BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi: TOÁN ĐỀ THAM KHẢO 8 Thời gian làm bài: 180 phút (Không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ THÍ SINH: Câu I: (2,0 điểm) Cho hàm số: y = x 3 – 3x 2 + mx (1). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số với m = 0. 2) Tìm tất cả các giá trị của tham số m để hàm số (1) có cực đại, cực tiểu và các điểm cực đại, cực tiểu của đồ thị hàm số đối xứng nhau qua đường thẳng (d): x – 2y – 5 = 0. Câu II: (2,0 điểm) 1) Giải hệ phương trình: 2 2 2 2 2 2 1 2 1 x y x y xy x x y xy xy y + + = + + + = + + 2) Giải phương trình: 3 3 1 3 sin cos 2cos sin 2 2 2 2 x x x x − = + ÷ Câu III: (1,0 điểm) Tính diện tích hình phẳng giới hạn bởi các đường: y = (e + 1)x và y = (1 + e x )x. Câu IV: (1,0 điểm) Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a. Gọi M và N lần lượt là các trung điểm của các cạnh SB và SC. Tính theo a thể tích khối chóp S.AMN, biết rằng mặt phẳng (AMN) vuông góc với mặt phẳng (SBC). Câu V: (1,0 điểm) Cho a, b, c là những số thực dương thỏa mãn: a 2 + b 2 + c 2 = 3. Chứng minh: 2 2 2 1 1 1 4 4 4 7 7 7a b b c c a a b c + + ≥ + + + + + + + + PHẦN RIÊNG: Thí sinh chỉ được làm một trong hai phần (phần A hoặc B). 1. Theo chương trình Chuẩn. Câu VIa: (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1 ; 2), B(1 ; 6) đường tròn (C) có phương trình: (x – 2) 2 + (y – 1) 2 = 2. Gọi V (A, k) là phép vị tự tâm A tỉ số k sao cho V (A, k) biến đường tròn (C) thành đường tròn (C’) đi qua B. Tính diện tích ảnh của tam giác OAB qua V (A, k) . 2. Trong không gian Oxyz cho hai đường thẳng 1 1 2 ( ) : 2 1 1 x y z d − + = = − và 2 1 2 ( ) 1 3 x t d y t z = + = + = Viết phương trình đường thẳng (d) vuông góc với mặt phẳng (P): 7x + y – 4z = 0 và cắt hai đường thẳng (d 1 ), (d 2 ). Câu VIIa: (1,0 điểm) Cho khai triển: 2 0 1 2 1 2 3 n n n x a a x a x a x + = + + + + ÷ .Tìm số lớn nhất trong các số a 0 , a 1 , a 2 , …, a n biết rằng n là số tự nhiên thỏa mãn: 2 2 2 1 1 1 2 11025 n n n n n n n n n n C C C C C C − − − − + + = . 2. Theo chương trình Nâng cao. Câu VIb: (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy. Cho hình chữ nhật ABCD có diện tích bằng 12, tâm I là giao điểm của đường thẳng (d 1 ): x – y – 3 = 0 và (d 2 ): x + y – 6 = 0. Trung điểm của một cạnh là giao điểm của (d 1 ) với trục Ox. Tìm tọa độ các đỉnh hình chữ nhật. 2. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1 ; 4 ; 2), B(–1 ; 2 ; 4) và đường thẳng 1 2 ( ) : 1 1 2 x y z − + ∆ = = . Tìm tọa độ điểm M thuộc đường thẳng (∆) sao cho MA 2 + MB 2 nhỏ nhất. Câu VIIb: (1,0 điểm) Giải bất phương trình: 2 4 ( 11).2 8( 3) 0. log 2 x x x x x + − − − ≥ − HẾT Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:………………………………… Số báo danh:…………………………… . BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi: TOÁN ĐỀ THAM KHẢO 8 Thời gian làm bài: 180 phút (Không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ THÍ SINH: Câu. 3x 2 + mx (1). 1) Khảo sát sự biến thi n và vẽ đồ thị hàm số với m = 0. 2) Tìm tất cả các giá trị của tham số m để hàm số (1) có cực đại, cực tiểu và các điểm cực đại, cực tiểu của đồ thị hàm số. giới hạn bởi các đường: y = (e + 1)x và y = (1 + e x )x. Câu IV: (1,0 điểm) Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a. Gọi M và N lần lượt là các trung điểm của các cạnh SB và SC.