1. Trang chủ
  2. » Tài Chính - Ngân Hàng

Basic Mathematics for Economists - Rosser - Answers docx

13 526 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 106,14 KB

Nội dung

Answers Chapter 2 2.1 1. 3,555 2. 865 3. 92,920 4. 23 2.2 1. 919 2. 225 3. 164 4. 627 5. 440 6. 101 2.3 1. 840 2. 17 3. 172 4. 122 5. £13,800 6. 598 7. £176 2.4 1. 73 168 2. 101 252 3. 4 4 5 4. 19 30 5. 2 13 21 6. 4 37 60 7. 14 1 12 8. 3 12 13 9. 18 39 40 10. 1 1 2 2.5 1. (a) 1 3 (b) 5 7 (c) 1 2 5 (d) 3 (e) 11 2. 1 3. (a) 1 (b) 5 4. 15, 4 1 3 , 2 1 5 , 1 2 7 , 7 9 , 5 11 , 3 13 , 1 15 2.6 1. 36.914 2. 751.4 3. 435.1096 4. 36,082 5. 0.09675 6. 610 7. 140 8. (a) 0.1 (b) 0.001 (c) 0.000001 9. (a) 0.452 (b) 2.431 (c) 0.075 (d) 0.002 2.7 1. −22.−24 3. −33 4. 0.45 5. 0.35 6. −117 7. −330 8. 3600 9. −157 140 10. 17 16 2.8 1. 0.25 2. 123 3. 6 4. 64 5. 11.641754 6. 531,441 7. 0.0015328 8. 36 9. −618.47021 10. 25.000655 © 1993, 2003 Mike Rosser 2.9 1. ±25 2. 2 3. 0.2 4. 7 5. 2.4494897 6. 96 7. 10 8. 5.2780316 9. 0.03423 10. 87.977857 2.10 1. 270,818.98 2. 220.9478 3. 2.8563 × 10 9 4. 1.5728 × 10 8 5. 1.2683 6. 16,552,877 7. 93.696376 8. 4.38228 9. 5.1331868 Chapter 3 3.1 1. (a) 0.01x (b) 0.5x (c) 0.5x 2. 0.01rx + 0.5wx + 0.5mx 3. (a) x 12 (b) xp 12 4. (a) 0.1x kg (b) 0.3x kg (c) x(0.1m +0.3p) 5. 0.5w + 0.25 6. Own example 7. 10.5x + 6y 8. 3q − 6000 3.2 1. 456 2. 77.312 3. r + z, 9% 4. Own example 5. 1.094 6. £465.58 7. £2,100 8. (a) 99 + 0.78M (b) £2,166 3.3 1. 30x + 42.24x − 18y + 7xy − 12 3. 6x +5y −650 4. 9H − 120 3.4 1. 6x 2 − 24x 2. x 2 + 4x +93.2x 2 + 6x + xy + 3y 4. 42x 2 − 16y 2 − 34xy + 6y 5. 33x +2y − 20y 2 + 62xy − 21 6. 120 +2x + 54y + 40z − x 2 + 6y 2 + xy + 4xz + 8yz 7. 200q − 2q 2 8. 13x +11y 9. 8x 2 + 60x +76 10. 4,000 +150x 3.5 1. (x +4) 2 2. (x −3y) 2 3. Does not factorize 4. Does not factorize 5. Own example 3.6 1. 3x +7 −20x −1 2. x +93.4y + x +12 4. 200x −1 + 21 5. 179x 6. 2(x + 3) + 4 − x − 3 − x + 2 = 9 7. Own example 3.7 1. 4 2. 1 11 3.7 4.14 5.82 6.20p 7.33% 8. 40p 9. £3,062.50 10. 4 m 11. 26 3.8 1. 1 n n  i=1 H i , 173.7 cm 2. 35 3. 60 4. n  i=1 6,000(0.9) i−1 ,16,260 tonnes 5. (a) 1 n n  i=1 R i , £4,425 (b) 1 3 n−1  n−3 R i , £4,933 6. 13.25%, 8.2 3.9 1. (a) ≤ (b) < (c) ≥ (d) > 2. (a) > (b) ≥ (c) > (d) > 3. (a) Q 1 <Q 2 (b) Q 1 = Q 2 (c) Q 1 >Q 2 4. P 2 >P 1 © 1993, 2003 Mike Rosser Chapter 4 4.1 1. (a) Quantity demanded depends on the price of tea, average exp., etc. (b) Q t dependent, all others independent. (c) Q t = 99 − 6P t − 0.5Y t + 0.8A +1.2N + 1.4Pc (suggested number assumes tea is an inferior good) 2. (a) 202 (b) 7 (c) 6, x ≥ 0 3. Yes; no 4.2 1. ◦ F = 32 + 1.8 ◦ C2.P = 2,400 − 2Q 3. It is not monotonic, e.g. TR = 200 when q = 5or10 4. T = (0.0625X − 25) 2 ; no 5. Own example 4.3 (Answers to 1 to 5 give intercepts on axes) 1. x =−12,y = 62.x = 3 1 3 ,y =−40 3. P = 60,Q = 300 4. P = 150,Q= 750 5. K = 24,L= 40 6. Goes through origin only 7. Goes through (Q = 0, TC = 200) and (Q = 10, TC = 250) 8. Horizontal line at TFC = 75 9. Own example 10. (a) and (d); both slope upwards and have positive intercepts on P axis 4.4 1. Q = 90 −5P ; 50; Q ≥ 0,P ≥ 02.C = 30 + 0.75Y 3. By £20 to £100 4. P = 12 − 0.015Q 5. £6,440 4.5 1. 3.75, 0.75, 0.375, −0.75 2. P = 12,Q = 40;£4.50; 10 3. (a) 2/3 (b) 3 4. (c) (i) (a) (ii) (b) 5. (a), (d) 6. APC = 400Y −1 + 0.5 > 0.5 = MPC 7. (a) 0.263 (b) 0.714 (c)1.667 8. Own example 4.6 1. −1.5 (a) becomes −1 (b) becomes −1 (c) no change (d) no change 2. K = 100,L= 160,P K = £8,P L = £5 3. Cost £520 > budget; P L reduced by £10 to £30 4. (a) −10 (b) −1 (c) −0.1 (d) −0.025 (e) 0 5. No change 6. Height £120, base 12, slope −10 =−(wage) 7. Own example 4.7 1. Sketch graphs 2. Sketch graphs 3. Steeper 4. Like y = x −1 ;£260 5. Own example 4.8 1. Sketch graphs 2. Own example 3. π = 50x − 100 −0.4x 3 ; inverted U 4. (a) 40 = 3250q −1 (b) Original firms’ π per unit = £27.50 but new firms’ AC = £170 > price 4.9 Plot Excel graphs 4.10 1. (a) 16L −1 (b) 0.16 (c) constant 2. (a) 57,243.34L −15 (b) 57.243 (c) constant 3. (a) 322.54L −1 (b) 3.2254 (c) increasing 4. (a) 3,125L −1.25 (b) 9.882 (c) increasing © 1993, 2003 Mike Rosser 5. (a) 23,415,916L −1.6667 (b) 10,868.71 (c) decreasing 6. (a) 4,093.062L −1.7714 (b) 1.173 (c) decreasing 4.11 1. MR = 33.33 − 0.00667Q for Q ≥ 500 2. MR = 76 − 0.222Q for Q ≥ 22.5 3. MR = 80 − 0.555Q for Q ≥ 562.5 4. MC = 30 +0.0714Q for Q ≥ 56 5. MC = 56 +0.1333Q for Q ≥ 30 6. MC = 3 +0.0714Q for Q ≥ 59 Chapter 5 5.1 1. q = 40,p = 62.x = 67,y = 17 (approximately) 3. No solution exists 5.2 1. q = 118,p = 256 2. (a) q = 80,p = 370 (b) q falls to 78, p rises to 376 3. Own example 4. (a) 40 (b) rises to 50 5. x = 2.102,y = 62.25 5.3 1. A = 24,B = 12 2. 200 3. x = 190,y = 60 5.4 1. x = 30,y = 60 2. A = 6,B = 36 3. x = 25,y = 20 5.5 1. x = 24,y = 14.4,z = 19.22.x = 4,y = 6,z = 4 3. A = 6,B= 22,C= 24.x = 17,y = 4,z = 8 5. A = 82.5,B = 35,C = 6,D = 9 5.6 1. q = 500,p = 275 2. K = 17.5,L = 16,R = 10 3. (a) p rises from £8 to £10 (b) p rises to £9 4. Y = £3,750 m; government deficit £150 m 5. Y = £1,625 m; balance of payments deficit £15 m 6. L = 80,w = 52 5.7 1. p = 184 + 0.2a, q = 43.2 + 0.06a,p = 216,q = 52.8 2. p = 84 + 0.2t,q = 32 − 0.4t,p = 85,q = 30 3. p = 122.4 + 0.2t,q = 13.8 − 0.1t,p = 123.4,q = 13.3 4. (a) Y = 100/(0.25 + 0.75t),Y = 250 (b) Y = 110/(0.25 +0.75t),Y = 275 5. p = (4200 + 3800v)/(9 + 5v), q = (750 − 50v)/(9 + 5v) p = 494.30, q = 76.94 5.8 1. q 1 = 60,q 2 = 80,p 1 = £10,p 2 = £8 2. q 1 = 40,q 2 = 50,p 1 = £6,p 2 = £4 3. p 1 = £8.75,q 1 = 60,p 2 = £6.10,q 2 = 550 © 1993, 2003 Mike Rosser 4. £81 for extra 65 units 5. £7.50 for extra 25 units 6. q 1 = 48,q 2 = 39,p 1 = £12,p 2 = £8.87 7. (a) 190 units (b) £175 for extra 75 units 5.9 1. q 1 = 180,q 2 = 200,p = £39 2. q 1 = 1,728,q 2 = 780,p = £190.70 3. q 1 = 1,510,q 2 = 1,540,q A = 800,q B = 2,250,P A = £500,P B = £625 4. q 1 = 160,q 2 = 600,q A = 293 1 3 ,q B = 266 2 3 ,q C = 200,P A = £95, P B = £80,P c = £60 5. q 1 = 15.47,q 2 = 27.34,q 3 = 26.17,p = £14.20 5A.1 1. 8.4 of A, 4.64 of B (tonnes); (a) no change (b) no B, 12.16 of A 2. A = 13,B = 27 3. 12 of A, 5 of B 4. 22.5 of A, 7.5 of B 5. 6 of A, 32 of B 6. Own example 7. 13.64 of A, 21.82 of B; £7092; surplus 2.72 of R, 22.72 of mix additive 8. Produce 15 of A, 21 of B 9. 30 of A, B = 0 10. Objective function parallel to first constraint 11. 24,000 shares in X, 18,000 shares in Y, return £8,640 12. Own example 5A.2 1. C = 70 when A = 1,B = 1.5, slack in x = 30 2. A = 3,B = 0 3. Q = 2.5,R = 1.5; excesses 62.5 mg of B, 27.5 mg of C 4. 10 of A, 5 of B; space for 50 extra loads of X 5. Zero R, 15 tonnes of T; G exceeds by 45 kg 6. 100 of A, 40 of B 7. Own example 5A.3 1. 2 of A, 1 of B 2. 7.5 of X and 15 of Y (tonnes) 3. 8 4. Own example Chapter 6 6.1 1. 2 or 3 2. 10 or 60 3. When x = 2 4. 0.5 5. 9 6.2 1. 10 or −12.5 2. £16.353. (a) 1.01 or 98.99 (b) 11.27 or 88.73 (c) no solution exists 4. Own example 6.3 1. x = 15,y = 15 or x =−3,y = 249 2. x = 1.75,y = 3.15 or x =−1.53,y = 20.97 3. 16.4 4. q 1 = 3.2,q 2 = 4.8,p 1 = £136,p 2 = £96 5. p 1 = £15,q 1 = 80,p 2 = £8.50,q 2 = 70 6.4 1. 52 2. 1069 3. 10 © 1993, 2003 Mike Rosser Chapter 7 7.1 1. £4,630.50 2. £314.70 3. £17,623.16 4. £744.71 5. £40,441.40 6. £5,030.03 7.2 1. £43,747.41;12.68% 2. £501,159.74; 7.44% 3. (a) APR 11.35% 4. £2,083.61; 19.25% 5. £625; 5.09% 6. 19.28% 7. 0.01467% 8. £494,531.25; 4.5% 7.3 1. £6,301.69 2. £355.89 3. No, A = £9,106.27 4. £6,851.65 5. (a) £9,638.58 (b) £11,579.83 (c) £13,318.15 6. 5 7. 5.27 years 8. 12.1 years 9. 5.45 years 10. 3.42 years 11. 10.7% 12. 9.5% 13. 7.5% 14. 0.8% 15. 10.3% 16. 8.4% 17. (b) as PV = £5,269.85 7.4 1. (a) £90.75 (b) −£100.07 (c) −£474.01 (d) £622.86 (e) £1,936.87 (f) £877.33 (g) £791.25 (h) £992.16 2. B, PV = £6,569.10 3. (a) All viable (b) A best, NPV = £6,824.68 4. Yes, NPV = £7,433.56 5. Yes, NPV = £4,363.45 6. (a) Yes, NPV = £610.02 (b) no, NPV =−£522.30 7. B, NPV = £856.48 7.5 1. r A = 20%,r B = 41.6%,r C = 20%,r D = 20%; B consistently best, but others have same IRR with different NPV ranking 2. (a) A, r A = 21.25%,r B = 20.42% (b) B, NPV B = £2,698.94, NPV A = £2,291.34 3. IRR = 16.93% 7.6 1. (a) 2.5, 781.25, 50,857.3 (b) 3, 121.5, 14,762 (c) 1.4, 10.756, 139.6 (d) 0.8, 19.66, 267.8 (e) 0.75, 0.57, 9.06 2. 5,741 (to nearest whole unit) 3. A, £1,149.32;B,£2,980.91; C, £45,216.47 4. Yes, NPV = £3,774.71 5. £4,149.20 7.7 1. (a) k = 1.5, not convergent (b) k = 0.8, converges on 600 (c) k =−1.5, not convergent (d) k = 1 3 converges on 54 (e) converges on 961.54 (f) not convergent 2. £3,076.92 3. Yes, NPV = £50,000 4. (a) £240,000 (b) £120,000 (c) £80,000 (d) £60,000 5. £3,500 7.8 1. £152.59 2. £197.38 3. £191.46 4. £794.66 5. (a) 14.02% (b) 26.08% (c) 23.86% (d) 14.71% 6. Loan is marginally better deal (PV of payments = £6,348.33 + £1,734 deposit = £8,082.33, less than cash price by £12.67) © 1993, 2003 Mike Rosser 7.9 1. 6.82 years 2. After 15.21 years 3. 4% 4. Yes, sum of infinite GP = 1,300 million tonnes 5. 4.85% Chapter 8 8.1 1. 36x 2 2. 192 3. 21.6 4. 260x 4 5. Own example 8.2 1. 3x 2 + 60 2. 250 3. −4x −2 − 44.1 5. 0.2x −3 + 0.6x −0.7 6. Own example 8.3 1. 120 −6q, 20 2. 25 3. 14,400 4. £200 5. Own example 8.4 1. 7.5 2. 12q 2 − 40q + 60 3. (a) 1.5q 2 − 6q + 25 (b) 0.5q 2 − 3q + 25 + 20q −1 (c) q − 3 − 20q −2 4. MC constant at 0.8 5. Own example 8.5 1. 4 2. (a) 80 (b) 158.33 (c) 40 or 120 3. 6 8.6 1. 50 − 2 3 q 2. 900 3. 24 − 1.2q 2 8.7 1. 0.8 2. Proof 3. 0.16667 4. 1 8.8 1. £77.50 2. Own example 3. Rise, maximum TY when t = £39 8.9 1. (a) 0.8 (b) 4,400 (c) 5 (d) 120 (e) Yes, both 940 Chapter 9 9.1 1. 62.5 2. 150 3. (a) 500 (b) 600 (c) 300 4. 50 9.2 1. 1,200, max. 2. 25, max. 3. 4,096, max. 4. 4, not max. 9.3 1. 6, min. 2. 14.4956. min. 3. 0, min. 4. 3, not min. 5. No stationary point exists 9.4 1. (a) MC = 2q 2 − 28q + 222, min. when q = 7, MC = 124 (b) AVC = 2 3 q 2 − 14q + 222, min. when q = 10.5, AVC = 148.5 (c) AFC = 50q −1 , min. when q →∞=, AFC → 0 (d) TR = 200q − 2q 2 , max. when q = 50, TR = 5,000 (e) MR = 200 − 4q, no turning point, end-point max. when q = 0 (f) π =− 2 3 q 3 + 12q 2 − 22q − 50, max. when q = 11,π = 272.67  π min. when q = 1,π =−60 2 3  2. Own example 3. (a) 16 (b) 8 (c) 12 4. No turning point but end–point min. when q = 0 5. No turning point but end–point min. when q = 0 6. Max. when x = 63.33, no minimum © 1993, 2003 Mike Rosser 9.5 1. π max. when q = 4 (theoretical min. when q =−1.67 not realistic) 2. (a) Max. when q = 10 (b) no min. exists 3. π max. when q = 12.67, gives π =−48.8 4. 5,075 when q = 10 5. 27.6 when q = 37 9.6 1. 15 orders of 400 2. 560 3. 480 every 4.5 months 4. 140 9.7 1. (i) (a) q = 90 − 0.2t,p = 270 + 0.4t (b)&(c) q = 90,p = 270 (ii) (a) q = 250 − 1.25t,p = 125 + 0.375t (b)&(c) q = 250,p = 125 (iii) (a) q = 25 − 0.9615t,p = 160 + 0.385t (b)&(c) q = 25,p = 160 (there is no tax impact for (b) and (c) in all cases) 2. q = 100,p = 380 (no tax impact) Chapter 10 10.1 1. (a) 3 +8x,16 + 4z (b) 42x 2 z 2 , 28x 3 z (c) 4z + 6x −3 z 3 , 4x − 9x −2 z 2 2. MP L = 4.8K 0.4 L −0.6 , falls as L increases 3. MP K = 12K −0.7 L 0.3 R 0.4 , MP L = 12K 0.3 L −0.7 R 0.4 , MP R = 16K 0.3 L 0.3 R −0.6 4. MP L = 0.7, does not decline as L increases 5. No 6. 1.2x −0.7 j 10.2 1. (a) 0.228 (b) falls to 0.224 (c) inferior as ∂q/∂m < 0 (d) elasticity with respect to p s = 0.379 and so a 1% increase in both prices would cause a percentage rise in q of 0.379 −0.228 = 0.151% 2. (a) Yes, MU A and MU B will rise at first but then fall; (b) no, MU A falls but MU B continually rises, therefore law not obeyed; (c) yes, both MU A and MU B continually fall. 3. No, MU will never reach zero for finite values of A or B. 4. 3,738.46; balance of payments changes from 4.23 deficit to 68.85 surplus. 5. 25 + 0.6q 2 1 + 2.4q 1 q 2 6. 0.45; 1.81818; 55 10.3 1. −2K 0.6 L −1.5 , 2.4K −0.4 L −0.5 2. Q LL = 6.4, MP L function has constant slope; Q LK = 35+2.8K, position of MP L will rise as K rises; Q KK = 2.8L, MP K has constant slope, actual value varies with L; Q KL = 35 + 2.8K, increase in L will increase MP K , effect depends on level of K. 3. TC 11 = 0.008q 2 3 , TC 22 = 0, TC 33 = 0.008q 2 1 TC 12 = 1.2q 3 = TC 21 , TC 23 = 9 + 1.2q 1 = TC 32 TC 31 = 0.016q 1 q 3 + 1.2q 2 = TC 13 10.4 1. q 1 = 12.46;q 2 = 36.55 2. p 1 = 97.60,p 2 = 101.81 3. q 1 = 0,q 2 = 501.55 (mathematical answer gives q 1 =−1,292.24, q 2 = 1,701.77 so rework without market 1) 4. £575.81 when q 1 = 47.86 and q 2 = 39.01 5. q 1 = 266.67,q 2 = 333.33 6. q 1 = 1,580.2,q 2 = 1,791.87.K = 2,644.2,L= 3,718.5 © 1993, 2003 Mike Rosser 8. £29,869.47 when K = 1,493.47 and L = 2,489.12 9. Because max. π = £18,137.95 when K = 2,176.5 and L = 2,015.22 10. K = 10,149.1,L= 9,743.1 10.5 1. (a) 12K −0.4 L 0.4 dK + 8K 0.6 L −0.6 dL (b) 14.4K −0.7 L 0.2 R 0.4 dK + 9.6 0.3 L −0.8 R 0.4 dL + 19.2K 0.3 L 0.2 R −0.6 dR (c) (4.8K −0.2 + 1.6KL 2 )dK + (3.5L −0.3 + 1.6K 2 L)dL 2. (a) Yes (b) no, surplus (c) no, surplus 3. 40x −0.6 z −0.45 + 12x 0.4 z −0.7 4. ∂Q A ∂P A + ∂Q A ∂M dM dP A Chapter 11 11.1 1. K = 12.6,L= 21 2. K = 500,L= 2,500 3. A = 6,B = 4 4. 141.42 when K = 25,L= 50 5. Own example 6. (a) K = 1,000,L= 50 (b) K = 400,L= 20 7. 1,950 when K = 60,L= 120 8. L = 241,K = 201, TC = £3,617 11.2 See answers to 11.1 11.3 1. See answers to 11.1 2. L = 38.8,K = 20.7, TC = £3,104.50 3. C 1 = £480,621,C 2 = £213,609 4. L = 19.04,K = 8.18, TC = £1,145.30 11.4 1. x = 30,y = 30,z = 90 2. 877.8 when K = 15,L = 45,R = 13 3. x = 50,y = 100,z = 150 4. 79,602.1 when x = 300,y = 300,z = 1,875 5. K = 26.7,L= 33.3,R = 8.9,M = 55.6 6. Own example 7. L = 60,K = 45,R = 40 Chapter 12 12.1 1. 9 2. Answer given 3. 3M(1 + i) 2 4. 0.6x(3 +0.6x 2 ) −0.5 5. 0.5(6 +x) −0.5 6. MRP L = 60L −0.5 − 8,L = 16 7. 169 units 8. £8 9. 0.000868 12.2 1. (6x +7) −0.5 (39x 2 + 36.4x −5.7) 2. 12 3. 76.5L −0.5 (0.5K 0.8 + 3L 0.5 ) −0.4 4. 312.5 5. £190 6. Own example 7. (a) −0.05(60 − 0.1q) −0.5 (b) rate of change of slope =−0.0025(60 − 0.1q) −0.5 < 0 when q<600 (c) 400 12.3 1. (24 +6.4x −4.5x 1.5 − 3x 2.5 )(8 − 6x 1.5 ) −1.5 2. (18,000 +360q)(25 + q) −1.5 3. −0.113 © 1993, 2003 Mike Rosser 4. q = 1,333 1 3 , d 2 TR/dq 2 =−0.00367 5. L = 4.8,H = 7.2 6. Adapt proof in text for MC and AC to AVC = TVC(q) −1 12.4 1. (a) 12.5x 2 + C (b) 5x + 0.6x 2 + 0.05x 3 + C (c) 24x 5 − 15x 4 + C (d) 42x + 18x −1 + C (e) 60x 1.5 + 220x −0.2 + C 2. (a) 4q + 0.05q 2 (b) 42q − 9q 2 + 2q 3 (c) 35q + 0.3q 3 (d) 62q − 8q 2 + 0.5q 3 (e) 185q − 12q 2 + 0.3q 4 12.5 1. (a) £750,000 (b) £81,750 (c) £250,000 (d) £67,750 2. £49,600 3. Own example Chapter 13 13.1 1. 20 2. No production in period 4 3. (a) Unstable (b) stable 13.2 1. P t = 4 + 0.25(−2) t 2. Stable, 118.54 3. 404.64 13.3 1. 2,790.625; yes 2. 39,946.789 3. 492.57 4. 1,848.259 13.4 1. 2,460.79 2. No, 1,976.67 < 1,980 3. P x t = 562 − 63(0.83) t , 555.27 Chapter 14 14.1 1. 64.44 million 2. 61,062 units 3. 16.8 million tonnes 4. Usage in million units: (a) 94.6, yes (b) 137.6, yes (c) 200.2, no (d) 291.31, no 5. 56,609 units 6. e31,308.07 14.2 1. 2%; 9.84 million; no 2. 9%, 401,767,300 barrels 3. £122,197.54 4. 587 14.3 1. 0.48% 2. 2.05%; 3.49% 3. 0.83%, 621.43 million tones 4. e6,446.39 million 5. 8.8% 6. 5.83% 7. 6.18% 8. 9% discrete (equivalent to 8.62% continuous) 14.4 1. (a) 200e 0.2t , 1477.81 (b) 45e 1.2t , 7323965.61 (c) 14e −0.4t ,0.26 (d) 40e 1.32t , 21614597.49 (e) 128e −0.03t , 99.69 2. 10 %, 6.77 14.5 1. −20e 0.4t + 200, 52.22, unstable 2. −19.2e −1.5t + 32, 31.99, stable 3. −20e −0.75t + 120, 119.53, stable 4. 75e 0.08t − 300, −188.11, unstable 14.6 1. 7e −0.325t + 30, stable 2. −7.25e −0.96t + 26.25, difference 0.01 3. Yes, as predicted spot price is $27.56 4. 32.54e −0.347t + 17.46, £23.20, 3 periods 5. $44.01 © 1993, 2003 Mike Rosser [...]... 243.86, min SOC met as |HB | = −0.945 © 1993, 2003 Mike Rosser Symbols and terminology |x| [ ]m 0 dy dx ex f1 > ≥ absolute value 60 definite integral 388 derivative 247 exponential function 432 first-order derivative 295 greater than inequality 59 greater than or equal to weak inequality 59 ≡ identity 52 ∞ infinity 69 integral 390 © 1993, 2003 Mike Rosser λ < ≤ log ln ∂y ∂x f11 x √ √ x y Lagrange multiplier... 1, β3 = 0.4, Q = 9.5 4 β1 = −300, β2 = 75, β3 = 400, β4 = −100, β5 = 0.2, β6 = 10, Q = 8370 15.9 1 x = 3, y = 7 15.10 1 q1 = 389.6, q2 = 62.3, max SOC met as |H1 | = −0.6, |H2 | = 0.448 2 6 3 See 15.8 answers 2 q1 = 216.8, q2 = 435.8, max SOC met as |H1 | = −0.5, |H2 | = 0.19 3 q1 = 6.485, q2 = 2.376, q3 = 5.4, max SOC met as |H1 | = −16.8, |H2 | = 21.2, |H3 | = −16.8 4 q1 = 5.2, q2 = 35.4, q3 = 20.8,... 3 1 4 2 −8     56 x 8 4 y  = 28 34 z 2 d not possible 2 (b) and (c) 3 (b) not square, (c) rows linearly dependent 15.5 1 A 2 B.0 C.56 15.6 1 a −39 b.15 c −4 2 A.636 B −101 © 1993, 2003 Mike Rosser D.137 E.119 d 28 e 50 C −4462 f 4  3 4 −5 6 −5 2 C =  2 −8 −19 20    3 2 −8 0.6 0.4 6 −19 A−1 = 0.8 1.2 AdjA =  4 −5 −5 20 −1 −1   −0.5 0.5 −0.5 −0.5  0.1075 −0.0215 0.1505 −0.0538... ln ∂y ∂x f11 x √ √ x y Lagrange multiplier 342 less than inequality 59 less than or equal to weak inequality 59 logarithm (base 10) 29–32 natural logarithm (base e) 440–1 partial derivative 291 second-order partial derivative 297 small change in x 253–4, 257 square root 26 xth root of y 27 summation 56 . MR = 76 − 0.222Q for Q ≥ 22.5 3. MR = 80 − 0.555Q for Q ≥ 562.5 4. MC = 30 +0.0714Q for Q ≥ 56 5. MC = 56 +0.1333Q for Q ≥ 30 6. MC = 3 +0.0714Q for Q ≥ 59 Chapter 5 5.1 1. q = 40,p = 62.x = 67,y. £6.10,q 2 = 550 © 1993, 2003 Mike Rosser 4. £81 for extra 65 units 5. £7.50 for extra 25 units 6. q 1 = 48,q 2 = 39,p 1 = £12,p 2 = £8.87 7. (a) 190 units (b) £175 for extra 75 units 5.9 1. q 1 =. 2003 Mike Rosser 5. (a) 23,415,916L −1.6667 (b) 10,868.71 (c) decreasing 6. (a) 4,093.062L −1.7714 (b) 1.173 (c) decreasing 4.11 1. MR = 33.33 − 0.00667Q for Q ≥ 500 2. MR = 76 − 0.222Q for Q ≥

Ngày đăng: 06/07/2014, 07:20

TỪ KHÓA LIÊN QUAN