1. Trang chủ
  2. » Giáo Dục - Đào Tạo

BED, BANK & SHORE BED, BANK & SHORE PROTECTION - CHAPTER 3 pps

39 1K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 39
Dung lượng 714,34 KB

Nội dung

Chapter 3 Flow - stability Introduction • focus on stability of loose non-cohesive grains • rock: important material for protection • grains may vary in size from μc (sand) to m (rock) Uniform flow – Horizontal bed Forces on a grain in flow 1 2 1 2 1 2 2 DD D w 222 SS F ww 2 LL L w Drag force : = Cu FA Shear force : = F Cu ud FA Lift force : = Cu FA ρ ρρ ρ ⎫ ⎪ ⎪ ⎪ ≈ ⎬ ⎪ ⎪ ⎪ ⎭ Balance equations d g K = u d g = d g - u 2 c w ws 2 c Δ→Δ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∝ ρ ρρ d g ) - ( d u dO W = dO F : 0 = M W = F : 0 = V FW x f = F : 0 = H 3 ws 22 c w SD, L F SD, ρρρ ∝ ⎪ ⎭ ⎪ ⎬ ⎫ ⋅⋅Σ Σ =Σ )()( Relation between load and strength Isbash (1930) g 2 u 0.7 = d or 1.7 = d g u or d g 2 1.2 = u 2 cc c Δ Δ Δ used for first approximation when: • relation between velocity and waterdepth not clear (e.g a jet entering a body of water) () () 2 ** * Re cc c c sw uud ff gd gd τ ψ ρ ρυ ⎛⎞ ==== ⎜⎟ −Δ ⎝⎠ Shields (1936) * * Re c ud υ = : c ψ Shields parameter (stability parameter) Note: : ψ Mobility parameter (when actual u used) * Re Re≠ Critical shear stress Shields Van Rijn () () ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ == Δ = − = υρρ τ ψ du ff dg u dg cc ws c c * * 2 * Re Example 1500 1033.1 002.01 Re 6 * * = × × == − ν du c What is u *c for sand with d = 2 mm? • Ψ c = 0.055 • smgdu gd u cc c c /042.0002.081.965.1055.0 * * =×××=Δ=→ Δ = ψ ψ 04.063 1033.1 002.0042.0 Re 6 * * =→= × × == − c c du ψ ν smgdu cc /036.0002.081.965.104.0 * = × × × =Δ= ψ Guess: u *c = 1 m/s Shields Example (cont.) 42 )1033.1( 81.965.1 002.0 3 26 3 2 * = × × = Δ = ν g dd d = 2 mm 0.04 c Ψ= • smgdu cc /036.0002.081.965.104.0 * = × × × =Δ= ψ Van Rijn Relative protrusion [...]... Kv - factors for various structures Shape Rectangular Trapezoidal RectAngular Round K v0 b 0 *K vG /b G K vG 1 .3 - 1.7 K vM 1.1 - 1.2 b 0 *K v b G 1.2 1 b 0 *K v /b G 1 .3 - 1.7 1.2 b 0 *K v /b G 1.2 - 1 .3 1.2 b 0 *K v /b G 1 - 1.1 1 - 1.1 Pier Stream Lined Round Outflow RectAngular Abruptly Sill Stream Lined Top Structure Groyne Abutment b 0 *K v /b G 2*K v b 0 *K v /b G 2*K v ⊗ 1.2 - 1.4 ⊗ 1 - 1.1... Round Outflow RectAngular Abruptly Sill Stream Lined Top Structure Groyne Abutment b 0 *K v /b G 2*K v b 0 *K v /b G 2*K v ⊗ 1.2 - 1.4 ⊗ 1 - 1.1 ⊗ 1.4 - 1.6 ⊗ 1.2 - 1 .3 1 0.9 Section 3. 6.1 Fig 3. 13 Section 3. 6.1 Fig 3. 13 Section 3. 6.1 Fig 3. 13 Down Stream ⊗ For many piers in a river the first expression for K v is appropriate The second is valid for a detached pier in an infinitely wide flow,... non-cohesive materials 1:1 1:1.5 1:2 1 :3 Influence of slope on stability φ = 40ο Case b: slope parallel to flow Case c: slope perpendicular to flow Slope parallel to current K( α // ) = F( α // ) W cos α tan φ - W sin α = = F(0) W tan φ α sin φ cos α − cos φ sin α sin ( φ - α ) = = sin φ sin φ Slope perpendicular to current 2 2 2 F( α ) cos α tan φ - sin α cos α K( α ) = = = 2 F(0) tan φ tan α = 1 -. .. zero) * qs = 6.56 ⋅ 1018 ψ 16 * qs = 13 ψ 2.5 (for ψ < 0.05) ⎫ qs ⎪ * with qs = ⎬ (for ψ > 0.05) ⎪ Δ g d3 ⎭ Stone dimension Nominal diameter: dn = 3 V = 3 M / ρ d n50 ≠ d50 d n50 ≈ 0.84 d50 Influence of waterdepth Uniform flow: u* = u g C 2 u*c ψc = Δgd u Δ g d Isbash: = c n50 uic Δgd Attention: uc ≠ uic =1.7 C ψ c g 12 R C =18log kr roughness kr = 2*d50 or kr = 3* d50 Influence waterdepth on critical... =18log = 18log 2d n50 d n50 α = 30 o; φ = 40o Stability on head of dam Deceleration u c without structure u cu Kv = = u c with structure u cs ucu: vertically averaged critical velocity in uniform flow ucs: velocity in case with a structure Effect of flow field Relation between Kv and turbulence level b g (1 + 3rcu ) ucu = 1 + 3rcs ucs ucu 1 + 3rcs ⎯ → Kv = ⎯ = ucs 1 + 3rcu ucu : vertically averaged critical... (hu - hd ) = (0.5 + 0.04 2 1 discharge coefficient hd ) 2 g (hu - hd ) d n 50 Vertical constriction Stability with flow under weir Shields in horizontal constriction (horizontal closure with trucks) ψc u gap =C g Δgd n 50 General formula sin α 4 12 sin φ 2 Correction α slope of construction ϕ angle of repose (internal stability) ⎛ 3h ⎞ = 4.5log ⎜ ⎟ ψc ⎝ d n 50 ⎠ Damage at half depth: 12 × 1/ 2h 3h C... locations 2 frequent movement at some locations 3 frequent movement at several locations 4 frequent movement at many locations 5 frequent movement at all locations 6 continuous movement at all locations 7 general transport of the grains Shields Videos on stability of rock on a bed with current only u = 0.60 m/s, Ψ = 0. 03 u = 0.70 m/s, Ψ = 0.04 u = 0. 83 m/s, Ψ = 0.05 u = 0.92 m/s, Ψ = 0.06 u = 0.97 . 0.055 • smgdu gd u cc c c /042.0002.081.965.1055.0 * * =×××=Δ=→ Δ = ψ ψ 04.0 63 1 033 .1 002.0042.0 Re 6 * * =→= × × == − c c du ψ ν smgdu cc / 036 .0002.081.965.104.0 * = × × × =Δ= ψ Guess: u *c = 1 m/s Shields Example (cont.) 42 )1 033 .1( 81.965.1 002.0 3 26 3 2 * = × × = Δ = ν g dd d = 2 mm 0.04 c Ψ= • smgdu cc / 036 .0002.081.965.104.0 * = × × × =Δ= ψ Van. Rijn () () ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ == Δ = − = υρρ τ ψ du ff dg u dg cc ws c c * * 2 * Re Example 1500 1 033 .1 002.01 Re 6 * * = × × == − ν du c What is u *c for sand with d = 2 mm? • Ψ c = 0.055 • smgdu gd u cc c c /042.0002.081.965.1055.0 * * =×××=Δ=→ Δ = ψ ψ 04.0 63 1 033 .1 002.0042.0 Re 6 * * =→= × × == − c c du ψ ν smgdu cc / 036 .0002.081.965.104.0 * = × × × =Δ= ψ Guess:. Chapter 3 Flow - stability Introduction • focus on stability of loose non-cohesive grains • rock: important material for protection • grains may vary in size

Ngày đăng: 21/07/2014, 22:20