1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ TOÁN HSG 12TỈNH BÌNH ĐỊNH 09-2010

1 348 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 34,5 KB

Nội dung

1. Đề thi hsg khối 12 Tỉnh Bình Định năm học 2009-2010 Bài 1: (2,5 điểm) Cho hàm số Tìm m để f(x) luôn nhận giá trị dương với mọi x Bài 2 (2,5 điểm) Tìm tất cả các hàm số f(x) xác định trên R thoả: (với mọi x,y thuộc R) Bài 3: (3,0 điểm) Chứng minh rằng với mỗi số nguyên dương n cho trước thì phương trình có đúng một nghiệm thực. Gọi nghiệm đó là . Tính Bài 4: (3,0 điểm) Giải phương trình: Bài 5: (3,0 điểm) Cho tam giác ABC có BC=a, CA=b, AB=c. M là điểm tuỳ ý bên trong tam giác ABC. CMR: Bài 6: (4,0 điểm) Cho hình chóp tứ giác đều SABCD. Gọi R và r lần lượt là bán kính hình cầu ngoại tiếp và nội tiếp hình chóp SABCD. Tìm giá trị nhỏ nhất của Bài 7: (2,0 điểm) Cho n là số nguyên dương sao cho chia hết cho . CMR: Nguồn: MathScope.ORG . 1. Đề thi hsg khối 12 Tỉnh Bình Định năm học 2 009-2010 Bài 1: (2,5 điểm) Cho hàm số Tìm m để f(x) luôn nhận giá trị dương với mọi x Bài 2 (2,5 điểm) Tìm tất cả các hàm số f(x) xác định trên. CA=b, AB=c. M là điểm tuỳ ý bên trong tam giác ABC. CMR: Bài 6: (4,0 điểm) Cho hình chóp tứ giác đều SABCD. Gọi R và r lần lượt là bán kính hình cầu ngoại tiếp và nội tiếp hình chóp SABCD. Tìm

Ngày đăng: 10/07/2014, 21:00

TỪ KHÓA LIÊN QUAN

w