Đề thi thử Đại học, Cao đẳng môn Toán 2010 docx

7 215 0
Đề thi thử Đại học, Cao đẳng môn Toán 2010 docx

Đang tải... (xem toàn văn)

Thông tin tài liệu

. THI TH I HC, CAO NG NM 2010 Mụn: Toỏn A. Thi gian: 180 phỳt ( Khụng k giao ). PHN CHUNG CHO TT C CC TH SINH PHN CHUNG CHO TT C CC TH SINH (7 im) (7 im) Cõu I (2 im) Cho hàm số 1 12 + = x x y 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số . 2. Tìm tọa độ điểm M sao cho khoảng cách từ điểm )2;1(I tới tiếp tuyến của (C) tại M là lớn nhất . Cõu II (2 im) : 1. Gii h phng trỡnh: 2 2 2 2 1 4 ( ) 2 7 2 x y xy y y x y x y + + + = + = + + . 2.Gii phng trỡnh : 01cossin2sinsin2 2 =++ xxxx . Cõu III (1 im): Tớnh tớch phõn 3 6 cotx I dx sinx.sin x 4 = + ữ Cõu IV (1 im) Cho hỡnh chúp ct tam giỏc u ngoi tip mt hỡnh cu bỏn kớnh r cho trc. Tớnh th tớch hỡnh chúp ct bit rng cnh ỏy ln gp ụi cnh ỏy nh. Cõu V (1 im) Tìm m để phơng trình sau có 2 nghiệm phân biệt : x10 1).12(48 22 ++=++ xxmx . PHN RIấNG (3 im): Thớ sinh ch lm mt trong hai phn (Phn 1 hoc phn 2) 1. Theo chng trỡnh chun. Cõu VI.a (2 im) 1. Cho ABC cú nh A(1;2), ng trung tuyn BM: 2 1 0x y+ + = v phõn giỏc trong CD: 1 0x y+ = . Vit phng trỡnh ng thng BC. 2. Cho ng thng (D) cú phng trỡnh: 2 2 2 2 x t y t z t = + = = + .Gi l ng thng qua im A(4;0;-1) song song vi (D) v I(-2;0;2) l hỡnh chiu vuụng gúc ca A trờn (D). Trong cỏc mt phng qua , hóy vit phng trỡnh ca mt phng cú khong cỏch n (D) l ln nht. Cõu VII.a (1 im) Với x,y là các số thực thuộc đoạn [ ] 0;1 . Tìm giá trị nhỏ nhất của biểu thức: ( ) 1 1 2 9 3 2 1 1 1 xy P xy x y xy x y + = + + + + + + + + + 2. Theo chng trỡnh nõng cao. Cõu VI.b (2 im) 1) Trong mt phng vi h ta Oxy cho ng trũn hai ng trũn 2 2 ( ): 2 2 1 0,C x y x y+ + = 2 2 ( ') : 4 5 0C x y x+ + = cựng i qua M(1; 0). Vit phng trỡnh ng thng qua M ct hai ng trũn ( ), ( ')C C ln lt ti A, B sao cho MA= 2MB. 2)Trong không gian với hệ tọa độ Oxyz cho hai đờng thẳng d và d lần lợt có phơng trình : d : z y x = = 1 2 và d : 1 5 3 2 2 + == z y x . Viết phơng trình mặt phẳng )( đi qua d và tạo với d một góc 0 30 Cõu VII.b (1 im) Cho a, b, c l ba cnh tam giỏc. Chng minh 1 1 2 2 3 3 2 3 3 b c a a b a c a b c a c a b + + + + < ữ + + + + + + Ht Kỳ thi thử đại học- cao đẳng năm 2010 Hớng dẫn chấm môn toán Cõu Phn Ni dung I (2,0) 1(1,0) Lm ỳng, cỏc bc theo S kho sỏt hm s cho im ti a. 2(1,0) . Tập xác định : 1x . 1 3 2 1 12 + = + = xx x y , 2 )1( 3 ' + = x y , Bảng biến thiên: Tiệm cận đứng : 1 = x , tiệm cận ngang 2=y 2. Nếu )( 1 3 2; 0 0 C x xM + thì tiếp tuyến tại M có phơng trình )( )1( 3 1 3 2 0 2 00 xx xx y + = + + hay 0)1(3)2()1()(3 0 2 00 =++ xyxxx . Khoảng cách từ )2;1(I tới tiếp tuyến là ( ) 2 0 2 0 4 0 0 4 0 00 )1( )1( 9 6 )1(9 16 19 )1(3)1(3 ++ + = ++ + = ++ + = x x x x x xx d . Theo bất đẳng thức Côsi 692)1( )1( 9 2 0 2 0 =++ + x x , vây 6d . Khoảng cách d lớn nhất bằng 6 khi ( ) 3131)1( )1( 9 0 2 0 2 0 2 0 ==++= + xxx x . Vậy có hai điểm M : ( ) 32;31 + M hoặc ( ) 32;31 + M Cõu í Ni dung 1 1) CõuII:2. Gii phng trỡnh: 01cossin)1cos2(sin201cossin2sinsin2 22 =+=++ xxxxxxxx . 22 )3cos2()1(cos8)1cos2( == xxx . Vậy 5,0sin =x hoặc 1cossin = xx . Với 5,0sin =x ta có kx 2 6 += hoặc kx 2 6 5 += Với 1cossin = xx ta có == = 4 sin 2 2 4 sin1cossin xxx , suy ra kx 2 = hoặc kx 2 2 3 += 2 Dễ thấy 0y ≠ , ta có: 2 2 2 2 2 2 2 1 4 1 4 . ( ) 2 7 2 1 ( ) 2 7 x x y y x y xy y y x y x y x x y y  + + + =   + + + =  ⇔   + = + + +   + − =   2 1 , x u v x y y + = = + ta có hệ: 2 2 4 4 3, 1 2 7 2 15 0 5, 9 u v u v v u v u v v v u + = = − = =    ⇔ ⇔    − = + − = = − =    +) Với 3, 1v u= = ta có hệ: 2 2 2 1, 2 1 1 2 0 2, 5 3 3 3 x y x y x y x x x y x y y x y x = =    + = + = + − =  ⇔ ⇔ ⇔     = − = + = = − = −     . +) Với 5, 9v u= − = ta có hệ: 2 2 2 1 9 1 9 9 46 0 5 5 5 x y x y x x x y y x y x    + = + = + + = ⇔ ⇔    + = − = − − = − −    , hệ này vô nghiệm. KL: Vậy hệ đã cho có hai nghiệm: ( ; ) {(1; 2), ( 2; 5)}.= −x y Câu Phần Tính ( ) ( ) 3 3 6 6 3 2 6 cot cot 2 sinx sinx cos sin xsin 4 cot 2 sin x 1 cot x x I dx dx x x x dx x π π π π π π π = = +   +  ÷   = + ∫ ∫ ∫ Đặt 1+cotx=t 2 1 sin dx dt x ⇒ = − Khi 3 1 1 3; 6 3 3 x t x t π π + = ⇔ = + = ⇔ = V y ậ ( ) 3 1 3 1 3 1 3 3 1 3 1 2 2 2 ln 2 ln 3 3 t I dt t t t + + + + −   = = − = −  ÷   ∫ Gi H, H l tõm ca cỏc tam giỏc u ABC, ABC. Gi I, I l trung im ca AB, AB. Ta cú: ( ) ( ) ( ) ' ' ' ' ' ' AB IC AB CHH ABB A CII C AB HH Suy ra hỡnh cu ni tip hỡnh chúp ct ny tip xỳc vi hai ỏy ti H, H v tip xỳc vi mt bờn (ABBA) ti im Gi x l cnh ỏy nh, theo gi thit 2x l cnh ỏy ln. Ta cú: 1 3 1 3 ' ' ' ' ' ; 3 6 3 3 x x I K I H I C IK IH IC= = = = = = Tam giỏc IOI vuụng O nờn: 2 2 2 2 3 3 ' . . 6r 6 3 x x I K IK OK r x= = = Th tớch hỡnh chúp ct tớnh bi: ( ) ' . ' 3 h V B B B B= + + Trong ú: 2 2 2 2 2 4x 3 3 3r 3 3 6r 3; ' ; 2r 4 4 2 x B x B h= = = = = = T ú, ta cú: 2 2 3 2 2 2r 3r 3 3r 3 21r . 3 6r 3 6r 3. 3 2 2 3 V ữ = + + = ữ Nhận xét : 10x 48 2 ++ x = 2(2x+1) 2 +2(x 2 +1) Phơng trình tơng đơng với : 2 ( 02) 1 12 () 1 12 2 2 2 =+ + + + + x x m x x . Đặt t x x = + + 1 12 2 Điều kiện : -2< t 5 . Rút m ta có: m= t t 22 2 + Lập bảng biến thiên của hàm số trên ( ] 5,2 , ta có kết quả của m để phơng trình có hai nghiệm phân biệt là: 5 12 4 < m VIa 1 Điểm ( ) : 1 0 ;1C CD x y C t t∈ + − = ⇒ − . Suy ra trung điểm M của AC là 1 3 ; 2 2 t t M + −    ÷   . ( ) 1 3 : 2 1 0 2 1 0 7 7;8 2 2 t t M BM x y t C + −   ∈ + + = ⇒ + + = ⇔ = − ⇒ −  ÷   Từ A(1;2), kẻ : 1 0AK CD x y⊥ + − = tại I (điểm K BC∈ ). Suy ra ( ) ( ) : 1 2 0 1 0AK x y x y− − − = ⇔ − + = . Tọa độ điểm I thỏa hệ: ( ) 1 0 0;1 1 0 x y I x y + − =  ⇒  − + =  . Tam giác ACK cân tại C nên I là trung điểm của AK ⇒ tọa độ của ( ) 1;0K − . Đường thẳng BC đi qua C, K nên có phương trình: 1 4 3 4 0 7 1 8 x y x y + = ⇔ + + = − + 2 Gọi (P) là mặt phẳng đi qua đường thẳng ∆ , thì ( ) //( )P D hoặc ( ) ( )P D⊃ . Gọi H là hình chiếu vuông góc của I trên (P). Ta luôn có IH AH⊥ . Mặt khác ( ) ( ) ( ) ( ) ( ) ( ) , ,d D P d I P IH H P  = =   ∈   Trong mặt phẳng ( ) P , IH IA≤ ; do đó axIH = IA H Am ⇔ ≡ . Lúc này (P) ở vị trí (P 0 ) vuông góc với IA tại A. Vectơ pháp tuyến của (P 0 ) là ( ) 6;0; 3n IA= = − r uur , cùng phương với ( ) 2;0; 1v = − r . Phương trình của mặt phẳng (P 0 ) là: ( ) ( ) 2 4 1. 1 2x - z - 9 = 0x z− − + = . + Ta cã : 1 (*) 2 1 xy x y xy x y + + ≥ + + + . ThËt vËy: ( ) ( ) ( ) ( ) (*) 1 1 2xy x y x y xy⇔ + + + ≥ + + ( ) ( ) 1 1 0x y⇔ − − ≥ §óng víi x,y thuéc [ ] 0;1 Khi ®ã 1 1 1 1(1) 2 1 1 1 xy x y xy x y x y x y + + + ≥ + = + + + + + + + + V× [ ] ; 0;1 0 1x y xy∈ ⇒ ≤ ≤ 2 1 2 1(2) 1 xy xy ⇒ + ≤ ⇒ ≥ + +Tong tù: ( ) ( ) 3 3 9 0 2 1 9 1(3) 1 x y x y x y ≤ + ≤ ⇒ + + ≤ ⇒ ≥ + + Tõ (1);(2);(3) Ta cã : 3P ≥ VËy , MinP=3 khi x=y=1 + Gọi tâm và bán kính của (C), (C’) lần lượt là I(1; 1) , I’(-2; 0) và 1, ' 3R R= = , đường thẳng (d) qua M có phương trình 2 2 ( 1) ( 0) 0 0, ( 0)(*)a x b y ax by a a b− + − = ⇔ + − = + ≠ . + Gọi H, H’ lần lượt là trung điểm của AM, BM. Khi đó ta có: 2 2 2 2 2 2 ' ' 'MA MB IA IH I A I H= ⇔ − = − ( ) ( ) 2 2 1 ( ; ) 4[9 ( '; ) ]d I d d I d⇔ − = − , .IA IH> ( ) ( ) 2 2 2 2 2 2 2 2 9 4 ( '; ) ( ; ) 35 4. 35 a b d I d d I d a b a b ⇔ − = ⇔ − = + + 2 2 2 2 2 2 36 35 36 a b a b a b − ⇔ = ⇔ = + Dễ thấy 0b ≠ nên chọn 6 1 6 = −  = ⇒  =  a b a . Kiểm tra điều kiện IA IH> rồi thay vào (*) ta có hai đường thẳng thoả mãn. 2 .Đờng thẳng d đi qua điểm )0;2;0(M và có vectơ chỉ phơng )1;1;1( u Đờng thẳng d đi qua điểm )5;3;2(' M và có vectơ chỉ phơng )1;1;2(' u . Mp )( phải đi qua điểm M và có vectơ pháp tuyến n vuông góc với u và 2 1 60cos)';cos( 0 ==un . Bởi vậy nếu đặt );;( CBAn = thì ta phải có : = ++ + =+ 2 1 6 2 0 222 CBA CBA CBA = += +++= += 02 )(632 22 222 CACA CAB CCAAA CAB Ta có 0)2)((02 22 =+= CACACACA . Vậy CA = hoặc CA =2 . Nếu CA = ,ta có thể chọn A=C=1, khi đó 2=B , tức là )1;2;1(=n và )( mp có phơng trình 0)2(2 =++ zyx hay 042 =++ zyx Nếu CA =2 ta có thể chọn 2,1 == CA , khi đó 1=B , tức là )2;1;1( =n và )( mp có phơng trình 02)2( = zyx hay 1,00 Vỡ a, b, c l ba cnh tam giỏc nờn: a b c b c a c a b + > + > + > . t ( ) , , , , 0 , , 2 2 a b c a x y a z x y z x y z y z x z x y + + = = = > + > + > + > . V trỏi vit li: 2 3 3 2 a b a c a VT a c a b a b c x y z y z z x x y + + = + + + + + + = + + + + + Ta cú: ( ) ( ) 2 2 z z x y z z x y z z x y x y z x y + > + + < + > + + + . Tng t: 2 2 ; . x x y y y z x y z z x x y z < < + + + + + + Do ú: ( ) 2 2 x y z x y z y z z x x y x y z + + + + < = + + + + + . Tc l: 1 1 2 2 3 3 2 3 3 b c a a b a c a b c a c a b + + + + < ữ + + + + + + . 3 b c a a b a c a b c a c a b + + + + < ữ + + + + + + Ht Kỳ thi thử đại học- cao đẳng năm 2010 Hớng dẫn chấm môn toán Cõu Phn Ni dung I (2,0) 1(1,0) Lm ỳng, cỏc bc theo S kho sỏt. . THI TH I HC, CAO NG NM 2010 Mụn: Toỏn A. Thi gian: 180 phỳt ( Khụng k giao ). PHN CHUNG CHO TT C CC TH SINH PHN CHUNG. biểu thức: ( ) 1 1 2 9 3 2 1 1 1 xy P xy x y xy x y + = + + + + + + + + + 2. Theo chng trỡnh nõng cao. Cõu VI.b (2 im) 1) Trong mt phng vi h ta Oxy cho ng trũn hai ng trũn 2 2 ( ): 2 2 1 0,C

Ngày đăng: 11/07/2014, 20:21

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan