PHƯƠNG TRÌNH BẬC HAI ax 2 + bx + c = 0 (a ≠0) (1) 1.Các dạng và cách giải Dạng 1: c = 0 khi đó ( ) ( ) 2 x 0 1 ax bx 0 x ax+b 0 b x a = ⇔ + = ⇔ = ⇔ = − Dạng 2: b = 0 khi đó ( ) 2 2 c 1 ax c 0 x a − ⇔ + = ⇔ = -Nếu c 0 a − ≥ thì c x a − = ± . -Nếu c 0 a − < thì phương trình vô nghiệm. Dạng 3: Tổng quát CÔNG THỨC NGHIỆM TỔNG QUÁT CÔNG THỨC NGHIỆM THU GỌN 2 b 4ac∆ = − 2 ' b' ac∆ = − 0∆ > : phương trình có 2 nghiệm phân biệt 1 2 b b x ; x 2a 2a − + ∆ − − ∆ = = ' 0∆ > : phương trình có 2 nghiệm phân biệt 1 2 b' ' b' ' x ; x a a − + ∆ − − ∆ = = 0∆ = : phương trình có nghiệm kép 1 2 b x x 2a − = = ' 0∆ = : phương trình có nghiệm kép 1 2 b' x x a − = = 0∆ < : phương trình vô nghiệm ' 0∆ < : phương trình vô nghiệm 3.Hệ thức Viet và ứng dụng -Nếu phương trình ax 2 + bx + c = 0 (a ≠ 0) có hai nghiệm x 1 , x 2 thì: 1 2 1 2 b S x x a c P x x a = + = − = = -Nếu có hai số u và v sao cho u v S uv P + = = ( ) 2 S 4P ≥ thì u, v là hai nghiệm của phương trình x 2 – Sx + P = 0. -Nếu a + b + c = 0 thì phương trình có nghiệm là x 1 = 1; x 2 = c a . -Nếu a – b+c = 0 thì phương trình có nghiệm là x 1 =-1; x 2 = c a − . 4.Điều kiện có nghiệm của phương trình ax 2 + bx + c = 0 (a ≠0) -(1) có 2 nghiệm 0∆ ≥ ; có 2 nghiệm phân biệt 0∆ > . -(1) có 2 nghiệm cùng dấu 0 P 0 ∆ ≥ > -(1) có 2 nghiệm dương 0 P 0 S 0 ∆ ≥ > > -(1) có 2 nghiệm âm 0 P 0 S 0 ∆ ≥ > < -(1) có 2 nghiệm trái dấu ac < 0 hoặc P < 0. (1) vô nghiệm khi ∆ < 0 (1) có hai nghiệm đối nhau khi < = 0 0 P S Với P = x 1 .x 2 = c a và S = x 1 + x 2 = a b− 5.Tìm điều kiện của tham số để 2 nghiệm của phương trình thỏa mãn điều kiện nào đó. 2 2 1 2 1 2 1 2 2 2 3 3 1 2 1 2 1 1 a) x x ; b) x x m; c) n x x d) x x h; e) x x t; α + β = γ + = + = + ≥ + = Trong những trường hợp này cần sử dụng hệ thức Viet và phương pháp giải hệ phương trình. LƯU Ý : 1/ A 2 + B 2 = (A + B) 2 – 2AB 2/ A 3 + B 3 = (A + B) 3 – 3AB(A + B) 3/ A 3 - B 3 = (A – B) 3 + 3AB(A – B) 4/ AB BA BA + =+ 11 5/ (A – B ) 2 = (A + B) 2 – 4AB HÀM SỐ - ĐỒ THỊ 1.Tính chất của hàm số bậc nhất y = ax + b (a ≠0) -Đồng biến khi a > 0; nghịch biến khi a < 0. -Đồ thị là đường thẳng nên khi vẽ chỉ cần xác định hai điểm thuộc đồ thị. +Trong trường hợp b = 0, đồ thị hàm số luôn đi qua gốc tọa độ. +Trong trường hợp b ≠ 0, đồ thị hàm số luôn cắt trục tung tại điểm b. -Đồ thị hàm số luôn tạo với trục hoành một góc α , mà tg aα = . -Đồ thị hàm số đi qua điểm A(x A ; y A ) khi và chỉ khi y A = ax A + b. 2.Vị trí của hai đường thẳng trên mặt phẳng tọa độ Xét hai đường thẳng: (d 1 ): y = a 1 x + b 1 ; (d 2 ): y = a 2 x + b 2 với a 1 ≠ 0; a 2 ≠ 0. -Hai đường thẳng song song khi a 1 = a 2 và b 1 ≠ b 2 . -Hai đường thẳng trùng nhau khi a 1 = a 2 và b 1 = b 2 . -Hai đường thẳng cắt nhau khi a 1 ≠ a 2 . +Nếu b 1 = b 2 thì chúng cắt nhau tại b 1 trên trục tung. +Nếu a 1 .a 2 = -1 thì chúng vuông góc với nhau. 3.Tính chất của hàm số bậc hai y = ax 2 (a ≠ 0) -Nếu a > 0 thì hàm số nghịch biến khi x < 0,đồng biến khi x > 0. Nếu a < 0 thì hàm số đồng biến khi x < 0, nghịch biến khi x > 0. -Đồ thị hàm số là một Parabol luôn đi qua gốc tọa độ: +) Nếu a > 0 thì parabol có điểm thấp nhất là gốc tọa độ. +) Nếu a < 0 thì Parabol có điểm cao nhất là gốc tọa độ. -Đồ thị hàm số đi qua điểm A(x A ; y A ) khi và chỉ khi y A = ax A 2 . 4.Vị trí của đường thẳng và parabol *Xét đường thẳng x = m và parabol y = ax 2 : +) luôn có giao điểm có tọa độ là (m; am 2 ). *Xét đường thẳng y = m và parabol y = ax 2 : +) Nếu m = 0 thì có 1 giao điểm là gốc tọa độ. +) Nếu am > 0 thì có hai giao điểm có hoành độ là x = m a ± +) Nếu am < 0 thì không có giao điểm. -Xét đường thẳng y = mx + n ( m ≠ 0) và parabol y = ax 2 : +) Hoành độ giao điểm của chúng là nghiệm của phương trình hoành độ ax 2 = mx + n. (1) * Đường thẳng và parabol cắt nhau khi ∆ > 0 * Đường thẳng và parabol tiếp xúc nhau khi ∆ = 0 * Đường thẳng và parabol không giao nhau khi ∆ < 0 5. GIẢI PHƯƠNG TRÌNH TRÙNG PHƯƠNG ax 4 + bx 2 + c = 0 (1) Đặt t = x 2 điều kiện t ≥ 0 ta có phương trình at 2 + bt + c = 0 (2) • Nếu pt (2) vô nghiệm thì pt (1) vô nghiệm • Nếu pt (2) có hai nghiệm âm thì pt (1) vô nghiệm • Nếu pt (2) có 1 nghiệm dương thì pt (1) có hai nghiệm đôi nhau • Nếu pt (2) có 2 nghiệm dương thì pt (1) có bốn nghiệm ( hay hai cặp nghiệm đối nhau) 6. PHƯƠNG TRÌNH CHƯA ẨN Ở MẪU: B1: Tìm điều kiện xác định của phương trình B2: Phân tích mẫu thức về dạng tích, qui đồng mẫu thức hai vế rồi khử mẫu B3: giải pt vừa nhận được B4: trong các giá trị vừa tìm được của ẩn, loại các giá trị không thỏa mãn điều kiện, các giá trị thỏa mãn là nghiệm của pt đã cho. 7. PT ĐƯA VỀ DẠNG TÍCH : = = ⇔= 0B 0A 0 A.B . C.MT S BI TP C BN 1.Cho (P): y = ax 2 a) Xỏc nh a th hm s i qua A(1; 1). Hm s ny ng bin, nghch bin khi no. b) Gi (d) l ng thng i qua A v ct trc Ox ti im M cú honh m ( m 1). Vit phng trỡnh (d) v tỡm m (d) v (P) ch cú mt im chung. 2.Trong mt phng ta Oxy cho im A (-2; 2) v ng thng (d 1 ): y = -2(x+1) a) Gii thớch vỡ sao A nm trờn (d 1 ). b) Tỡm a trong hm s y = ax 2 cú th l (P) qua A. c) Vit phng trỡnh ng thng (d 2 ) qua A v vuụng gúc vi (d 1 ). d) Gi A, B l giao im ca (P) v (d 2 ); C l giao im ca (d 1 ) vi trc tung. Tỡm ta ca B v C. Tớnh din tớch ca tam giỏc ABC. 3.Cho (P): y = x 2 v (d): y = 2x + m. Tỡm m (P) v (d): a) Ct nhau ti hai im phõn bit. b) Tip xỳc nhau. c) Khụng giao nhau. 4.Trong h trc ta Oxy gi (P) l th ca hm s y = x 2 . a) V (P). b) Gi A, B l hai im thuc (P) cú honh ln lt l 1 v 2. Vit phng trỡnh ng thng AB. c) Vit phng trỡnh ng thng (d) song song vi AB v tip xỳc vi (P). III.PHNG TRèNH BC HAI MT N Bi 1. Gii cỏc phng trỡnh 2 2 2 2 a) 3x 12x 0 b) 5x 10x 0 c) 3x 12 0 d) 3x 1 0 + = = = = 2 2 2 e) x 5x 4 0 f ) 3x 7x 3 0 g) 5x 31x 26 0+ + = + = + + = 2 2 2 h) x 15x 16 0 i) 19x 23x 4 0 k) 2x 5 3x 11 0 = + = + + = ( ) ( ) 2 2 2 2 1 1 27 n) 3x x 14 2 p) x x 1 x x 12 12 q) x x x x 4 + = + + + + = + + + = 2 2 2 3 2 y 3 1 9x 12 1 1 l) m) y 9 6y 2y y 3y x 64 x 4x 16 x 4 + + = = + + + n) 2 2 2x x x 8 x 1 x 3x 4 + = + o)(2x 2 + x 4) 2 (2x 1) 2 = 0 p) 3(x 2 + x) 2(x 2 + x) 1 = 0 q) (x 2 4x + 2) 2 + x 2 4x 4 = 0 Bi 2. Cho phng trỡnh x 2 + 5x + 4 = 0. Khụng gii phng trỡnh hóy tớnh: ( ) ( ) 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 x x 1 1 a) x x x x b) c) x 2x 2x x d) x x x x x x + + + + + + ữ ữ Bi 3. Gi s x 1 , x 2 l hai nghim ca phng trỡnh 2x 2 7x 3 = 0. Hóy lp phng trỡnh cú nghim l: 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2 2 1 1 1 1 1 x x a) 3x ; 3x b) ; c) x x ; x x d) ; e) ; f ) x 2x ; 2x x x x x x x x + + Bi 4. Cho phng trỡnh x 2 + (m + 2)x + 2m = 0. a) Gii v bin lun s nghim ca phng trỡnh. b) Phng trỡnh cú mt nghim x = 3. Tỡm m v nghim cũn li. c) Tỡm m 1 2 2 1 x x 2 x x + = . d) Tỡm m ( ) ( ) 1 2 1 2 2x x x 2x 0+ + . e) Tỡm biu thc liờn h gia x 1 v x 2 m khụng ph thuc vo m. f) Tỡm m phng trỡnh cú hai nghim i nhau. g) Tỡm m phng trỡnh cú hai nghim cựng du. Cú nhn xột gỡ v hai nghim ú. Bi 5 Cho phng trỡnh : x 2 2(m 1 )x +m 2 +2 = 0 a. Vi giỏ tr no ca m thỡ pt cú 2 nghim phõn bit ? b. Tớnh E = x 1 2 + x 2 2 theo m c. Tỡm m pt cú 2 nghim thoó món : x 1 x 2 = 4 Bi 6 Cho phơng trình x 2 -2( m+2 )x + 2m + 1 = 0 a) Giải phơng trình khi m = - 1 b) Chứng minh rằng phơng trình luôn có hai nghiệm phân biệt với mọi m c) Gọi x 1 ,x 2 là hai nghiệm của phơng trình Tìm hệ thức liên hệ giữa hai nghiệm x 1 ,x 2 không phụ thuộc m Tìm m để x 1 2 + x 2 2 nhỏ nhất ÔN TÂP CHƯƠNG IV ĐẠI SỐ LỚP 9 A/ PHẦN TRẮCNGHIỆM KHÁCH QUAN 1/ Điểm thuộc đồ thị hàm số y= - 2 2 x là: A.(-2:2) B.(2:2) C.(3:-3) D.(-6:-18) 2/ Một nghiệm của PTBH -3x 2 + 2x+5=0 là: A.1 B 3 5 C. 3 5 D. 5 3 3/Tổng hai nghiệm của PTBH -3x 2 - 4x +9 =0 là: A 3 B.3 C,- 3 4 D. 3 4 4/ Hai số có tổng là 15 và tích là -107 là nghiệm PTBH : A.x 2 + 15x – 107=0 B.x 2 - 15x – 107=0 C.x 2 + 15x +107=0 D.x 2 - 15x + 107=0 5/ Biệt thức ∆ của PTBH : 5x 2 +13x - 7 = 0 là : A.29 B.309 C.204 D.134 6/ PTBH : -3+2x+5x 2 = 0 có tích hai nghiệm là : A. 3 2 B 3 2 C. 5 3 D 5 3 7/ Biệt thức ∆ ’ của PTBH : -3+2x+5x 2 =0 là : A.15 B.16 C.19 D.4 8/PTBH :x 2 +3x - 5=0.Biểu thức x 1 2 +x 2 2 có giá trị bằng : A.16 B. -1 C.19 D.4 9/ Điểm thuộc đồ thị hàm số y= 2 2 x có tung độ bằng 2 thì có hòanh độ là : A 2 B.2 C.2 hoặc -2 D.4 hoặc – 4 10/ Biệt thức ∆ của PTBH : 2x 2 - (k-1)x+ k = 0 là: A. k 2 +6k-23 B.k 2 +6k-25 C.(k-5) 2 D (k+5) 2 11/ Một nghiệm của PTBH: 2x 2 - (k-1)x+ k = 0 là: A. 2 1−k B. 2 1 k− C. 2 3−k D. 2 3 k− 12/ Một nghiệm của PTBH: 3x 2 + 5x-8= 0 là: A.1 B 1 C. 3 2 D 3 2 13/ Phương trình có x 2 - 5 x + 10 -2 = 0 có 1 nghiệm là 2 thì nghiệm còn lại là: A.1 B 1 C. 5 + 2 D. 5 - 2 14/ Phương trình có x 2 +3x – 5 = 0.Biểu thức(x 1 -x 2 ) 2 có giá trị là: A,29 B,19 C.4 D.16 15/ Cho hàm số y= - 2 2 x . Kết luận nào sau đây là đúng : A.Hàm số luôn luôn đồng biến B,Hàm số luôn luôn nghịch biến C. Hàm số đồng biến khi x < 0, nghịch biến khi x >0 D. Hàm số đồng biến khi x > 0, nghịch biến khi x <0 16/ PTBH ẩn x : x 2 -(2m - 1)x + 2m = 0 có hệ số b bằng : A,2(m - 1) B.1 – 2m C.2 - 4m D.2m – 1 17/ Điểm P(- 1: - 3) thuộc đồ thị hàm số y = mx 2 thì m có giá trị là : A. – 3 B 2 C.2 D.3 18/ Phương trình: x 2 - (a+1)x + a = 0 có 2 nghiệm là: A.x 1 =1;x 2 = a B.x 1 = - 1;x 2 = - a C.x 1 =1;x 2 = - a C,x 1 = - 1;x 2 = a 19/ nghiệm của PT 3x 2 + 2x + 1 = 0 là hòanh độ giao điểm của các hàm số: A.y = 3x 2 và y = 2x + 1 B.y = 3x 2 và y = - 2x + 1 C.y = 3x 2 và y = - 2x - 1 D.y = - 3x 2 và y = 2x - 1 20/ Nếu PT : ax 2 +bx+c=0(a ≠ 0) có một nghiệm là 1 thì tổng nào sau đây là đúng : A.a+b+c = 0 B.a-b+c = 0 C,a – b - c = 0 D.a+b - c = 0 21/ Chọn câu trả lời đúng Trong các hàm số sau chỉ ra các hàm số đồng biến khi x < 0 1) y = 2x 2 2) y = - 2x 2 3) y = 2 4 1 x − A. 1); 2) B. 1); 3) C. 1); 2); 3) D.2); 3) 22/ Chọn câu trả lời đúng. Tìm a, biếtđồ thị hàm số y = ax 2 đi qua điểm M(2; - 1) A. a = - 4 B. a = 4 1 . 4 1− D. 2 1 − 23/ Chọn câu trả lời đúng : Xác định các giá trị m để phương trình x 2 – 7x + m = 0 có nghiệm: A. m < 4 49 B. m > 4 49 C. m ≤ 4 49 D. m ≥ 4 49 24/ Chọn câu trả lời đúng. Cho phương trình 5x 2 – 9x + m 2 = 0 Xác định m để phương trình có một nghiệm bằng 1 A. m = 4 B. M = - 4 C. m = ± 14 D. m = ± 2 25/. Trong các phát biểu sau đây, phát biểu nào đúng với phương trình (5 + 2 )x 2 - 7 x - 3 = 0 A. Phương trình có hai nghiệm dương. B. Phương trình có hai nghiệm âm. C. Phương trình có hai nghiệm trái dấu D. Phương trình vơ nghiệm 26/: Chọn câu trả lời đúng Gọi x 1 ; x 2 là hai nghiệm phương trình 7x 2 + ax – b = 0 Tính x 1 + x 2 + x 1 .x 2 A. 77 ba − B. 77 ba − − C. 77 ba + D. 77 ba + − 27/: Chọn câu trả lời đúng Hai phương trình ẩn x: x 2 + mx + 1 = 0 và x 2 – x – m = 0 có một nghiệm chung khi m bằng: A. 2 B. 1 C. 0 D. 3 28/: Chọn câu trả lời đúng Với giá trị nào của m thì phương trình x 2 – 4x + m – 1 = 0 có hai nghiệm x 1; x 2 thoả mãn 2x 1 + 3x 2 = 6 A. m = - 11 B. m = 13 C. m = - 13 D. Một kết quả khác 29/ Chọn câu trả lời đúng Giải phương trình x 4 – 8x 2 + 15 = 0 được tập nghiệm: A. S = { } 3;3 − B. S = { } 7;7;3;3 −− C. S = { } 5;3 D. S = { } 5;5;3;3 −− 30/: : H×nh vÏ sau ®©y lµ ®å thÞ biĨu diƠn hµm sè nµo ? A. 2 x y 4 = − B. 2 x y 3 = − C. 2 x y 2 = − D. 2 y x= − 31/ : Gi¸ trÞ nµo cđa m th× ph¬ng tr×nh 2x 2 – (m + 1)x + 2m – 3 = 0 cã nghiƯm lµ : - 1 ? 32/ Giá trò của m để phương trình : mx 2 – (2m -1)x + m +2 = 0 có hai nghiệm là : A. m < 1 12 B . m > 1 12 C. m ≤ 1 12 D. m ≤ 1 12 và m ≠ 0 33/ : Toạ độ giao điểm của (P) y = x 2 và đường thẳng (d) y = 2x là :A. O ( 0 ; 0) N ( 0 ;2) C. M( 0 ;2) và H(0; 4) B. O ( 0 ; 0) và N( 2;4) D. M( 2;0 và H(0; 4) 34/ : Gọi S và P là tổng và tích hai nghiệm của phương trình : x 2 -5x +6 =0 khi đó S+P bằng : A. 5 B. 7 C. 9 D. 11 35/ Cho hàm số y = x 2 . Phát biểu nào sau đây là sai ? A. Hàm số xác đònh với mọi số thực x , có hệ số a = B. Hàm số đồng biến khi x < 0 và nghòch biến khi x > 0 C. f (0) = 0 ; f(5) = 5 ; f(-5)= 5 ; f(-a) = f( a) D. Nếu f(x) = 0 thì x = 0 và nếu f(x) = 1 thì x = ± 36/ Víi gi¸ trÞ kh¸c 0 nµo cđa a th× ®êng th¼ng y = x + 1 tiÕp xóc víi parabol y = ax 2 . A. 4 1 −=a B. 2 1 −=a C. 1−=a D. 1=a 37/ Parabol 2 1 y x 4 = cắt đường thẳng 1 y x 2 2 = − + tại hai điểm có hồnh độ là a và b thì ab 38/ Khẳng định sau đúng hay sai ? Nếu b 2 – ac = 0 thì pt ax 2 + bx + c = 0 với a 0 ≠ có nghiệm kép x = b 2a − A. Đúng B. Sai. A . m = 0 B . m = 1 C . m = 2 D . Mét ®¸p sè kh¸c -1 -4 -4 4 2-2 39/ Cho hm s 2 1 ( ) 3 y f x x= = tha món ( ) ( 1) 5f m f m = . Giỏ tr tha món ca m l 40/ hm s ( ) 2 2 4 4y m x mx= + nghch bin khi x<0 thỡ m = 1. Cho hm s y = ( m 2 6m + 12)x 2 a/ Vi mi giỏ tr m R hm s luụn nghch bin khi x<0 v ng bin khi x>0 b/ Khi m = 2, hóy tỡm x f(x) = 8; f(x) = -2 c/ Khi m = 5, hóy tỡm y bit + 21 21 f d/ Tỡm m khi f(1) = 5 2. Gii cỏc phng trỡnh: n) -2x 2 1 = 0 a) x 2 4x + 3 = 0 b) x 2 + 6x + 5 = 0 c) 3x 2 4x + 1 = 0 d) x 2 5x + 6 = 0 e) 2 ( 2 1)x x 2 0 + = f) 2 2x ( 2 1)x 1 0 + + = g) 2 x ( 2 1)x 2 0+ = h) (x 1 )(x + 2) = 70 i) )1(3132 2 +=++ xxx j) x(2x+3) 2 -4x 2 +9 =0 k) x 3 8x 2 8x +1 =0 m) ( ) ( ) 02121221 2 =+++ xx 3. Cho phng trỡnh x 2 + 2(m + 1)x + m 2 = 0 (1) a) Tỡm cỏc giỏ tr ca m phng trỡnh (1) cú hai nghim phõn bit b) Tỡm cỏc giỏ tr ca m phng trỡnh (1) cú hai nghim phõn bit v trong hai nghim ú cú mt nghim bng 2 4. Cho phng trỡnh 2 x 3x 5 0+ = v gi hai nghim ca phng trỡnh l x 1 , x 2 . Khụng gii phng trỡnh, tớnh giỏ tr ca cỏc biu thc sau:a) 1 2 1 1 x x + b) 2 2 1 2 x x+ c) 2 2 1 2 1 1 x x + d) 3 3 1 2 x x+ e. 1 2 2 1 11 x x x x + + + f) 1 2 2 1 x x x x + g) x 1 x 2 h) x 1 2 x 2 2 5. Cho phng trỡnh: x 2 2mx + m + 2 = 0. Tỡm giỏ tr ca m phng trỡnh cú mt nghim x 1 = 2. Tỡm nghim x 2 . 6. Cho phng trỡnh x 2 2(m + 1)x + m 4 = 0 (1) a) Gii phng trỡnh (1) khi m = 1 b) Chng minh rng phng trỡnh (1) luụn cú nghim vi mi giỏ tr ca m c) gi x 1 , x 2 l hai nghim ca phng trỡnh (1). Chng minh rng A = x 1 (1 x 2 ) + x 2 (1 x 1 ) khụng ph thuc vo giỏ tr ca m. 7. Tỡm giao im ca th cỏc hm s sau: a) y = -x + 3 v 2 x 4 1 y = b ) 2 xy = v y = -5x 8. Cho (P) y = ax 2 v (d) y = 2x 2 a)Xỏc nh a bit (P) i qua ( ) 2;2A b) Chng minh rng (P) v (d) tip xỳc vi nhau. Tỡm to tip im 9. Cho (P) y = ax 2 v (d) y = -2x +m. a)Xỏc nh a bit (P) i qua 2 1 ;1A b)Bin lun theo m s giao im ca (d) v (P). Trong trng hp tip xỳc hóy tỡm to tip im. 9. Cho hàm số : y = 2 3 2 x ( P ) a/ ve ụ thi ham sụ (P) b/ xac inh m ờ ng thng y = x + m 1 tiờp xuc vi (P) 10/ Cho (P): y = -2x 2 và (d) y = x -3 a) Tìm giao điểm của (P) và (d) b) Gọi giao điểm của (P) và (d) ở câu a là A và B trong đó A là điểm có hoành độ nhỏ hơn; C, D lần lợt là hình chiếu vuông góc của A và B trên Ox. Tính diện tích và chu vi tứ giác ABCD. 12/ Tìm hai số u và v biết: a) u + v = 1 v uv = -42 (u > v) b) u - v = 5 và u.v = 24 c) u 2 +v 2 = 3 và u.v = - 8 d) u 2 v 2 = -5 và u.v = -10 13/ Giải các phơng trình sau: 1. x 3 +3x 2 +3x+2 = 0 2. (x 2 + 2x - 5) 2 = (x 2 - x + 5) 2 3. x 4 5x 2 + 4 = 0 4. 0,3 x 4 + 1,8x 2 + 1,5 = 0 5. x 3 + 2 x 2 (x - 3) 2 = (x-1)(x 2 -2 6. 3 1 .10 1 = + + x x x x 7. (x 2 4x + 2) 2 + x 2 - 4x - 4 = 0 8. 03 1 4 1 2 =+ + + x x x x 9. xx x =+ + 2 6 3 5 2 14/ Cho phơng trình (m-1)x 2 + 2x - 3 = 0 (1) (tham số m) a) Tìm m để (1) có nghiệm b) Tìm m để (1) có nghiệm duy nhất? tìm nghiệm duy nhất đó? c) Tìm m để (1) có 1 nghiệm bằng 2? khi đó hãy tìm nghiệm còn lại(nếu có)? 15/ tìm m để phơng trình vô nghiệm.: a) 48x 2 +mx-5 = 0 b. 5x 2 -2x+ m = 0 c. mx 2 -2(m-1)x+m+1 = 0 d. 3x 2 -2x+m = 0 e. 5x 2 +18x+m = 0 f. 4x 2 +mx+m 2 = 0 16/ tìm m để phơng trình có nghiệm kép. a. 16x 2 +mx+9 = 0 b. mx 2 -100x+1= 0 c. 25x 2 +mx+2= 0 d. 15x 2 -90x+m= 0 e. (m-1)x 2 +m-2= 0 f. (m+2)x 2 +6mx+4m+1= 0 17/ tìm m để phơng trình có hai nghiệm phân biệt. a. 2x 2 -6x+m+7= 0 b. 10x 2 +40x+m= 0 c. 2x 2 +mx-m 2 = 0 d. mx 2 -2(m-1)x+m+1= 0 e. mx 2 -6x+1= 0 f. m 2 x 2 -mx+2= 0 18/ xác định m để phơng trình sau có hai nghiệm phân biệt trái dấu: 2x 2 -6x+m-2= 0 19/ xác định m để phơng trình sau có hai nghiệm phân biệt cùng dấu : x 2 -3x+m= 0 20/ cho phơng trình x 2 +2x+m= 0. tìm m để phơng trình có hai nghiệm x 1 , x 2 thoả mãn: a.3x 1 +2x 2 = 1 b. x 1 2 -x 2 2 = 12 c. x 1 2 +x 2 2 = 1 21/ a. lập một phơng trình bậc hai có hai nghiệm là 2 và 3. b. lập một phơng trình bậc hai có hai nghiệm gấp đôi nghiệm của phơng trình x 2 +9x+14 = 0 c. không giải phơng trình x 2 +6x+8 =0 . hãy lập phơng trình bậc hai khác có hai nghiệm: 1. gấp đôi nghiệm của phơng trình đã cho. 2. bằng nửa nghiệm phơng trình đã cho. 3. là các số nghịch đảo của nghiệm của phơng trình đã cho. 4. lớn hơn nghiệm của phơng trình đã cho một đơn vị. 22/ Cho phơng trình bậc 2: x 2 + (m + 1)x + m 1 = 0 a) Giải phơng trình khi m = 2. b) CMR phơng trình luôn có hai nghiệm phân biệt m 23/ Cho phng trỡnh : mx 2 +mx 1 = 0 (1) a/ Gii phng trỡnh (1) khi m = 2 1 b/ Tỡm m phng trỡnh (1) cú nghim kộp. c/ Tỡm m bỡnh phng ca tng hai nghim bng bỡnh phng ca tớch hai nghim 24/ Cho hm s y = (m 2 2 ) x 2 a. Tỡm m th hm s i qua A ( 2 ; 1) b. Vi giỏ tr m tỡm c cõu a : + V th (P) ca hm s + Chng t rng ng thng 2x y 2 = 0 tip xỳc vi (P) v tớnh to tip im 23/ Lp phng trỡnh bc hai cú 2 nghim l : a. 3 v 7 b. 5 v 2 c. 1 - 5 v 1 + 5 d. 7210 1 v 2610 1 + 24/ Cho pt x 2 7x + 5 = 0. Khụng gii phng trỡnh hóy tớnh : a. Tng cỏc nghim b. Tớch cỏc nghim c. Tng cỏc bỡnh phng cỏc nghim d. Tng lp phng cỏc nghim e. Tng nghch o cỏc nghim g. Tng bỡnh phng nghch o cỏc nghim . 25/ Cho phng trỡnh : x 2 2x + 2m 1 =0 . Tỡm m a/ Phng trỡnh vụ nghim b/ phng trỡnh cú nghim c/ Phng trỡnh cú mt nghim bng -1 .Tỡm nghim cũn li 26/ Cho parabol (P) cú nh gc ta O v i qua im A(1; 4 1 ) a. Vit phng trỡnh ca parabol (P) b. Vit phng trỡnh ng thng d song song vi ng thng x + 2y = 1 v i qua im B(0;m). Vi giỏ tr no ca m thỡ ng thng d ct parabol (P) ti hai im cú honh x 1 , x 2 sao cho 3x 1 + 5x 2 = 5 27/ Cho pt x 2 mx + m +3 = 0 a) Tỡm m tng bỡnh phng hai nghim bng 42 b) Tỡm m tng nghch o cỏc nghim bng 9 28/ Cho pt x 2 -2x m 2 4 = 0 a) Tỡm pt cú nghim bng x 1 =-2. Tớnh nghim x 2 b) Tỡm m pt cú hai nghim tha x 1 =-2x 2 c) Tớnh x 1 2 + x 2 2 theo m 29/ cho phơng trình x 2 +(2m-1)x-m = 0 xác định giá trị của m để phơng trình có hai nghiệm x 1 , x 2 thoả mãn hệ thức: a. x 1 , x 2 đối nhau. b. x 1 -x 2 = 1 . Khụng giao nhau. 4.Trong h trc ta Oxy gi (P) l th ca hm s y = x 2 . a) V (P). b) Gi A, B l hai im thuc (P) cú honh ln lt l 1 v 2. Vit phng trỡnh ng thng AB. c) Vit phng trỡnh ng thng (d) song. = . d) Tỡm m ( ) ( ) 1 2 1 2 2x x x 2x 0+ + . e) Tỡm biu thc liờn h gia x 1 v x 2 m khụng ph thuc vo m. f) Tỡm m phng trỡnh cú hai nghim i nhau. g) Tỡm m phng trỡnh cú hai nghim cựng du )x +m 2 +2 = 0 a. Vi giỏ tr no ca m thỡ pt cú 2 nghim phõn bit ? b. Tớnh E = x 1 2 + x 2 2 theo m c. Tỡm m pt cú 2 nghim thoó món : x 1 x 2 = 4 Bi 6 Cho phơng trình x 2 -2( m+2 )x +