(x) = C 1 x + C 2 . Các hằng số C 1 , C 2 đợc xác định theo (2) và (3): =+ = 12f212 121f1 C)tCC( C)Ct( Giải hệ này ta đợc: += ++ = 1 2 1f2 21 2f1f 1 CtC tt C Do đó phân bố t(x) có dạng: + ++ = 1 21 2f1f 1f x tt t)x(t Đồ thị t(x) là đoạn thẳng đi qua 2 điểm 1f 1 1 t,R và + 2f 2 2 t,R đợc gọi là các điểm định hớng của ĐKB loại 3. 9.4.3.3. Tính doang nhiệt q Theo định luật Fourier ta có: 21 2f1f 1 11 tt C dx dt q + + === , (W/m 2 ), Theo biểu thức t(x) có thể tính nhiệt độ tại 2 mặt vách theo: + ++ == + + == 1 21 2f1f 1f2w 2 11 2f1f 1f1w tt t)(tt 1 tt t)0(tt 102 9.5. Dẫn nhiệt trong vách trụ 9.5.1. Trụ một lớp, biên loại 1 Bài toán: Cho vách trụ 1 lớp đồng chất, bán kính trong r 1 , ngoài r 2 , = const, hai mặt biên có nhiệt độ t 1 , t 2 . Tìm phân bố nhiệt độ t(r) trong trụ và nhiệt lợng q l = , l Q (W/m), truyền qua 1m dài mặt trụ. Trong toạ độ trụ, mô hình bài toán trên có dạng: = = =+ (3) (2) (1) 22 11 2 2 t)r(t t)r(t 0 dr dt r 1 dr td )t( 9.5.1.2. Tìm phân bố t(r) Đổi biến d r dt u = thì phơng trình vi phân dẫn nhiệt (1) có dạng: 0 r u d r du =+ hay r dr u du = . Lấy tích phân lần 1 ta có: Lnu = - ln r + ln C 1 = r ln Cln 1 hay r dt Cdt r C u d r dt 1 1 === . Lấy tích phân lần 2 ta có nghiệm tổng quát của (1) là: t(r) = C 1 ln r + C 2 , Các hằng số C1, C 2 đợc tính theo ĐKB (2) và (3): = = +== +== 1112 1 2 21 1 22122 21111 rlnCtC r r ln tt C CrlnCt)r(t CrlnCt)r(t Vậy phân bố nhiệt độ trong vách trụ có dạng: 1 1 2 21 1 r r ln r r ln tt t)r(t = Đờng cong t(r) có dạng logarit đi qua 2 điểm (r 1 , t 1 ) và (r 2 , t 2 ). 9.5.1.3. Tính nhiệt lợng Dòng nhiệt qua 1m 2 mặt trụ bán kính r bất kỳ là: 1 2 211 r r lnr )tt( r C dr dt q === , w/m 2 , 103 luôn giảm khi r tăng. Lợng nhiệt qua 1m dài mặt trụ bán kính r bất kỳ là: l 1 2 21 1l R t r r ln 2 1 )tt( C2 l rl2.q l Q q = == == , (w/m), Với 1 2 l r r ln 2 1 R = , (mK/W) là nhiệt trở của 1m trụ. Vì q l = const với mọi mặt trụ, không phụ thuộc vào bán kính r nên q l đợc coi là 1 đại lợng đặc trng cho dẫn nhiệt qua vách trụ. 9.5.2. Trụ n lớp biên loại 1 9.5.2.1. Bài toán Cho vách trụ n lớp, bán kính trong r 0 , r 1 , . . . r i , . . . r n , có hệ số dẫn nhiệt i , có nhiệt độ 2 mặt biên không đổi t 0 , t n . Tìm lợng nhiệt q l , qua 1m dài mặt trụ, nhiệt độ t i , i = 1 ữ (n-1) các mặt tiếp xúc và phân bố nhiệt độ t i (r) trong mỗi lớp. 9.5.2.2. Lời giải Vì q l = const với mọi lớp nên có hệ phơng trình: ,n1i, r r ln 2 1 )tt( q n 1i 1i i i i1i l ữ= = = Bằng cách khử (n-1) ẩn t i , i = 1 ữ (n-1) se thu đợc: , r r ln 2 1 )tt( q n 1i 1i i i n0 l = = , (W/m) trong đó: , r r ln 2 1 R n 1i 1i i i l = = , (mK/W) là tổng nhiệt trở của 1m vách trụ n lớp. Tính t i , i = 1 ữ (n-1) lần lợt theo q l ta đợc: ),1n(1i, r r ln 2 1 tt 1i i i 1ll ữ= = Phân bố nhiệt độ trong mỗi lớp thứ i có dạng: ),1n(1i, r r ln r r ln tt t)r(t 1i 1i i 1ii ll ữ= = 104 là đờng cong logarit đI qua 2 điểm (r i-1 , t i-1 ) và (r i , t i ). 9.5.3. Vách trụ một lớp biên loại 3 9.5.3.1. Bài toán Tìm phân bố nhiệt độ t(r) trong vách trụ đồng chất có r 1 , r 2 , cho trớc, mặt trong tiếp xúc với chất lỏng nóng có t f1 , 1 , mặt ngoài tiếp xúc với chất lỏng lạnh có t f2 , 2 . Trong toạ độ trụ, mô hình bài toán có dạng: [] [] = = =+ (3) (2) (1) )r(tt)r(t )r(t)r(tt 0 dr dt r 1 dr td )t( 2r2f22 1r11f1 2 9.5.3.2. Tìm phân bố t(r) Nghiệm tổng quát của (1) là: t(r) = C 1 x + C 2 . Các hằng số C 1 , C 2 đợc xác định theo các ĐKB (2) và (3): =+ = 2 1 2f2212 1 1 2111f1 r C )tCrlnC( r C )CrlnCt( Giải ra ta đợc: ; r r ln rr tt C 1 2 2211 1f2f 1 + + = và C 2 = t f2 + C 1 ; Vậy: + + + = 111 1 2 2211 2f1f 1f rr r ln r r ln rr tt t)r(t . Đồ thị t(r) có dạng loarit tiếp tuyến tại r 1 qua điểm 1f 1 11 t,rR và tiếp tuyến tại r 1 qua điểm + 2f 2 22 t,rR . 9.5.3.3. Tính nhiệt lợng q 1 Lợng nhiệt qua 1m dài mặt trụ không đổi và bằng: . lớp, mỗi lớp thứ i dày , có hệ số dẫn nhiệt , 2 mặt biên có nhiệt độ không đổi, phân bố đều và bằng t 0 , t n cho trớc. Tính dòng nhiệt q qua vách và nhiệt độ các mặt tiếp xúc t i , i = 1. 22 11 2 2 t)r(t t)r(t 0 dr dt r 1 dr td )t( 9.5.1.2. Tìm phân bố t(r) Đổi biến d r dt u = thì phơng trình vi phân dẫn nhiệt (1) có dạng: 0 r u d r du =+ hay r dr u du = . Lấy tích phân lần 1 ta có: Lnu = - ln. r n , có hệ số dẫn nhiệt i , có nhiệt độ 2 mặt biên không đổi t 0 , t n . Tìm lợng nhiệt q l , qua 1m dài mặt trụ, nhiệt độ t i , i = 1 ữ (n-1) các mặt tiếp xúc và phân bố nhiệt độ t i (r)