1. Trang chủ
  2. » Giáo án - Bài giảng

Đề+đáp án thi vào lớp 10 của các tỉnh P4

19 500 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 588,5 KB

Nội dung

SỞ GD & ĐT VĨNH PHÚC KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2009 – 2010 MÔN: TOÁN Thời gian làm bài: 120 phút, không kể thời gian giao đề A. Phần trắc nghiệm ( 2,0 điểm):Trong mỗi câu dưới đây đều có 4 lựa chọn, trong đó có duy nhất một lựa chọn đúng. Em hãy chọn lựa chọn đúng. Câu 1: điều kiện xác định của biểu thức 1 x− là: A. x∈¡ B. 1x ≤ − C. 1x < D. 1x ≤ Câu 2: cho hàm số ( 1) 2y m x= − + (biến x) nghịch biến, khi đó giá trị của m thoả mãn: A. m < 1 B. m = 1 C. m > 1 D. m > 0 Câu 3: giả sử 1 2 ,x x là nghiệm của phương trình: 2 2 3 10 0x x+ − = . Khi đó tích 1 2 .x x bằng: A. 3 2 B. 3 2 − C. -5 D. 5 Câu 4: Cho ABC∆ có diện tích bằng 1. Gọi M, N, P tương ứng là trung điểm của các cạnh AB, BC, CA và X, Y, Z ương ứng là trung điểm của các cạnh PM, MN, NP. Khi đó diện tích tam giác XYZ bằng: A. 1 4 B. 1 16 C. 1 32 D. 1 8 B. Phần tự luận( 8 điểm): Câu 5( 2,5 điểm). Cho hệ phương trình 2 1 2 4 3 mx y x y + =   − =  ( m là tham số có giá trị thực) (1) a, Giải hệ (1) với m = 1 b, Tìm tất cả các giá trị của m để hệ (1) có nghiệm duy nhất Câu 6: Rút gọn biểu thức: 2 2 48 75 (1 3)A = − − − Câu 7(1,5 điểm) Một người đi bộ từ A đến B với vận tốc 4 km/h, rồi đi ô tô từ B đến C với vận tốc 40 km/h. Lúc về anh ta đi xe đạp trên cả quãng đường CA với vận tốc 16 km/h. Biết rằng quãng đường AB ngắn hơn quãng đường BC là 24 km, và thời gian lúc đi bằng thời gian lúc về. Tính quãng đường AC. Câu 8:( 3,0 điểm). Trên đoạn thẳng AB cho điểm C nằm giữa A và B. Trên cùng một nửa mặt phẳng có bờ là AB kẻ hai tia Ax và By cùng vuông góc với AB. Trên tia Ax lấy điểm I, tia vuông góc với CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại P ( P khác I) a, Chứng minh tứ giác CPKB nội tiếp một đường tròn, chỉ rõ đường tròn này. b, Chứng minh · · CIP PBK= . c, Giả sử A, B, I cố định. Hãy xác định vị trí của điểm C sao cho diện tích tứ giác ABKI lớn nhất. ĐỀ CHÍNH THỨC Hết Lưu ý: Giám thị không giải thích gì thêm. SỞ GD&ĐT VĨNH PHÚC —————— KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2009- 2010 HƯỚNG DẪN CHẤM MÔN: TOÁN ————————— A. PHẦN TRẮC NGHIỆM (2,0 điểm): Mỗi câu đúng cho 0,5 điểm, sai cho 0 điểm. Câu 1 2 3 4 Đáp án D A C B B. PHẦN TỰ LUẬN (8,0 điểm): Câu 5 (2,5 điểm). a) 1,5 điểm: Nội dung trình bày Điểm Thay 1m = vào hệ ta được: 2 1 (1) 2 4 3 (2) x y x y + =   − = −  0,25 Nhân 2 vế PT(1) với -2 rồi cộng với PT(2) ta được: 8 5y− = − 0,50 Suy ra 5 8 y = 0,25 Thay 5 8 y = vào (1) có: 5 1 2. 1 8 4 x x+ = ⇒ = − 0,25 Thử lại với 1 4 5 8 x y  = −     =   ta thấy thoả mãn. Vậy hệ đã cho có nghiệm duy nhất: 1 4 5 8 x y  = −     =   . 0,25 b) 1,0 điểm: Nội dung trình bày Điểm Hệ (I) có nghiệm duy nhất khi và chỉ khi 2 1 1 2 4 2 2 m m m≠ ⇔ ≠ − ⇔ ≠ − − 1,0 Câu 6 (1,0 điểm): Nội dung trình bày Điểm 2 2 48 75 (1 3)A = − − − = 2 16.3 25.3 |1 3 |− − − 0,5 = 8 3 5 3 1 3− + − 0,25 = 1 + 2 3 0,25 Câu 7 (1,5 điểm): Nội dung trình bày Điểm Gọi độ dài quãng đường AB là x km ( 0x > ), khi đó độ dài quãng đường BC là 24x + km, độ dài quãng đường AC là 2 24x + km. Và do đó, thời gian đi quãng đường AB là ( ) 4 x h , thời gian đi quãng đường BC là 24 ( ) 40 x h + và thời gian đi quãng đường CA là 2 24 ( ) 16 x h + 0.5 Mặt khác, thời gian đi và về bằng nhau nên ta có phương trình: 0.25 24 2 24 4 40 16 x x x + + + = Giải phương trình được 6x = 0.5 Thử lại, kết luận • 6 0x = > • Thời gian đi quãng đường AB và BC là 6 6 24 2.25( ) 4 40 h + + = , thời gian đi quãng đường CA (lúc về) là 2 6 24 2.25( ) 16 h × + = • Vậy độ dài quãng đường AC là 36 km. 0.25 Câu 8 (3,0 điểm): a) 1,0 điểm: Nội dung trình bày Điểm Có: · · 0 90CPK CPI= = (góc nội tiếp chắn nửa đường tròn); 0,25 Do By AB⊥ nên · 0 90CBK = . 0,25 Suy ra: · · 0 180CPK CBK+ = hay tứ giác CPKB nội tiếp đường tròn đường kính CK. 0,50 b) 1,0 điểm: Nội dung trình bày Điểm Có: · · CIP PCK= (góc nội tiếp và góc tạo bởi tia tiếp tuyến và một dây cùng chắn một cung); (1) 0,5 Mặt khác tứ giác PCBK nội tiếp nên: · · PCK PBK= (2) 0,25 Từ (1) và (2) ta có điều phải chứng minh. 0,25 c) 1,0 điểm: Nội dung trình bày Điểm Từ giả thiết suy ra tứ giác AIKB là hình thang vuông, gọi s là diện tích của AIKB, khi đó ta có: 1 ( ) 2 s AI KB AB= + . Dễ thấy s lớn nhất khi và chỉ khi KB lớn nhất (do A, B, I cố định). 0,25 Xét các tam giác vuông AIC và BKC có: KC CI ⊥ và KB CA ⊥ suy ra: · · BKC ACI= (góc có cạnh tương ứng vuông góc) hay ACI∆ đồng dạng với BKC∆ (g-g). 0,25 Suy ra: .AC AI AC BC BK BK BC AI = ⇔ = , khi đó: BK lớn nhất ⇔ AC.BC lớn nhất 0.25 Theo BĐT Côsi có: 2 2 . 2 4 AC CB AB AC CB +   ≤ =  ÷   , dấu “=” xảy ra khi và chỉ khi C là trung điểm của AB. Vậy diện tích tứ giác AIBK lớn nhất khi và chỉ khi C là trung điểm của AB. 0,25 Một số lưu ý: A C B K y I x P -Trên đây chỉ trình tóm tắt một cách giải với những ý bắt buộc phải có. Trong quá trình chấm, nếu học sinh giải theo cách khác và đủ ý thì vẫn cho điểm tối đa. -Trong quá trình giải bài của học sinh nếu bước trên sai, các bước sau có sử dụng kết quả phần sai đó nếu có đúng thì vẫn không cho điểm. -Bài hình học, nếu học sinh không vẽ hình phần nào thì không cho điểm tương ứng với phần đó. -Những phần điểm từ 0,5 trở lên, tổ chấm có thể thống nhất chia tới 0,25 điểm. -Điểm toàn bài tính đến 0,25 điểm. —Hết— SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT THANH HÓA NĂM HỌC 2009-2010 Môn thi : Toán Ngày thi: 30 tháng 6 năm 2009 Thời gian làm bài: 120 phút Bài 1 (1,5 điểm) Cho phương trình: x 2 – 4x + n = 0 (1) với n là tham số. 1.Giải phương trình (1) khi n = 3. 2. Tìm n để phương trình (1) có nghiệm. Bài 2 (1,5 điểm) Giải hệ phương trình: 2 5 2 7 x y x y + =   + =  Bài 3 (2,5 điểm) Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x 2 và điểm B(0;1) 1. Viết phương trình đường thẳng (d) đi qua điểm B(0;1) và có hệ số k. 2. Chứng minh rằng đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt E và F với mọi k. 3. Gọi hoành độ của E và F lần lượt là x 1 và x 2 . Chứng minh rằng x 1 . x 2 = - 1, từ đó suy ra tam giác EOF là tam giác vuông. Bài 4 (3,5 điểm) Cho nửa đương tròn tâm O đường kính AB = 2R. Trên tia đối của tia BA lấy điểm G (khác với điểm B) . Từ các điểm G; A; B kẻ các tiếp tuyến với đường tròn (O) . Tiếp tuyến kẻ từ G cắt hai tiếp tuyến kẻ từ A avf B lần lượt tại C và D. 1. Gọi N là tiếp điểm của tiếp tuyến kẻ từ G tới nửa đường tròn (O). Chứng minh tứ giác BDNO nội tiếp được. 2. Chứng minh tam giác BGD đồng dạng với tam giác AGC, từ đó suy ra CN DN CG DG = . 3. Đặt · BOD α = Tính độ dài các đoạn thẳng AC và BD theo R và α. Chứng tỏ rằng tích AC.BD chỉ phụ thuộc R, không phụ thuộc α. Bài 5 (1,0 điểm) Đề chính thức Đề B Cho số thực m, n, p thỏa mãn : 2 2 2 3 1 2 m n np p+ + = − . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức : B = m + n + p. ……………………………. Hết ……………………………. Họ tên thí sinh: ………………………………… Số báo danh: …………… Chữ ký của giám thị số 1: Chữ ký của giám thị số 2: ĐÁP ÁN Bài 1 (1,5 điểm) Cho phương trình: x 2 – 4x + n = 0 (1) với n là tham số. 1.Giải phương trình (1) khi n = 3. x 2 – 4x + 3 = 0 Pt có nghiệm x 1 = 1; x 2 = 3 2. Tìm n để phương trình (1) có nghiệm. ∆’ = 4 – n ≥ 0 ⇔ n ≤ 4 Bài 2 (1,5 điểm) Giải hệ phương trình: 2 5 2 7 x y x y + =   + =  HPT có nghiệm: 3 1 x y =   =  Bài 3 (2,5 điểm) Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x 2 và điểm B(0;1) 1. Viết phương trình đường thẳng (d) đi qua điểm B(0;1) và có hệ số k. y = kx + 1 2. Chứng minh rằng đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt E và F với mọi k. Phương trình hoành độ: x 2 – kx – 1 = 0 ∆ = k 2 + 4 > 0 với ∀ k ⇒ PT có hai nghiệm phân biệt ⇒ đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt E và F với mọi k. 3. Gọi hoành độ của E và F lần lượt là x 1 và x 2 . Chứng minh rằng x 1 . x 2 = -1, từ đó suy ra tam giác EOF là tam giác vuông. Tọa độ điểm E(x 1 ; x 1 2 ); F((x 2 ; x 2 2 ) ⇒ PT đường thẳng OE : y = x 1 . x và PT đường thẳng OF : y = x 2 . x Theo hệ thức Vi ét : x 1 . x 2 = - 1 ⇒ đường thẳng OE vuông góc với đường thẳng OF ⇒ ∆EOF là ∆ vuông. Bài 4 (3,5 điểm) 1, Tứ giác BDNO nội tiếp được. 2, BD ⊥ AG; AC ⊥ AG ⇒ BD // AC (ĐL) ⇒ ∆GBD đồng dạng ∆GAC (g.g) ⇒ CN BD DN CG AC DG = = 3, ∠BOD = α ⇒ BD = R.tg α; AC = R.tg(90 o – α) = R tg α ⇒ BD . AC = R 2 . Bài 5 (1,0 điểm) 2 2 2 3 1 2 m n np p+ + = − (1) ⇔ … ⇔ ( m + n + p ) 2 + (m – p) 2 + (n – p) 2 = 2 ⇔ (m – p) 2 + (n – p) 2 = 2 - ( m + n + p ) 2 ⇔ (m – p) 2 + (n – p) 2 = 2 – B 2 vế trái không âm ⇒ 2 – B 2 ≥ 0 ⇒ B 2 ≤ 2 ⇔ 2 2B− ≤ ≤ dấu bằng ⇔ m = n = p thay vào (1) ta có m = n = p = 2 3 ± ⇒ Max B = 2 khi m = n = p = 2 3 Min B = 2− khi m = n = p = 2 3 − SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 TP ĐÀ NẲNG Khóa ngày 23 tháng 06 năm 2009 MÔN: TOÁN ( Thời gian 120 phút, không kể thời gian giao đề ) Bài 1. ( 3 điểm ) Cho biểu thức a 1 1 2 K : a 1 a 1 a a a 1     = − +  ÷  ÷ − − − +     a) Rút gọn biểu thức K. b) Tính giá trị của K khi a = 3 + 2 2 c) Tìm các giá trị của a sao cho K < 0. Bài 2. ( 2 điểm ) Cho hệ phương trình: mx y 1 x y 334 2 3 − =    − =   a) Giải hệ phương trình khi cho m = 1. b) Tìm giá trị của m để phương trình vô nghiệm. Bài 3. ( 3,5 điểm ) Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = 2 3 AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E. a) Chứng minh tứ giác IECB nội tiếp được trong một đường tròn. b) Chứng minh ∆AME ∆ACM và AM 2 = AE.AC. c) Chứng minh AE.AC - AI.IB = AI 2 . d) Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất. Bài 4. ( 1,5 điểm ) Người ta rót đầy nước vào một chiếc ly hình nón thì được 8 cm 3 . Sau đó người ta rót nước từ ly ra để chiều cao mực nước chỉ còn lại một nửa. Hãy tính thể tích lượng nước còn lại trong ly. ĐÁP ÁN ĐỀ SỐ 1. Bài 1. a) Điều kiện a > 0 và a ≠ 1 (0,25đ) a 1 1 2 K : a 1 a( a 1) a 1 ( a 1)( a 1)     = − +  ÷  ÷ − − + + −     a 1 a 1 : a( a 1) ( a 1)( a 1) − + = − + − a 1 a 1 .( a 1) a( a 1) a − − = − = − b) a = 3 + 2 2 = (1 + 2 ) 2 a 1 2⇒ = + 3 2 2 1 2(1 2) K 2 1 2 1 2 + − + = = = + + c) a 1 0 a 1 K 0 0 a 0 a − <  − < ⇔ < ⇔  >  a 1 0 a 1 a 0 <  ⇔ ⇔ < <  >  Bài 2. a) Khi m = 1 ta có hệ phương trình: x y 1 x y 334 2 3 − =    − =   x y 1 3x 2y 2004 − =  ⇔  − =  2x 2y 2 3x 2y 2004 − =  ⇔  − =  x 2002 y 2001 =  ⇔  =  b) mx y 1 y mx 1 x y 3 334 y x 1002 2 3 2 − = = −     ⇔   − = = −     y mx 1 y mx 1 3 3 m x 1001 (*) mx 1 x 1002 2 2 = −  = −    ⇔ ⇔     − = − − = −  ÷       Hệ phương trình vô nghiệm ⇔ (*) vô nghiệm 3 3 m 0 m 2 2 ⇔ − = ⇔ = Bài 3. a) * Hình vẽ đúng * · 0 EIB 90= (giả thiết) * 0 ECB 90∠ = (góc nội tiếp chắn nửa đường tròn) * Kết luận: Tứ giác IECB là tứ giác nội tiếp b) (1 điểm) Ta có: * sđ cungAM = sđ cungAN * AME ACM∠ = ∠ *GócAchung,suyra∆AME ∆ACM. * Do đó: AC AM AM AE = ⇔ AM 2 = AE.AC c) * MI là đường cao của tam giác vuông MAB nên MI 2 = AI.IB * Trừ từng vế của hệ thức ở câu b) với hệ thức trên * Ta có: AE.AC - AI.IB = AM 2 - MI 2 = AI 2 . d) * Từ câu b) suy ra AM là tiếp tuyến của đường tròn ngoại tiếp tam giác CME. Do đó tâm O 1 của đường tròn ngoại tiếp tam giác CME nằm trên BM. Ta thấy khoảng cách NO 1 nhỏ nhất khi và chỉ khi NO 1 ⊥ BM.) * Dựng hình chiếu vuông góc của N trên BM ta được O 1 . Điểm C là giao của đường tròn đã cho với đường tròn tâm O 1 , bán kính O 1 M. Bài 4. (2 điểm) A B M E C I O 1 N Phần nước còn lại tạo thành hình nón có chiều cao bằng một nửa chiều cao của hình nón do 8cm 3 nước ban đầu tạo thành. Do đó phần nước còn lại có thể tích bằng 3 1 1 2 8   =  ÷   thể tích nước ban đầu. Vậy trong ly còn lại 1cm 3 nước. SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH TRUNG HỌC PHỔ THÔNG TỈNH PHÚ YÊN NĂM HỌC: 2009 – 2010 Khoá ngày : 19/05/2009 Môn Thi : Toán Thời gian 120 phút ( không kể thời gian phát đề ) Câu 1 : ( 2.0 điểm) a) Giải hệ phương trình : 2 1 3 4 14 x y x y + = −   + = −  b) Trục căn ở mẫu : 25 2 ; B = 7 2 6 4 + 2 3 A = + Câu 2 : ( 2.0 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình Một đội xe cần phải chuyên chở 150 tấn hàng . Hôm làm việc có 5 xe được điều đi làm nhiệm vụ khác nên mỗi xe còn lại phải chở thêm 5 tấn . Hỏi đội xe ban đầu có bao nhiêu chiếc ? ( biết rằng mỗi xe chở số hàng như nhau ) Câu 3 : ( 2,5 điểm ) Cho phương trình x 2 – 4x – m 2 + 6m – 5 = 0 với m là tham số a) Giải phương trình với m = 2 b) Chứng minh rằng phương trình luôn có nghiệm c) Giả sử phương trình có hai nghiệm x 1 ; x 2 , hãy tìm giá trị bé nhất của biểu thức 3 3 1 2 P x x= + Câu 4 : ( 2,5 điểm ) Cho hình bình hành ABCD có đỉnh D nằm trên đường tròn đường kính AB = 2R . Hạ BN và DM cùng vuông góc với đường chéo AC a) Chứng minh tứ giác : CBMD nội tiếp được b) Chứng minh rằng : DB.DC = DN.AC ĐỀ CHÍNH THỨC [...]... ABEC ni tip ng trũn tõm O => E (O) A sở giáo dục và đào tạo hng yên đề thi chính thức (Đề thi có 02 trang) C N M H O B kỳ thi tuyển sinh và lớp 10 thpt năm học 2009 - 2 010 Môn thi : toán Thời gian làm bài: 120 phút phần a: trắc nghiệm khách quan (2,0 điểm) Từ câu 1 đến câu 8, hãy chọn phơng án đúng và viết chữ cái đứng trớc phơng án đó vào bài làm Câu 1: Biểu thức 1 có nghĩa khi và chỉ khi: 2x 6 A x ... định 8 tấn Hỏi lúc đầu đội xe có bao nhiêu chiếc? Biết rằng các xe chở nh nhau Bài 4: (3,0 điểm) Cho A là một điểm trên đờng tròn tâm O, bán kính R Gọi B là điểm đối xứng với O qua A Kẻ đờng thẳng d đi qua B cắt đờng tròn (O) tại C và D (d không đi qua O, BC < BD) Các tiếp tuyến của đờng tròn (O) tại C và D cắt nhau tại E Gọi M là giao điểm của OE và CD Kẻ EH vuông góc với OB (H thuộc OB) Chứng minh... OM.OE = R2 c) H là trung điểm của OA Bài 5: (1, 0 điểm) b2 1 + Cho hai số a,b khác 0 thoả mãn 2a + =4 4 a2 2 Tìm giá trị nhỏ nhất của biểu thức S = ab + 2009 ===Hết=== Gợi ý đáp án: ( Một số câu) Phần tự luận: Bài 2: Vì ABO vuông cân tại O nên nhận tia phân giác của góc xOy là đờng cao =>(y = mx + 2) (y = x) => m = m1 Bài 3: Gọi x, y lần lợt là số xe và số hàng chở đợc của mỗi xe lúc đầu (x N *,... = ON2 ( vì ON=R) => OHN đồng dạng với ONB ã Mà góc OHN = 900 => BNO = 900 ã Xét OBN có BNO = 900 và A là trung điểm của O C M N D OM.OE = R2 E OB => ON = NA => ANO cân tại N Mà NH là đờng cao => NH là đờng trung tuyến => H là trung điểm của OA S GIO DC V O TO QUNG TR THI TUYN SINH LP 10 THPT Nm hc 2007-2008 Bi 1 (1,5 im) Cho biu thc A = 9 x 27 + x 3 1 4 x 12 vi x > 3 2 a/ Rỳt gn biu thc A b/ Tỡm... giữa tiếp tuyến và một dây cùng chắn một cung) ã ã ã Mà EBC = ã ADE => EDA = CAd => d//ED Ta lại có d OA (theo trên) => EDOA S GIO DC O TO QUNG TR CHNH THC THI TUYN SINH VO LP 10 THPT Khoỏ ngy 7 thỏng 7 nm 2009 MễN TON Thi gian 120 phỳt (khụng k thi gian giao ) Cõu 1 (2,0 im) 1 Rỳt gn (khụng dựng mỏy tớnh cm tay) cỏc biu thc: a) 12 27 + 4 3 ( ) 2 b) 1 5 + 2 5 2 Gii phng trỡnh (khụng dựng mỏy tớnh... tích hai nghiêm của phơng trình x2 + 6x - 5 = 0 Khi đó: A S = - 6; P = 5 B S = 6; P = 5 C S = 6; P = - 5 D S = - 6 ; P = - 5 2 x + y = 5 Câu 4: Hệ phơng trình 3 x y = 5 có nghiệm là: x = 2 y =1 B x = 2 y =1 3 cm 2 B 5cm A x = 2 y = 1 D x = 1 y = 2 5 cm 2 D 2cm C Câu 5: Một đờng tròn đi qua ba đỉnh của một tam giác có độ dài ba cạnh lần lợt là 3cm, 4cm, 5cm thì đờng kính của đờng tròn đó... A C Câu 6: Trong tam giác ABC vuông tại A có AC = 3, AB = 3 3 thì tgB có giá trị là: A 1 3 B 3 C 3 D 1 3 Câu 7: Một nặt cầu có diện tích là 3600 cm2 thì bán kính của mặt cầu đó là: A 900cm B 30cm C 60cm D 200cm ã Câu 8: Cho đờng tròn tâm O có bán kính R (hình vẽ bên) Biết COD = 1200 thì diện tích hình quạt OCmD là: 2 R R 2 R 2 R2 A B C D 3 4 3 phần b: tự luận (8,0 điểm) 3 D m 1200 O C Bài 1: (1,5... giao im ca BD v CE a/ Chng minh t giỏc ADHE ni tip b/ Chng minh tam giỏc AED ng dng vi tam giỏc ACB c/ Tớnh t s DE BC d/ Gi O l tõm ng trũn ngoi tip tam giỏc ABC Chng minh OA vuụng gúc vi DE Gợi ý đáp án câu 5: a Xét tứ giác ADHE có 0 ã AEH = ã ADH = 90 => Tứ giác ADHE nội tiếp b Ta có tứ giác BEDC nội tiếp vì 0 ã ã ã BEC = BDC =90 => EBC = ã ADE ( Cùng bù với ã EDC ) => ADE đồng dạng với ABC E ã ã . tính đến 0,25 điểm. —Hết— SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT THANH HÓA NĂM HỌC 2009-2 010 Môn thi : Toán Ngày thi: 30 tháng 6 năm 2009 Thời gian làm bài: 120 phút Bài 1. => E (O). sở giáo dục và đào tạo hng yên đề thi chính thức (Đề thi có 02 trang) kỳ thi tuyển sinh và lớp 10 thpt năm học 2009 - 2 010 Môn thi : toán Thời gian làm bài: 120 phút phần a: trắc nghiệm. thay vào (1) ta có m = n = p = 2 3 ± ⇒ Max B = 2 khi m = n = p = 2 3 Min B = 2− khi m = n = p = 2 3 − SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 TP ĐÀ NẲNG Khóa ngày 23 tháng

Ngày đăng: 11/07/2014, 22:00

TỪ KHÓA LIÊN QUAN

w