1. Trang chủ
  2. » Giáo án - Bài giảng

Tiết kiểm tra

4 121 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 163,5 KB

Nội dung

kim tra hc k I Nm hc 2008 - 2009 Môn Toán 11 nâng cao - Thời gian 90' B i 1(3đ) : Cho phơng trình: 4cos 2 x + 2(m - 2)sinx - m - 1 = 0 1. Giải phơng trình khi m = 2 2. Xác định m để phơng trình có đúng 2 nghiệm trong khoảng (0; ). Bài 2(3đ): 1. Một tổ có 12 học sinh trong đó có 3 bạn nữ. Cần chia tổ đó thành ba nhóm, mỗi nhóm 4 học sinh. a. Có bao nhiêu cách chia. b. Tính xác suất để nhóm nào cũng có nữ. 2. Tìm số hạng không chứa a (với a > 0) trong khai triển nhị thức: n a a aa ).( 3 3 2 + Biết hệ số của số hạng thứ ba trong khai triển bằng 36. Bài 3(2đ): Trong mf Oxy cho A(1; 1) và đt (d): y = x - 1. 1. Lập phơng trình đờng thẳng (d') đối xứng với đt (d) qua điểm A. 2. Cho B(2; 3). Tìm toạ độ điểm M trên (d) sao cho MA + MB nhỏ nhất. Bài 4(2đ): Cho tứ diện SABC. Gọi I, H lần lợt là trung điểm SA, AB. K là điểm bất kỳ trên cạnh SC. ( không trùng với S, C). 1. Tìm thiết diện của tứ diện SABC với mf (IHK). 2. Gọi J là trung điểm của IH, M là giao điểm của KJ với (ABC). Tìm tập hợp các điểm K khi M di động. kim tra hc k I Nm hc 2008 - 2009 Môn Toán 11 nâng cao - Thời gian 90' B i 1(3đ) : Cho phơng trình: 4cos 2 x + 2(m - 2)sinx - m - 1 = 0 1. Giải phơng trình khi m = 2 2. Xác định m để phơng trình có đúng 2 nghiệm trong khoảng (0; ). Bài 2(3đ): 1. Một tổ có 12 học sinh trong đó có 3 bạn nữ. Cần chia tổ đó thành ba nhóm, mỗi nhóm 4 học sinh. a. Có bao nhiêu cách chia. b. Tính xác suất để nhóm nào cũng có nữ. 2. Tìm số hạng không chứa a (với a > 0) trong khai triển nhị thức: n a a aa ).( 3 3 2 + Biết hệ số của số hạng thứ ba trong khai triển bằng 36. Bài 3(2đ): Trong mf Oxy cho A(1; 1) và đt (d): y = x - 1. 1. Lập phơng trình đờng thẳng (d') đối xứng với đt (d) qua điểm A. 2. Cho B(2; 3). Tìm toạ độ điểm M trên (d) sao cho MA + MB nhỏ nhất. Bài 4(2đ): Cho tứ diện SABC. Gọi I, H lần lợt là trung điểm SA, AB. K là điểm bất kỳ trên cạnh SC. ( không trùng với S, C). 1. Tìm thiết diện của tứ diện SABC với mf (IHK). 2. Gọi J là trung điểm của IH, M là giao điểm của KJ với (ABC). Tìm tập hợp các điểm K khi M di động. kim tra hc k I Nm hc 2008 - 2009 Môn Toán 11 Cơ bản - Thời gian 90' B i 1(3đ) : Cho phơng trình: 4sin 2 x - 2(m - 2)sinx + m - 3 = 0 1. Giải phơng trình khi m = 2 2. Xác định m để phơng trình có đúng 2 nghiệm trong khoảng (0; 2 ). Bài 2(3đ): 1. Tổ của Nam có 12 bạn . Cần chọn 2 bạn để làm tổ trởng và tổ phó ( bạn nào cũng có thể làm đ- ợc cán bộ). a. Có bao nhiêu cách chọn. b. Tính xác suất để Nam đợc chọn. 2. Tìm số hạng không chứa x trong khai triển nhị thức: 16 3 ) 1 ( x x + Bài 3(1,5đ): Trong mf Oxy cho A(1; 1) và đt (d): y = x - 1. Lập phơng trình đờng thẳng (d' ) đối xứng với đt (d) qua điểm A. Bài 4(2,5đ): Cho tứ diện SABC. Gọi I, H lần lợt là trung điểm SA, AB. K là điểm trên cạnh SC sao cho KC = 2 SK. 1. Tìm thiết diện của tứ diện SABC với mf (IHK). 2. Gọi E, F là 2 điểm lần lợt thuộc miền trong của 2 tam giác SAC và SAB. Tìm giao điểm của EF với mf ( IHK ). kim tra hc k I Nm hc 2008 - 2009 Môn Toán 11 Cơ bản - Thời gian 90' B i 1(3đ) : Cho phơng trình: 4sin 2 x - 2(m - 2)sinx + m - 3 = 0 1. Giải phơng trình khi m = 2 2. Xác định m để phơng trình có đúng 2 nghiệm trong khoảng (0; 2 ). Bài 2(3đ): 1. Tổ của Nam có 12 bạn . Cần chọn 2 bạn để làm tổ trởng và tổ phó ( bạn nào cũng có thể làm đ- ợc cán bộ). a. Có bao nhiêu cách chọn. b. Tính xác suất để Nam đợc chọn. 2. Tìm số hạng không chứa x trong khai triển nhị thức: 16 3 ) 1 ( x x + Bài 3(1,5đ): Trong mf Oxy cho A(1; 1) và đt (d): y = x - 1. Lập phơng trình đờng thẳng (d' ) đối xứng với đt (d) qua điểm A. Bài 4(2,5đ): Cho tứ diện SABC. Gọi I, H lần lợt là trung điểm SA, AB. K là điểm trên cạnh SC sao cho KC = 2 SK. 1. Tìm thiết diện của tứ diện SABC với mf (IHK). 2. Gọi E, F là 2 điểm lần lợt thuộc miền trong của 2 tam giác SAC và SAB. Tìm giao điểm của EF với mf ( IHK ). Đáp án Ktra HKI Toán 11 NC Bài 1(3đ): (1) <=> 4sin 2 x - 2(m - 2)sinx + m - 3 = 0 0,5đ 1. m = 2 ta có: 4sin 2 x = 1 <=> sinx = 1/2 ; sinx = -1/2 0,5đ <=> x = + k 6 1đ 2. (1) <=> sinx = 1/2 (a) hoặc sinx = 2 3m (b) 0,5đ Pt (a) có 2 nghiệm trong (0; ) vậy (1) có đúng 2 nghiệm trong (0; ) khi và chỉ khi: 2 3m = 1/2 hoặc 2 3m > 1 hoặc 2 3m 0 0,25đ <=> m = 4 V m > 5 V m 3 0,25đ Bài 2(3đ): 1a/ Chọn nhóm thứ nhất có 4 12 C cách, sau đó có 4 8 C cách chọn nhóm thứ hai, còn lại 1 cách chọn nhóm còn lại. 0,25đ Vậy có 4 12 C . 4 8 C = 34650 cách. 0,25đ Với mỗi cách chia đó, nếu ta hoán vị các nhóm với nhau thì ta vẫn đợc cùng cách chia đó, vậy số cách chia cần tìm là: !3 34650 = 5775 cách 0,25đ 1b/ Chọn 3 nam và 1 nữ cho nhóm thứ nhất có: 1 3 3 9 .CC cách 0,25đ Chọn 3 nam và 1 nữ cho nhóm thứ hai có: 1 2 3 6 .CC cách, còn lại 1 cách cho nhóm ba. Vậy có 1 3 3 9 .CC . 1 2 3 6 .CC = 10080 cách chọn mà nhóm nào cũng có nữ. 0,25đ Tơng tự trên, số cách chia để nhóm nào cũng có nữ là: !3 10080 = 1680 cách Xác suất cần tìm là: 5775 1680 0,29. 0,25đ 2. 2 n C = 36 <=> n 2 - n - 72 = 0 <=> n = 9 ( n = -8 loại) 1đ 3 963 9 3 9 3 2 91 .).().( k kkkk k aC a a aaCT + == . Để không phụ thuộc a: 63 - 9k = 0 <=> k = 7. Số hạng cần tìm là: 7 9 C = 36. 0,5đ Bài 3(2đ): 1. M'(x'; y') (d), M(x; y) đối xứng với M' qua A <=> x' = 2- x và y' = 2 - y 0,75đ M' (d) <=> 2 - y = 2 - x - 1 <=> y = x + 1. 0,75đ 2. A, B cùng phía đ/v (d). Gọi I là trung điểm của AB, ta có: MBMA + = 2 MI vậy điều kiện bài toán thoả mãn khi và chỉ khi MI vuông góc (d) 0,25 Ta phải có: M(m, m - 1) (d) và MI a = (1, 1) là VTCP của (d) Từ đó: MI . a = 0 <=> m = 9/4 . Vậy M(9/4; 5/4) 0,25 Bài 4(2 ) : 1. IH // SB => (IHK) (SBC) = KE // SB ( E BC) 0,75đ Vậy (IHK) cắt các mặt SAB, ABC, ABC, SAC theo các đoạn gt: IH, HE, EK, KI nên thiết diện cần tìm là tứ giác IHEK. 0,75đ 2. J' = SJ AB => M (SJ'C) (ABC) => M CJ' 0,25đ Khi K S <=> M J'; K C <=> M C. Gi K' l im trên SC : JK' // J'C => không tồn tại M Tập hợp cần tìm là đoạn thẳng SC bỏ đi 3 điểm S, C, K'. 0,25đ Đáp án Ktra HKI Toán 11 CB Bài 1(3đ): 1. m = 2 ta có: 4sin 2 x = 1 <=> sinx = 1/2 ; sinx = -1/2 1đ <=> x = + k 6 1đ 2. (1) <=> sinx = 1/2 (a) Hoặc sinx = 2 3m (b) 0,5đ (a) có 1 nghiệm trong (0; 2 ) vậy (1) có đúng 2 nghiệm trong (0; 2 ) khi và chỉ khi: 0 < 2 3m < 1 và 2 3m 1/2 <=> 3 < m < 5 và m 4 0,5đ Bài 2(3đ): 1a. Chọn tổ trởng và tổ phó, tức là tìm 2 phần tử STT trong 12 phần tử. 0,5đ Vì vậy, số cách chọn là: 2 12 A = 132 0,5đ 1b. Chọn 1 bạn trong 11 bạn ( trừ Nam) có 11 cách chọn. 0,25đ Mỗi cách chọn,cùng Nam có 2 cách xếp TT, TP 0,25đ Vậy có 2. 11 = 22 cách chọn trong đó có Nam. Từ đó XS cần tìm là: 132 22 = 6 1 0,5đ 2. Số hạng thứ k+1 là: kkk k x xCT + = 16 3 161 ) 3 ( = )16(3 16 kkk xC 0,5đ để không phụ thuộc x, ta phải có: x - 3( 16 - k) = 0 <=> k = 12. Vậy số hạng cần tìm là: 12 16 C = 1820 0,5đ Bài 3( 1,5đ): M'(x'; y') (d), M(x; y) đối xứng với M' qua A <=> x' = 2- x và y' = 2 - y 0,75đ M' (d) <=> 2 - y = 2 - x - 1 <=> y = x + 1. 0,75đ Bài 4(2,5đ): 1. M = IK AC 0,5đ L = MH BC 0,5đ => thiết diện cần tìm là tứ giác IHLK. 0,5đ 2. E' = SE AC; F' = SF AB E'F' HL = P; SE' IK = Q 0,5đ EF PQ = O => EF (IHK) = O 0,5đ . kim tra hc k I Nm hc 2008 - 2009 Môn Toán 11 nâng cao - Thời gian 90' B i 1(3đ) : Cho phơng trình:. trung điểm của IH, M là giao điểm của KJ với (ABC). Tìm tập hợp các điểm K khi M di động. kim tra hc k I Nm hc 2008 - 2009 Môn Toán 11 nâng cao - Thời gian 90' B i 1(3đ) : Cho phơng trình:. trung điểm của IH, M là giao điểm của KJ với (ABC). Tìm tập hợp các điểm K khi M di động. kim tra hc k I Nm hc 2008 - 2009 Môn Toán 11 Cơ bản - Thời gian 90' B i 1(3đ) : Cho phơng trình:

Ngày đăng: 10/07/2014, 13:00

Xem thêm

TỪ KHÓA LIÊN QUAN

w