1. Trang chủ
  2. » Y Tế - Sức Khỏe

Neurochemical Mechanisms in Disease P31 docx

10 365 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Cognition in PD and AD 285 Devanand DP, Tabert MH, Cuasay K, Manly JJ, Schupf N, Brickman AM, Andrews H, Brown TR, Decarli C, Mayeux R (2008a) Olfactory identification deficits and MCI in a multi-ethnic elderly community sample. Neurobiol Aging 9:1593–1600 Di Carlo A, Lamassa M, Baldereschi M, Inzitari M, Scafato E, Farchi G, Inzitari D (2007) CIND and MCI in the Italian elderly: frequency, vascular risk factors, progression to dementia. Neurology 68(22):1909–1916 Dierks T, Frolich L, Ihi R, Maurer K (1994) Event-related potentials and psychopharmacology. Cholinergic modulation of P300. Pharmacopsychiatry 27:72–74 Dixon RM, Bradley KM, Budge MM, Styles P, Smith AD (2002) Longitudinal quantitative proton magnetic resonance spectroscopy of the hippocampus in Alzheimer’s disease. Brain 125(Pt 10):2332–2341 Doty RL, Perl DP, Steele JC, Chen KM, Pierce JD Jr, Reyes P, Kurland LT (1991) Olfactory dysfunction in three neurodegenerative diseases. Geriatrics 46(Suppl 1):47–51 Du AT, Schuff N, Zhu XP, Jagust WJ, Miller BL, Reed BR, Kramer JH, Mungas D, Yaffe K, Chui HC, Weiner MW (2003) Atrophy rates of entorhinal cortex in AD and normal aging. Neurology 60(3):481–486 Dujardin K, Defebvre L, Grunberg C (2001) Memory and executive function in sporadic and familial Parkinson’s disease. Brain 124:389–398 El Fakhri G, Kijewski MF, Johnson KA, Syrkin G, Killiany RJ, Becker JA, Zimmerman RE, Albert MS (2003) MRI-guided SPECT perfusion measures and volumetric MRI in prodromal Alzheimer disease. Arch Neurol 60(8):1066–1072 Emre M (2004, Aug) Dementia in Parkinson’s disease: cause and treatment. Curr Opin Neurol 17(4):399–404. Review Enroth-Cugell C, Robson JG (1966, Dec) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187(3):517–552 Fedele E, Mazzone P, Stefani A, Bassi A, Ansaldo MA, Raiteri M, Altibrandi MG, Pierantozzi M, Giacomini P, Bernardi G, Stanzione P (2001) Microdialysis in Parkinsonian patient basal ganglia: acute apomorphine-induced clinical and electrophysiological effects not paralleled by changes in the release of neuroactive amino acids. Exp Neurol 167(2):356–365 Fogelson N, Williams D, Tijssen M, van Bruggen G, Speelman H, Brown P (2006) Different func- tional loops between cerebral cortex and the subthalmic area in Parkinson’s disease. Cerebral Cortex 16:64–75 Forgacs P, Bodis-Wollner I (2004) Nicotinic receptors and cognition in Parkinson’s disease: the importance of neuronal synchrony. J Neural Transm 111:1317–1331 Forgacs P, von Gizycki H, Selesnick I, Syed N, Ebrahim K, Avitable M, Amassian V, Lytton W, Bodis-Wollner I (2008) Perisaccadic parietal and occipital gamma power in light and in complete darkness. Perception 3:419–432 Frodl-Bauch T, Bottlender R, Hegerl U (1999) Neurochemical substrates and neuroanatomical generators of event-related P300. Neuropsychobiology 40:86–94 Gaffan D, Parker A (2000, Apr) Mediodorsal thalamic function in scene memory in rhesus monkeys. Brain 123(Pt 4):816–827 Garcia-Cabezas MA, Marinez-Sanchez P, Sanchez-Gonzalez M, Garzon M, Cavada C (2007a) The thalamic dopaminergic system is expanded in humans compared to rodents. Soc Neurosci Abstr 38:12 Garcia-Cabezas MA, Rico B, Sanchez-Gonzalez M, Cavada C (2007b) Distribution of the dopamine innervation in the macaque and human thalamus. Neuroimage 34:965–985 Gaspirini M, Fabrizio E, Bonifati V, Meco G (1997) Cognitive improvement during Tolcapone treatment in Parkinson’s disease. J Neural Transm 104:887–894 Ghilardi MF, Bodis-Wollner I, Onofrj MC, Marx MS, Glover AA (l988a) Spatial frequency dependent abnormalities of the pattern electroretinogram and visual evoked potentials in a parkinsonian monkey model. Brain 111:131–184 286 I. Bodis-Wollner and H. Moreno Ghilardi MF, Chung E, Bodis-Wollner I, Dvorzniak M, Glover A, Onofrj M (1988b) Systemic 1-methyl,4-phenyl,1-2-3-6-tetrahydropyridine (MPTP) administration decreases reti- nal dopamine content in primates. Life Sci 43:255–262 Ghilardi MF, Marx MS, Bodis-Wollner I, Camras CB, Glover AA (1989) The effect of intraocular 6-hydroxydopamine on retinal processing of primates. Ann Neurol 25:357–364 Giannakopoulos P, Herrmann FR, Bussière T, Bouras C, Kövari E, Perl DP, Morrison JH, Gold G, Hof PR (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60(9):1495–1500 Glover A, Ghilardi MF, Bodis-Wollner I, Onofrj M (l988) Alterations in event-related potentials (ERPs) of MPTP-treated monkeys. Electroencephalogr Clin Neurophysiol 7 l(46):1–468 Goldman-Rakic P (1998) The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42:707–711 Goldman-Rakic PS, Muly EC, Williams GV (2000) D 1 receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301 Gómez-Ramos A, Díaz-Hernández M, Rubio A, Miras-Portugal MT, Avila J (2008) Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol Cell Neurosci 37(4):673–681 Gonzalez RG, Fischman AJ, Guimaraes AR, Carr CA, Stern CE, Halpern EF, Growdon JH, Rosen BR (1995) Functional MR in the evaluation of dementia: correlation of abnormal dynamic cerebral blood volume measurements with changes in cerebral metabolism on positron emission tomography with fludeoxyglucose F 18 AJNR. Am J Neuroradiol 16(9): 1763–1770 Gouras GK, Almeida CG, Takahashi RH (2005) Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging 26(9):1235–1244 Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702 Greengard P (1972) Adenosine 3  :5  -cyclic monophosphate as a mediator in the action of neurohumoral agents. Biochem J 128:75–80 Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258 Gylys KH, Fein JA, Yang F, Wiley DJ, Miller CA, Cole GM (2004) Synaptic changes in Alzheimer’s disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. Am J Pathol 165(5):1809–1817 Hajee M, March W, Lazzaro D, Wolintz A, Shrier E, Glazman S, Bodis-Wollner I (2009) Inner retinal layer thinning in Parkinson’s disease. Arch Ophthalmol 127(6):737–741 Halgren E, Marinkovic K, Chauvel P (1998) Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr Clin Neurophysiol 106:156–164 Hanninen T, Koivisto K, Reinikainen KJ, Helkala EL, Soininen H, Mykkänen L, Laakso M, Riekkinen PJ (1996) Prevalence of ageing-associated cognitive decline in an elderly population. Age Ageing 25(3):201–205 Hansch EC, Syndulko K, Cohen SN, Goldberg ZI, Potvin AR, Tourtellotte WW (1982) Cognition in Parkinson disease: an event-related potential perspective. Ann Neurol 11:599–607 Hay JF, Moscovitch M, Levine B (2002) Dissociating habit and recollection: evidence from Parkinson’s disease, amnesia and focal lesion patients. Neuropsychologia 40:1324–1334 Hersch SM, Hutekunst CA, Rees HD, Heilman CJ, Levey AI (1994) Distribution of m1–m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocy- tochemistry using subtype-specific antibodies. J Neurosci 14:3351–3363 Higuchi M, Iwata N, Matsuba Y, Sato K, Sasamoto K, Saido TC (2005) 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat Neurosci 8(4):527–533 Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17: 427–442 Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JA (2008) Long-term effects of Abeta42 immunisation Cognition in PD and AD 287 in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372(9634):216–223 Hugdahl K, Wester K, Asbjørnsen A (1991, Oct) Auditory neglect after right frontal lobe and right pulvinar thalamic lesions. Brain Lang 41(3):465–473 Hutton M, Pérez-Tur J, Hardy J (1998) Genetics of Alzheimer’s disease. Essays Biochem 33: 117–131 Inada T, Nakamura A, Iijima Y (2003) Relationship between catechol-O-methyltransferase polymorphism and treatment-resistant schizophrenia. Am J Med Genet 120B:35–39 Joliot M, Ribary U, Llinás R (1994) Neuromagnetic coherent oscillatory activity in the vicinity of 40 Hz coexists with cognitive temporal binding in the human brain. Proc Natl Acad Sci USA 91:6339–6343 Keijsers NLW, Admiraal MA, Cools AR, Bloem BR, Gielen CCAM (2005) Differential progres- sion of proprioceptive and visual information processing deficits in Parkinson’s disease. Eur J Neurosci 21:239–248 Kemps E, Szmalec A, Vandierendonck A, Crevits L (2004) Visuo-spatial processing in Parkinson’s disease: evidence for diminished visuo-spatial sketch pad and central executive resources. Parkinsonism Relat Disord 11:181–186 Kertesz A, McMonagle P, Blair M, Davidson W, Munoz D (2005) The evolution and pathology of frontotemporal dementia. Brain 128(9):1996–2005 Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A, Lemere CA, Cullen WK, Peng Y, Wisniewski T, Selkoe DJ, Anwyl R, Walsh DM, Rowan MJ (2008) Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci 28(16):4231–4237 Knoke D, Taylor AE, Saint-Cyr JA (1998) The differential effects of cueing on recall in Parkinson’s disease and normal subjects. Brain Cogn 38:261–274 Kowalska DM, Bachevalier J, Mishkin M (1991) The role of the inferior prefrontal convexity in performance of delayed nonmatching-to-sample. Neuropsychologia 29(6):583–600 Krizaj D, Gábriel R, Owen WG, Witkovsky P (1998, Sep 7) Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina. J Comp Neurol 398(4):529–538 LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8(7):499–509 LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G (1995) The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 9(1):21–30 Lagopoulos J, Gordon E, Barhamali H et al (1998) Dysfunctions of automatic (P300a) and controlled (P300b) processing in Parkinson’s disease. Neurol Res 20:5–10 Lang AE, Houeto JL, Krack P, Kubu C, Lyons KE, Moro E, Ondo W, Pahwa R, Poewe W, Tröster AI, Uitti R, Voon V (2006) Deep brain stimulation: preoperative issues. Mov Disord 21(Suppl 14):S171–S196 Lazarov O, Morfini GA, Lee EB, Farah MH, Szodorai A, DeBoer SR, Koliatsos VE, Kins S, Lee VM, Wong PC, Price DL, Brady ST, Sisodia SS (2005) Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J Neurosci 25(9):2386–2395 Lee AC, Harris JP (1999) Problems with the perception of space in Parkinson’s disease. Neuro- ophthalmology 22:1–15 Lee EB, Zhang B, Liu K, Greenbaum EA, Doms RW, Trojanowski JQ, Lee VM (2005) BACE overexpression alters the subcellular processing of APP and inhibits Abeta deposition in vivo. J Cell Biol 168(2):291–302 Leplow B, Dierks C, Herrmann P, Pieper N, Annecke R, Ulm G (1997) Remote memory in Parkinson’s disease and senile dementia. Neuropsychologia 35:547–555 Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082): 352–357 288 I. Bodis-Wollner and H. Moreno Levin BE, Llabre MM, Weiner WJ (1989) Cognitive impairments associated with early Parkinson’s disease. Neurology 39:557–561 Li M, Kuroiwa Y, Wang L, Kamitani T, Omoto S, Hayashi E, Takahashi T, Suzuki Y, Koyano S, Ikegami T, Matsubara S (2005) Visual event-related potentials under different interstimulus intervals in Parkinson’s disease: relation to motor disability, WAIS-R, and regional cerebral blood flow. Parkinsonism Relat Disord 11(4):209–219 Li M, Kuroiwa Y, Wang L, Kamitani T, Takahashi T, Suzuki Y, Omoto S (2003) Early sensory information processes are enhanced on visual oddball and S1–S2 tasks in Parkinson’s disease: a visual event-related potentials study. Parkinsonism Relat Disord 9(6):329–340 Lieberman A, Dziatolowski M, Kupersmith M, Serby M, Goodgold A, Korein J, Goldstein M (1979) Dementia in Parkinson disease. Ann Neurol Oct 6(4):355–359 Llinás R, Urbano FJ, Leznik E, Ramírez RR, van Marle HJ (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neuros 28(6):325–333 Luchsinger JA, Mayeux R (2004) Dietary factors and Alzheimer’s disease. Lancet Neurol 3(10):579–587 Maeshima S, Itakura T, Komai N, Matsumoto T, Ueyoksi A (2002) Relationships between event- related potentials (P300) and activities of daily living in Parkinson’s disease. Brain Inj 16:1–8 Maffei L, Fiorentini A, Bisti S, Hollander H (1989) Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59:423–425 Malholtra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 159:652–654 Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005, Nov 28) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 16(17):1877–1881 Mohler H (2007) Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J Neurochem 102(1):1–12 Monchi O, Petrides M, Mejia-Constain B, Strafella A (2007) Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain 130(1):233–244 Moreaud O, Fournet N, Roulin JL, Naegele B, Pellat J (1997) The phonological loop in medicated patients with Parkinson’s disease: presence of phonological similarity and word length effects. J Neurol Neurosurg Psychiatry 62:609–611 Moreno H, Lee T, Yu R, Hua H, Small S (2006) fMRI studies of hippocampal dysfunction and ther- apeutic response in mouse models of Alzheimer’s disease. Proceedings of the 10th international conference on Alzheimer. lzheimer’s&Dementia:2;3:S676 Moreno H, Wu WE, Lee T, Brickman A, Mayeux R, Brown TR, Small SA (2007) Imaging t he Abeta-related neurotoxicity of Alzheimer disease. Arch Neurol 64(10):1467–1477 Moreno H, Yu E, Pigino G, Hernandez I, Kim N, Moreira J, Sugimori M, Llinas R (2009) Direct inhibition of synaptic transmission by pre-synaptic injection of oligomeric amyloid beta. Proc Natl Acad Sci USA 106(14):5901–5906 Mori A, Shindou T (2003, Dec 9) Modulation of GABAergic transmission in the striatopallidal system by adenosine A2A receptors: a potential mechanism for the antiparkinsonian effects of A2A antagonists. Neurology 61(11 Suppl 6):S44–S48 Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog Neurobiol 67:53–83 Nishi A, Kuroiwa M, Miller DB, O’Callaghan JP, Bateup HS, Shute T, Sotogaku N, Fukuda T, Heints N, Greengard P, Snyder GL (2008) Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci 28:10460–10471 Noda A, Ohba H, Kakiuchi T, Futatsubashi M, Tsukada H, Nishimura S (2002) Age-related changes in cerebral blood flow and glucose metabolism in conscious rhesus monkeys. Brain Res 936(1–2):76–81 O’Sullivan M, Jones DK, Summers PE, Morris RG, Williams SC, Markus HS (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57(4):632–638 Cognition in PD and AD 289 Owen AM, Dayan J, Dagher A (1998) Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Implications for higher cortical functions. Brain 121:949–965 Owen AM, Iddon JL, Hodges JR, Summers BA, Robbins TW (1997) Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychologia 35:519–532 Owen AM, Roberts AC, Hodges JR (1993a) Contrasting mechanisms of impaired attentional set- shifting in patients with Parkinson’s disease. Brain 116:1159–1175 Palop J, Ho K, Thwin T, Mucke L (2008) Depletion of voltage-gated sodium channels in transgenic mouse models of Alzheimer’s disease: a potential cause of Aβ-induced epileptiform activity. SFN abstracts 638.18 Pang S, Borod JC, Hernandez A, Bodis-Wollner I, R askin S, Mylin L, Coscia L, Yahr MD (l990) The auditory P300 correlates with specific cognitive deficits in Parkinson’s disease. J Neural Trans 2:249–264 Perry E, Curtis M, Dick D, John T (1985) Cholinergic correlates of cognitive impairment in Parkinson’ s disease: comparisons with Alzheimer’ s disease. J Neurol Neurosurg Psychiatry 48:413–421 Petersen RC, Negash S (2008) Mild cognitive impairment: an overview. CNS Spectr 13(1):45−53 Pfefferbaum A, Adalsteinsson E, Sullivan EV (2005) Frontal circuitry degradation marks healthy adult aging: evidence from diffusion tensor imaging. Neuroimage 26(3):891–899 Piccolino M, Witkovsky P, Trimarchi C (1987) Dopaminergic mechanisms underlying the reduction of electrical coupling between horizontal cells of the turtle retina induced by d-amphetamine, bicuculline, and veratridine. J Neurosci 7(8):2273–2284 Pigino G, Morfini G, Atagi Y, Deshpande A, Yu C, LaDu J, Busciglio J, Brady S (2009) Novel pathogenic mechanism for intraneuronal amyloid beta: disruption of fast axonal transport. Proc Natl Acad Sci USA 106(14):5907–5912 Postle BR, Jonides J, Smith EE, Corkin S, Growdon JH (1997) Spatial, but not obkect, delayed response is impaired in early Parkinson’s disease. Neuropsychology 11:171–179 Prasher D, Findley L (1991) Dopaminergic induced changes in cognitive and motor processing in Parkinson’s disease: an electrophysiological investigation. J Neurol Neurosurg Psychiatry 54:603–609 Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45(3):358–368 Puzzo D, Vitolo O, Trinchese F, Jacob JP, Palmeri A, Arancio O (2005) Amyloid-beta pep- tide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. J Neurosci 25(29):6887–6897 Qualman SJ, Haupt HM, Yang P, Hamilton SR (1984) Esophageal Lewy bodies associated with ganglion cell loss in achalasia. Similarity to Parkinson’s disease. Gastroenterology 87(4): 848–856 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682 Raskin S, Borod J, Tweedy J (1990) Neuropsychological aspects of Parkinson’s disease. Neuropsychol Rev 1:185–221 Rieger JW, Kim A, Argyelan M, Farber M, Glazman S, Liebeskind M, Bodis-Wollner I (2008) Cortical control of voluntary saccades in Parkinson’s disease. Electroencephalogr Clin Neurosci 39:169–174 Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754 Sagliocco L, Bandini F, Pierantozzi M, Mari Z, Tzelepi A, Ko C, Gulzar J, Bodis-Wollner I (1997) Electrophysiological evidence for visuocognitive dysfunction in younger non-Caucasian patients with Parkinson’s disease. J Neural Trans 104:427–439 Sanchez-Gonzalaez MA, Garcia-Cabezas MA, Rico B, Cavada C (2005) The primate thalamus is akey target for brain dopamine. J Neurosci 25:6076–6083 290 I. Bodis-Wollner and H. Moreno Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309(5733):476–481 Scarmeas N, Stern Y, Mayeux R, Luchsinger JA (2006b) Mediterranean diet, Alzheimer disease, and vascular mediation. Arch Neurol 63(12):1709–1717 Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA (2006a) Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59(6):912–921 Schott B, Seidenbecher ConstanzeI, Fenker I, Lauer D, Bunzeck C, Bernstein H-G N, Tischmeyer W, Gundelfinger ED, Heinze HJ, Duzel E (2006) The dopaminergic midbrain participates in human episodic memory formation: evidence from genetic imaging. J Neurosci 26(5): 1407–1417 Schulman JS, Pedut-Kloizman T, Hertzmark E, et al. (1996) Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103:1889–1898 Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766 Singer W (1993) Synchronisation of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374 Singer W (1999, Feb 4) Neurobiology. Striving for coherence. Nature 397(6718):391, 393. Comment on: Nature 1999 Feb 4;397(6718):434–436. Nature 1999 Feb 4;397(6718):430–433 Skirboll LR, Grace AA, Bunney BS (1977) Dopamine auto- and postsynaptic receptors: electro- physiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82 Small SA (2001) Age-related memory decline: current concepts and future directions. Arch Neurol 58(3):360–364 Small SA, Duff K (2008) Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 60(4):534–542 Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, Lavretsky H, Miller K, Siddarth P, Rasgon NL, Mazziotta JC, Saxena S, Wu HM, Mega MS, Cummings JL, Saunders AM, Pericak-Vance MA, Roses AD, Barrio JR, Phelps ME (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 97(11):6037–6042 Sohn YH, Kim GW, Huh K, Kim JS (1998) Dopaminergic influences on the P300 abnormality in Parkinson’s disease. J Neurol Sci 158:83–87 Stanzione P, Fattapposta F, Giunti P, et al. (1991) P300 variations in parkinsonian patients before and during dopaminergic monotherapy: a suggested dopamine component in P300. Electroencephalogr Clin Neurophysiol 80:446–453 Stanzione P, Pierantozzi M, Semprini R, Tagliati M, Traversa R, Peppe A, Pierelli F, Bernardi G (1995, Sep) Increasing doses of l-sulpiride reveal dose- and spatial frequency-dependent effects of D2 selective blockade in the human electroretinogram. Vision Res 35(18):2659–2664 Stefani A, Fedele E, Galati S, Pepicelli O, Frasca S, Pierantozzi M, Peppe A, Brusa L, Orlacchio A, Hainsworth AH, Gattoni G, Stanzione P, Bernardi G, Raiteri M, Mazzone P (2005, Mar) Subthalamic stimulation activates internal pallidus: evidence from cGMP microdialysis in PD patients. Ann Neurol 57(3):448–452 Stefani A, Fedele E, Galati S, Raiteri M, Pepicelli O, Brusa L, Pierantozzi M, Peppe A, Pisani A, Gattoni G, Hainsworth AH, Bernardi G, Stanzione P, Mazzone P (2006) Deep brain stimulation in Parkinson’s disease patients: biochemical evidence. J Neural Transm Suppl 70:401–408 Steinerman JR, Irizarry M, Scarmeas N, Raju S, Brandt J, Albert M, Blacker D, Hyman B, Stern Y (2008) Distinct pools of beta-amyloid in Alzheimer disease-affected brain: a clinicopathologic study. Arch Neurol 65(7):906–912 Stern Y (2006) Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 20(2): 112–117 Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307(5713):1282–1288 Cognition in PD and AD 291 Tachibana H, Aragane K, Kawabata K, Sugita M (1997) P3 latency change in aging and Parkinson’s disease. Arch Neurol 54:296–302 Tagliati M, Bodis-Wollner I, Kovanecz I, Stanzione P (l994) Spatial frequency tuning of the mon- key pattern ERG depends on D2 receptor-linked action of dopamine. Vision Res 34:2051–2057 Tagliati M, Bodis-Wollner I, Yahr M (1996) The pattern electroretinogram in Parkinson’s disease reveals lack of retinal spatial tuning. Electroencephalogr Clin Neurophysiol 100:1–11 Takahashi RH, Capetillo-Zarate E, Lin MT, Milner TA, Gouras GK (2010) Co-occurrence of Alzheimer’s disease beta-amyloid and tau pathologies at synapses. Neurobiol Aging 31(7):1145–1152 Takahashi RN, Pamplona FA, Prediger RD (2008) Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front Biosci 13:2614–2632 Tallon-Baudry C, Bertrand O, Delpuech C, Permier J (1997) Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J Neurosci 17:722–734 Taylor A, Saint-Cyr A, Lang A (1986) Frontal lobe dysfunction in Parkinson’s disease: the cortical focus of neostriatal outflow. Brain 109:845–883 Teuber H, Proctor F (1964) Some effects of basal ganglia lesions in subhuman primates and man. Neuropsychologia 2:85–93 Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522 Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572(Pt 2):477–492 Traub RD, Miles R, Schulman LS (2008) Neuronal networks of the hippocampus. C ambridge University Press, Cambridge, ISBN:9780521063319 Trichopoulou A, Kouris-Blazos A, Wahlqvist ML, Gnardellis C, Lagiou P, Polychronopoulos E, Vassilakou T, Lipworth L, Trichopoulos D (1995) Diet and overall survival in elderly people. BMJ 311(7018):1457–1460 Trottenberg T, Fogelson N, Kühn AA, Kivi A, Kupsch A, Schneider GH, Brown P (2006) Subthalamic gamma activity in patients with Parkinson’s disease. Exp Neurol 200(1):56–65 Tsuchiya H, Yamaguchi S, Kobayashi S (2000) Impaired novelty detection and frontal lobe dysfunction in Parkinson disease. Neuropsychologia 38:645–654 Tunbridge EM, Bannerman DM, Sharp T, Harrison PJ (2004) Catechol-o-methyltransferase inhi- bition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J Neurosci 24:5331–5335 Tzelepi A, Bezerianos T, Bodis-Wollner I (2000) Functional properties of sub-bands of oscillatory brain waves to pattern visual stimulation in man. Clin Neurophysiol 111:259–269 Wakabayashi K, Takahashi H, Ohama E, Takeda S, Ikuta F (1993) Lewy bodies in the visceral autonomic nervous system in Parkinson’s disease. Adv Neurol 60:609–612 Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F (1988) Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol 76(3):217–221 Wang L, Kuroiwa Y, Kamitani T (1999a) Visual event-related potential changes at two different tasks in nondemented Parkinson’s disease. J Neurol Sci 164(2):139–147 Wang L, Kuroiwa Y, Kamitani T, Takahashi T, Suzuki Y, Hasegawa O (1999b) Effect of inter- stimulus interval on visual P300 in Parkinson’s disease. J Neurol Neurosurg Psychiatry 67(4):497–503 Wang L, Kuroiwa Y, Li M, Kamitani T, Wang J, Takahashi T, Suzuki Y, Ikegami T, Matsubara S (2000) The correlation between P300 alterations and regional cerebral blood flow in non- demented Parkinson’s disease. Neurosci Lett 282(3):133–136 Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981, Aug) Alzheimer dis- ease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10(2):122–126 Wichmann T, DeLong MR (2003) Functional neuroanatomy of the basal ganglia in Parkinson’s disease. Adv Neurol 91:9–18 292 I. Bodis-Wollner and H. Moreno Wilson RS, Arnold SE, Schneider JA, Tang Y, Bennett DA (2007) The relationship between cere- bral Alzheimer’s disease pathology and odour identification in old age. J Neurol Neurosurg Psychiatry 78(1):30–35 Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Bäckman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC (2004) Mild cognitive impairment – beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256(3):240–246 Younkin SG (1998) The role of A beta 42 in Alzheimer’s disease. J Physiol Paris 92(3–4):289–292 Zanini S, Moschella V, Stefani A, Peppe A, Pierantozzi M, Galati S, Costa A, Mazzone P, Stanzione P (2009) Grammar improvement following deep brain stimulation of the subthalamic and the pedunculopontine nuclei in advanced Parkinson’s disease: a pilot study. Parkinsonism Relat Disord 15(8):606–609 NF-κB in Brain Diseases Cheng-Xin Gong Abstract Nuclear factor κB(NF-κB) is a family of major transcription factors that play various important roles under physiological and pathological conditions. NF-κB transcription factors are ubiquitously expressed, including neurons and glial cells of the central nervous system (CNS). The roles of NF-κB family in the CNS, both as mediators of transcriptional response to synaptic activity and in behavioral paradigms of learning and memory, are the focus of recent studies. In this chap- ter, the general structure, major functions, and the regulation of NF-κB signaling are first described concisely. Advances made in understanding of the roles of NF- κB in the CNS and in brain diseases are then reviewed in more detail. The NF-κB signaling pathway as a potential therapeutic target of brain diseases is discussed at the end. Keywords Alzheimer disease · Brain · Cytokines · Glial cells · Huntington’s disease · Iκ · IκB kinase · Ischemic and traumatic brain injury · Learning · Memory · Multiple sclerosis · Neuronal Plasticity · Neuroprotection · NF-κB · Nuclear factor · Parkinson’s disease · Rel family · Seizures · Synaptic transmis- sion · Therapeutic target · Transcription factor Abbreviations AD Alzheimer disease CNS Central nervous system HD Huntington’s disease IκB Inhibitor of NF-κB IKK IκB kinase IL Interleukin LTP Long-term potentiation NES Nuclear export signal C X. Gong (B) Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314-6399, USA e-mail: cxgong@mail.csi.cuny.edu 293 J.P. Blass (ed.), Neurochemical Mechanisms in Disease, Advances in Neurobiology 1, DOI 10.1007/978-1-4419-7104-3_10, C  Springer Science+Business Media, LLC 2011 294 C X. Gong NF-κB Nuclear factor κB NIK NF-κB–inducing kinase NGF Nerve growth factor PD Parkinson’s disease SOD Superoxide dismutase SRD Signal response domain TNF Tumor necrosis factor Contents 1 Introduction 294 2 Structure of NF-κBandIκBFamily 295 3 General Biological Role of NF-κB 297 4 Regulation of NF-κB Signaling 299 5RoleofNF-κB Signaling in the CNS 301 5.1 NF-κBintheCNS 301 5.2 Activators and Inhibitors of NF-κBintheCNS 301 5.3 NF-κB–Regulating Genes in the CNS 302 5.4 Role of NF-κB in Synaptic Transmission and Neuronal Plasticity 302 5.5 Role of NF-κB in Learning and Memory 303 5.6 Role of NF-κB in Neuroprotection 303 5.7 Role of NF-κB in Glial Cells 304 6RoleofNF-κB in Brain Diseases 305 6.1 Role of NF-κB in Ischemic and Traumatic Brain Injury 305 6.2 Role of NF-κB in Seizures 306 6.3 Role of NF-κB in Alzheimer Disease (AD) 306 6.4 Role of NF-κB in Parkinson’s Disease (PD) and Huntington’s Disease (HD) . 307 6.5 Role of NF-κB in Multiple Sclerosis 308 7NF-κB Signaling Pathway as a Potential Therapeutic Target 309 References 310 1 Introduction Nuclear factor κB(NF-κB) is the prototype of a family of major transcription fac- tors that play an essential role in several aspects of physiological and pathological conditions. More than two decades ago, Sen and Baltimore (1986) discovered it as a nuclear factor that, when activated by agents such as bacterial lipopolysaccharide, binds to a 10-bp sequence in the enhancer region of the gene encoding the κ light chain of antibody molecules in B cells (hence, κB). Because of the growing biomed- ical importance of nuclear factors, studies on NF-κB and its implications have been a major area of research in the recent years. . delayed response is impaired in early Parkinson’s disease. Neuropsychology 11:171–179 Prasher D, Findley L (1991) Dopaminergic induced changes in cognitive and motor processing in Parkinson’s disease: an electrophysiological. Electroencephalogr Clin Neurophysiol 106:156–164 Hanninen T, Koivisto K, Reinikainen KJ, Helkala EL, Soininen H, Mykkänen L, Laakso M, Riekkinen PJ (1996) Prevalence of ageing-associated cognitive decline in an. following deep brain stimulation of the subthalamic and the pedunculopontine nuclei in advanced Parkinson’s disease: a pilot study. Parkinsonism Relat Disord 15(8):606–609 NF-κB in Brain Diseases Cheng-Xin

Ngày đăng: 07/07/2014, 09:20

Xem thêm: Neurochemical Mechanisms in Disease P31 docx