1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi đại thử đại học có đáp án

2 362 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 88,5 KB

Nội dung

ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG NĂM 2010 KHỐI THI: A MÔN THI: TOÁN Thời gian: 180 phút không kể thời gian phát đề ( đề thử A10) A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm) Câu 1: (2đ) : Cho hàm số y= 323 2 1 2 3 mmxx +− có đt © 1. Khảo sát và vẽ đồ thị của hàm số khi m=1 2. Xác định m để hàm số có cực đại, cực tiểu đối xứng nhau qua đường thẳng y=x Câu 2: (2đ): Giải các pt: 1.Giải bất phương trình: )3(log 2 1 2log65log 3 1 3 1 2 3 +>−++− xxxx 2.Tính tích phân: I= ∫ + 2 0 44 )(2 π dxxCosxSinxCos Câu 3: (2đ) 1. Giải phương trình: 2tanx+cotan2x=2sin2x+ x2sin 1 2. Giải phương trình : (x+1)(x+4)=3 285 2 ++ xx Câu 5: (1đ) Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có 2 đỉnh liên tiếp A,B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ góc 45 0 . Tính diện tích xung quanh và thể tích của hình trụ . B. PHẦN TỰ CHỌN (3điểm): Thí sinh tự chọn câu V.a hoặc V.b Câu V.a: Theo chương trình chuẩn (3đ) 1. Trong kg với hệ tọa độ oxyz cho các điểm A(10;2;-1) và đường thẳng d có pt: 3 1 12 1 − == − zyx . Lập phương trình mp(P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất 2.Trong mp Oxy cho điểm A(2;-3), B(3;-2), ∆ ABC có diện tích bằng 2 3 . Trọng tâm của ∆ ABC thuộc đường thẳng (d): 3x-y-8=0 . Tìm bán kính đường tròn nội tiếp ∆ ABC 3. Giải phương trình sau trên tập số phức: Z 4 –Z 3 +6Z 2 -8Z-16=0 Câu V.b: Theo chương trình nâng cao (3đ) HẾT 1 Hướng dẫn giải đề thi thử đại học ( A10) Câu 1: (2đ) : Cho hàm số y= 323 2 1 2 3 mmxx +− có đt © a. Khảo sát và vẽ đồ thị của hàm số khi m=1 b. Xác định m để hàm số có cực đại, cực tiểu đối xứng nhau qua đường thẳng y=x Giải: b. y’=3x 2 -3mx, y’=0 ⇔ x=0, x=m. Để hs có cực đại, cực tiểu thì m ≠ 0. Khi đó A,B là các điểm cực trị thì A(0; 1/2m 3 ), B(m;0). A và B đối xứng với nhau qua đt y=x thì OA=OB ⇔ 1/2m 3 =m ⇒ m Câu 2: (1,5đ): Giải các pt: 1.Giải bất phương trình: )3(log 2 1 2log65log 3 1 3 1 2 3 +>−++− xxxx 2.Tính tích phân: I= ∫ + 2 0 44 )(2 π dxxCosxSinxCos Giải: 1 . Khi đó (1) ⇔ )3(log 2 1 )2(log 2 1 )65(log 2 1 11 33 2 3 +>−++− −− xxxx …. 2. ∫ ∫ ∫ ∫ −=−=− )2(sin2sin 4 1 )2(sin 2 1 )2(sin)2 2 1 1( 2 1 )2 2 1 1(2 222 xxdxdxdxSindxxSinxCos …. Câu 3: (2đ) 4. Giải phương trình: 2tanx+cotan2x=2sin2x+ x2sin 1 2. Giải phương trình : (x+1)(x+4)=3 285 2 ++ xx Giải 1. ĐK:    ≠ ≠ ⇔    ≠ ≠ 0sin 0cos 02sin 0 x x x cox Khi đó (1) ⇔ 4sin 2 x+co2x=2sin 2 2x+1 ( thực hiện quy đồng mẫu số) Sau đó co2x=1-2sin 2 x và sin 2 2x=(2sin.cosx) 2 để có pt sin 2 x(1-4cos 2 x) =0 2. : ĐK x 2 +5x+28 ≥ 0, ∀ x ∈ R Khi đó (1) ⇔ x 2 +5x+4=3 285 2 ++ xx (2) Đặt t= 285 2 ++ xx , đk t ≥ 0 thì (2) ⇔ t 2 -24 =3t sau đó giải tìm t 2 . ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG NĂM 2010 KHỐI THI: A MÔN THI: TOÁN Thời gian: 180 phút không kể thời gian phát đề ( đề thử A10) A. PHẦN CHUNG CHO TẤT CẢ CÁC. bán kính đường tròn nội tiếp ∆ ABC 3. Giải phương trình sau trên tập số phức: Z 4 –Z 3 +6Z 2 -8Z-16=0 Câu V.b: Theo chương trình nâng cao (3đ) HẾT 1 Hướng dẫn giải đề thi thử đại học. +− có đt © a. Khảo sát và vẽ đồ thị của hàm số khi m=1 b. Xác định m để hàm số có cực đại, cực tiểu đối xứng nhau qua đường thẳng y=x Giải: b. y’=3x 2 -3mx, y’=0 ⇔ x=0, x=m. Để hs có cực đại,

Ngày đăng: 11/07/2014, 21:00

TỪ KHÓA LIÊN QUAN

w