1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Cellular Respiration: Harvesting Chemical Energy - Chapter 9 potx

91 1,3K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 91
Dung lượng 8,42 MB

Nội dung

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Chapter 9 Cellular Respiration: Harvesting Chemical Energy Overview: Life Is Work • Living cells require energy from outside sources • Some animals, such as the giant panda, obtain energy by eating plants, and some animals feed on other organisms that eat plants Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Fig. 9-1 • Energy flows into an ecosystem as sunlight and leaves as heat • Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration • Cells use chemical energy stored in organic molecules to regenerate ATP, which powers work Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic molecules + O 2 ATP powers most cellular work Heat energy ATP Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels • Several processes are central to cellular respiration and related pathways Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Catabolic Pathways and Production of ATP • The breakdown of organic molecules is exergonic • Fermentation is a partial degradation of sugars that occurs without O 2 • Aerobic respiration consumes organic molecules and O 2 and yields ATP • Anaerobic respiration is similar to aerobic respiration but consumes compounds other than O 2 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings • Cellular respiration includes both aerobic and anaerobic respiration but is often used to refer to aerobic respiration • Although carbohydrates, fats, and proteins are all consumed as fuel, it is helpful to trace cellular respiration with the sugar glucose: C 6 H 12 O 6 + 6 O 2 → 6 CO 2 + 6 H 2 O + Energy (ATP + heat) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Redox Reactions: Oxidation and Reduction • The transfer of electrons during chemical reactions releases energy stored in organic molecules • This released energy is ultimately used to synthesize ATP Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings The Principle of Redox • Chemical reactions that transfer electrons between reactants are called oxidation-reduction reactions, or redox reactions • In oxidation, a substance loses electrons, or is oxidized • In reduction, a substance gains electrons, or is reduced (the amount of positive charge is reduced) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings [...]... ADP Glucose Glucose-6-phosphate ATP 1 Hexokinase ADP Glucose-6-phosphate Fig 9- 9 -2 Glucose ATP 1 Hexokinase ADP Glucose-6-phosphate 2 Phosphoglucoisomerase Fructose-6-phosphate Glucose-6-phosphate 2 Phosphoglucoisomerase Fructose-6-phosphate Fig 9- 9 -3 Glucose ATP 1 Hexokinase ADP Fructose-6-phosphate Glucose-6-phosphate 2 Phosphoglucoisomerase ATP 3 Phosphofructokinase Fructose-6-phosphate ATP 3 Phosphofructokinase... Fructose1, 6-bisphosphate Fructose1, 6-bisphosphate Fig 9- 9 -4 Glucose ATP 1 Hexokinase ADP Glucose-6-phosphate 2 Phosphoglucoisomerase Fructose1, 6-bisphosphate 4 Fructose-6-phosphate ATP Aldolase 3 Phosphofructokinase ADP 5 Isomerase Fructose1, 6-bisphosphate 4 Aldolase 5 Isomerase Dihydroxyacetone phosphate Dihydroxyacetone phosphate Glyceraldehyde3-phosphate Glyceraldehyde3-phosphate Fig 9- 9 -5 2 NAD+... dehydrogenase 2 Pi 2 1, 3-Bisphosphoglycerate Glyceraldehyde3-phosphate 2 NAD+ 2 NADH 6 Triose phosphate dehydrogenase 2 Pi + 2 H+ 2 1, 3-Bisphosphoglycerate Fig 9- 9 -6 2 NAD+ 2 NADH + 2 H+ 6 Triose phosphate dehydrogenase 2 Pi 2 1, 3-Bisphosphoglycerate 2 ADP 7 Phosphoglycerokinase 2 ATP 2 1, 3-Bisphosphoglycerate 2 ADP 2 3-Phosphoglycerate 2 ATP 2 7 Phosphoglycerokinase 3-Phosphoglycerate ... investment phase – Energy payoff phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Fig 9- 8 Energy investment phase Glucose 2 ADP + 2 P 2 ATP used 4 ATP formed Energy payoff phase 4 ADP + 4 P 2 NAD+ + 4 e– + 4 H+ 2 NADH + 2 H+ 2 Pyruvate + 2 H2O Net Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e– + 4 H+ 2 Pyruvate + 2 H2O 2 ATP 2 NADH + 2 H+ Fig 9- 9 -1 Glucose ATP 1... 9- 6 -1 Electrons carried via NADH Glycolysis Pyruvate Glucose Cytosol ATP Substrate-level phosphorylation Fig 9- 6 -2 Electrons carried via NADH and FADH2 Electrons carried via NADH Citric acid cycle Glycolysis Pyruvate Glucose Mitochondrion Cytosol ATP ATP Substrate-level phosphorylation Substrate-level phosphorylation Fig 9- 6 -3 Electrons carried via NADH and FADH2 Electrons carried via NADH Citric acid... electrons down the chain in an energyyielding tumble • The energy yielded is used to regenerate ATP Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Fig 9- 5 Free energy, G t spor tran tron ain ch Explosive release of heat and light energy + 2H (from food via NADH) Controlled release of + – 2H + 2e energy for synthesis of ATP ATP 1 /2 O2 Elec Free energy, G H2 + 1/2 O2 ATP... (b) Cellular respiration /2 O2 The Stages of Cellular Respiration: A Preview • Cellular respiration has three stages: – Glycolysis (breaks down glucose into two molecules of pyruvate) – The citric acid cycle (completes the breakdown of glucose) – Oxidative phosphorylation (accounts for most of the ATP synthesis) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Fig 9- 6 -1 ... substrate-level phosphorylation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Fig 9- 7 Enzyme Enzyme ADP P Substrate + Product ATP Concept 9. 2: Glycolysis harvests chemical energy by oxidizing glucose to pyruvate • Glycolysis (“splitting of sugar”) breaks down glucose into two molecules of pyruvate • Glycolysis occurs in the cytoplasm and has two major phases: – Energy. .. Benjamin Cummings Fig 9- 3 Reactants Products becomes oxidized becomes reduced Methane (reducing agent) Oxygen (oxidizing agent) Carbon dioxide Water Oxidation of Organic Fuel Molecules During Cellular Respiration • During cellular respiration, the fuel (such as glucose) is oxidized, and O2 is reduced: Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Fig 9- UN3 becomes oxidized... Substrate-level phosphorylation Substrate-level phosphorylation Oxidative phosphorylation • The process that generates most of the ATP is called oxidative phosphorylation because it is powered by redox reactions BioFlix: Cellular Respiration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings • Oxidative phosphorylation accounts for almost 90 % of the ATP generated by cellular . Sharp Chapter 9 Cellular Respiration: Harvesting Chemical Energy Overview: Life Is Work • Living cells require energy from outside sources • Some animals, such as the giant panda, obtain energy. Cummings Fig. 9- 2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic molecules + O 2 ATP powers most cellular work Heat energy ATP Concept 9. 1:. Cummings Fig. 9- 1 • Energy flows into an ecosystem as sunlight and leaves as heat • Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration • Cells use chemical energy

Ngày đăng: 09/07/2014, 19:20

TỪ KHÓA LIÊN QUAN