1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Heat Transfer Handbook part 113 docx

10 430 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 89,56 KB

Nội dung

BOOKCOMP, Inc. — John Wiley & Sons / Page 1117 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 1117 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1117], (89) Lines: 2047 to 2087 ——— 7.0pt PgVar ——— Long Page PgEnds: T E X [1117], (89) Kulenovic, R., Mertz, R., and Groll, M. (2002). High Speed Flow Visualization of Pool Boiling from Structured Tubular Heat Transfer Surfaces, Exp. Therm. Fluid Sci., 25(7), 547–555. Kumagai, M., Amano, R. S., and Jensen, M. K. (2002). Heat Transfer Enhancement by Turbu- lent Impinging Jets Using a Universal Function Method, J. Enhanced Heat Transfer, 9(1), 47–55. Kun, L. C., and Czikk, A. M. (1969). Surface for Boiling Liquids, U.S. patent 3,454,081 (reissued Aug. 21, 1979, Re. 30,077). Kun, L.C., and Ragi, E. G. (1981). Enhancement for Film Condensation Apparatus, U.S. patent 4,253,519. Kurihari, H. M., and Meyers, J. E. (1960). Effects of Superheat and Roughness on the Boiling Coefficients, AIChE J., 6(1), 83–91. Kwon, J. T., Park, S. K., and Kim, M. H. (2000). Enhanced Effect of a Horizontal Micro-fin Tube for Condensation Heat Transfer with R-22 and R-410A, J. Enhanced Heat Transfer, 7(2), 97–107. Lan, J., Disimile, P., and Weisman, J. (1997). Two Phase Flow Patterns and Boiling Heat Trans- fer in Tubes Containing Helical Wire Insets, II: Critical Heat Flux Studies, J. Enhanced Heat Transfer, 4(2), 283–296. Larson, M. B., and London, A. L. (1962). A Study of the Effects of Ultrasonic Vibrations on Convection Heat Transfer to Liquids, ASME-62-HT-44, ASME, New York. Lavin, J. G., and Young, E. H. (1965). Heat Transfer to Evaporating Refrigerants in Two-Phase Flow, AIChE J., 11, 1124–1132. Lee, B. H., and Richardson, P. D. (1965). Effect of Sound on Heat Transfer from a Horizontal Circular Cylinder at Large Wavelength, J. Mech. Eng. Sci., 7, 127–130. Le Fevre, E. J., and Rose, J. W. (1966). A Theory of Heat-Transfer by Dropwise Condensation, Proc. 3rd International Heat Transfer Conference, Vol. 2, pp. 362–375. Lemlich, R., and Rao, M. A. (1965). The Effect of Transverse Vibration on Free Convection from a Horizontal Cylinder, Int. J. Heat Mass Transfer, 8, 27–33. Lewis, M. J. (1974). Roughness Functions, the Thermohydraulic Performance of Rough Sur- faces and the Hall Transformation: An Overview, Int. J. Heat Mass Transfer, 17, 809–814. Li, K. W., and Parker, J. D. (1967). Acoustical Effects on Free Convective Heat Transfer from a Horizontal Wire, J. Heat Transfer, 89, 277–278. Li, P W., Kawaguchi, Y., and Yabe, A. (2001). Transitional Heat Transfer and Turbulent Characteristics of Drag-Reducing Flow through a Contracted Channel, J. Enhanced Heat Transfer, 8, 23–40. Lin, S. T., Fan, L. T., and Azer, N. Z. (1978). Augmentation of Single Phase Convective Heat Transfer with In-Line Static Mixers, Proc. 1978 Heat Transfer and Fluid Mechanics Institute, Stanford University Press, Stanford, CA, pp. 117–130. Lin, Y L., Shih, T. I P., Stephens, M. A., and Chyu, M. K. (2001). A Numerical Study of Flow and Heat Transfer in a Smooth and Ribbed U-Duct with and without Rotation, J. Heat Transfer, 123(2), 219–232. Liou, T M., and Hwang, J J. (1992). Developing Heat Transfer and Friction in a Ribbed Rectangular Duct with Flow Separation at Inlet, J. Heat Transfer, 114(3), 565–573. Liu, X., and Jensen, M. K. (1999). Numerical Investigation of Turbulent Flow and Heat Trans- fer in Internally Finned Tubes, J. Enhanced Heat Transfer, 6(2/4), 105–119. Liu, X., and Jensen, M. K. (2001). Geometry Effects on Turbulent Flow and Heat Transfer in Internally Finned Tubes, J. Heat Transfer, 123(6), 1035–1044. BOOKCOMP, Inc. — John Wiley & Sons / Page 1118 / 2nd Proofs / Heat Transfer Handbook / Bejan 1118 HEAT TRANSFER ENHANCEMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1118], (90) Lines: 2087 to 2127 ——— 9.0pt PgVar ——— Custom Page (10.0pt) PgEnds: T E X [1118], (90) Liu, X., Ma, T., and Wu, J. (1987). Effects of Porous Layer Thickness of Sintered Screen Surfaces on Nucleate Boiling Characteristics, in Heat Transfer Science and Technology, B-X. Wang, ed., Hemisphere Publishing, New York, pp. 577–583. Lokshin, V. A., and Fomina, V. N. (1978). Correlation of Experimental Data on Finned Tube Bundles, Teploenergetika, 6, 36–39. Lopina, R. F., and Bergles, A. E. (1969). Heat Transfer and Pressure Drop in Tape Generated Swirl Flow of Single-Phase Water, J. Heat Transfer, 91, 434–442. Lopina, R. F., and Bergles, A. E. (1973). Subcooled Boiling of Water in Tape Generated Swirl Flow, J. Heat Transfer, 95, 281–283. Lowery, A. J., Jr., and Westwater, J. W. (1957). Heat Transfer to Boiling Methanol: Effect of Added Agents, Ind. Eng. Chem., 19, 1445–1448. Luu, M., and Bergles, A. E. (1979). Experimental Study of the Augmentation of the In-Tube Condensation of R-113, ASHRAE Trans., 85(2), 132–146. Luu, M., and Bergles, A. E. (1980). Enhancement of Horizontal In-Tube Condensation of R-113, ASHRAE Trans., 86(1), 293–312. Luu, M., and Bergles, A. E. (1981). Augmentation of In-Tube Condensation of R-113 by Means of Surface Roughness, ASHRAE Trans., 87(2), 33–50. Ma, T., Liu, X., and Li, H. (1986). Effects of Geometrical Shapes and Parameters of Reentrant Grooves on Nucleate Pool Boiling Heat Transfer from Porous Surfaces, in Heat Transfer 1986, Vol. 4, pp. 2013–2018. MacBain, S. M., Bergles, A. E., and Raina, S. (1997). Heat Transfer and Pressure Drop Characteristics of Flow Boiling in a Horizontal Deep Spirally Fluted Tube, HVAC&R Res., 3(1), 65–80. Manglik, R. M. (1998). Pool Boiling Characteristics of High Concentration Aqueous Surfac- tant Emulsions, in Heat Transfer 1998, Vol. 2, KSME, Seoul, Korea, pp. 449–453. Manglik, R. M., and Bergles, A. E. (1990). The Thermal-Hydraulic Design of the Rectangular Offset-Strip-Fin Compact Heat Exchanger, in Compact Heat Exchangers, (Shah, R. K., Kraus, A. D., and Metzger, D., eds.), Hemisphere Publishing, New York, pp. 123–149. Manglik, R. M., and Bergles, A. E. (1991). Heat Transfer Enhancement of Intube Flows in Process Heat Exchangers by Means of Twisted-Tape Inserts, Report HTL-8, Heat Transfer Laboratory, Rensselaer Polytechnic Institute, Troy, NY. Manglik, R. M., and Bergles, A. E. (1992). Heat Transfer Enhancement and Pressure Drop in Viscous Liquid Flows in Isothermal Tubes with Twisted-Tape Inserts, Waerme Stoffueber- trag., 27, 249–257. Manglik, R. M., and Bergles, A. E. (1993a). Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes, I: Laminar Flows, J. Heat Transfer, 115(4), 881–889. Manglik, R. M., and Bergles, A. E. (1993b). Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes, II: Transition and Turbulent Flows, J. Heat Transfer, 115(4), 890–896. Manglik, R. M., and Bergles. A. E. (1995). Heat Transfer and Pressure Drop Correlations for the Rectangular Offset-Strip-Fin Compact Heat Exchanger, Exp. Therm. Fluid Sci., 10(2), 171–180. Manglik, R. M., and Bergles, A. E. (2002a). Swirl Flow Heat Transfer and Pressure Drop with Twisted-Tape Inserts, in Advances in Heat Transfer, Vol. 36, Academic Press, New York, pp. 183–266. BOOKCOMP, Inc. — John Wiley & Sons / Page 1119 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 1119 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1119], (91) Lines: 2127 to 2162 ——— 0.0pt PgVar ——— Custom Page (10.0pt) PgEnds: T E X [1119], (91) Manglik, R. M., and Bergles, A. E. (2002b). Enhanced Heat Transfer in the New Millenium: A Review of the 2001 Literature, Thermal-Fluids and Thermal Processing Laboratory Report No. TFTPL-EB01, University of Cincinnati, Cincinnati, OH. Manglik, R. M., and Fang, P. (2002). Thermal Processing of Viscous Non-Newtonian Fluids in Annular Ducts: Effects of Power-Law Rheology, Duct Eccentricity, and Thermal Boundary Conditions, Int. J. Heat Mass Transfer, 45(4), 803–814. Manglik, R. M., and Kraus, A. D. (1996). Process, Enhanced, and Multiphase Heat Transfer, Begell House, New York. Manglik, R. M., and Prusa, J. (1995). Viscous Dissipation in Non-Newtonian Flows: Implica- tions for the Nusselt Number, J. Thermophys. Heat Transfer, 9(4), 733–742. Manglik, R. M., and Ranganathan, C. (1997). Visualization of Swirl Flows Generated by Twisted-Tape Inserts in Circular Tubes, in Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, 1997, (Giot, M., Mayinger, F., and Celata, G. P., eds.), Edizioni ETFS, Pisa, Italy, pp. 1631–1636. Manglik, R. M., and You, L. (2002). Computational Modeling of Laminar Swirl Flows and Heat Transfer in Circular Tubes with Twisted-Tape Inserts, Report TFTPL-7, Thermal- Fluids and Thermal Processing Laboratory, University of Cincinnati, Cincinnati, OH. Manglik, R. M., and Yerra, K. (2002). Application of Twisted-Tape Inserts in Shell-and- Tube Exchangers: Optimization of Enhanced Thermal-Hydraulic Performance, Thermal- Fluids and Thermal Processing Laboratory Report No. TFTPL-8, University of Cincinnati, Cincinnati, OH. Manglik, R. M., Ravigururajan, T. S., Muley, A., Papar, R. A., and Kim, J. (2000). Advances in Enhanced Heat Transfer, 2000, ASME, New York. Manglik, R. M., Maramraju, S., and Bergles, A. E. (2001a). The Scaling and Correlation of Low Reynolds Number Swirl Flows and Friction Factors in Circular Tubes with Twisted- Tape Inserts, J. Enhanced Heat Transfer, 8(6) (in press). Manglik, R. M., Wasekar, V. M., and Zhang, J. (2001b). Dynamic and Equilibrium Surface Tension of Aqueous Surfactant and Polymeric Solutions, Exp. Therm. Fluid Sci., 25(1/2), 55–64. Manlapaz, R. L., and Churchill, S. W. (1980). Fully Developed Laminar Flow in a Helically Coiled Tube of Finite Pitch, Chem. Eng. Commun., 7, 57–78. Manlapaz, R. L., and Churchill, S. W. (1981). Fully Developed Laminar Convection from a Helical Coil, Chem. Eng. Commun., 9, 185–200. Marner, W. J., and Bergles, A. E. (1978). Augmentation of Tubeside Laminar Flow Heat Transfer by Means of Twisted-Tape Inserts, Static-Mixer Inserts and Internally Finned Tubes, Heat Transfer 1978, Vol. 2, Hemisphere Publishing, Washington, DC, pp. 583– 588. Marner, W. J., and Bergles, A. E. (1989). Augmentation of Highly Viscous Laminar Heat Transfer inside Tubes with Constant Wall Temperature, Exp. Therm. Fluid Sci., 2, 252– 257. Marner, W. J., Bergles, A. E., and Chenoweth, J. M. (1983). On the Presentation of Performance Data for Enhanced Tubes Used in Shell-and-Tube Heat Exchangers, J. Heat Transfer, 105, 358–365. Martinelli, R. C., and Boelter, L. M. K. (1939). The Effect of Vibration on Heat Transfer by Free Convection from a Horizontal Cylinder, Heat. Piping Air Cond., 11, 525–527. Marto, P. J. (1988). An Evaluation of Film Condensation on Horizontal Integral-Fin Tubes, J. Heat Transfer, 110, 1287–1305. BOOKCOMP, Inc. — John Wiley & Sons / Page 1120 / 2nd Proofs / Heat Transfer Handbook / Bejan 1120 HEAT TRANSFER ENHANCEMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1120], (92) Lines: 2162 to 2207 ——— * 16.0pt PgVar ——— Long Page PgEnds: T E X [1120], (92) Marto, P. J., and Rohsenow, W. M. (1966). Effects of Surface Conditions on Nucleate Pool Boiling of Sodium, J. Heat Transfer, 88, 196–204. Marto, P. J., Looney, D. J., Rose, J. W., and Wanniarachchi, A. (1986). Evaluation of Organic Coatings for the Promotion of Dropwise Condensation of Steam, Int. J. Heat Mass Transfer, 29(8), 1109–1117. Masliyah, J. H., and Nandakumar, K. (1976). Heat Transfer in Internally Finned Tubes, J. Heat Transfer, 98, 257–261. Masliyah, J. H., and Nandakumar, K. (1977). Fluid Flow and Heat Transfer in Internally Finned Helical Coils, Can. J. Chem. Eng., 55, 27–36. Mathewson, W. F., and Smith, J. C. (1963). Effect of Sonic Pulsation on Forced Convective Heat Transfer to Air and on Film Condensation of Isopropanol, Chem. Eng. Prog. Symp. Ser., 41(59), 173–179. Matzner, B., Casterline, J. E., Moek, E. O., and Wikhammer, G. A. (1965). Critical Heat Flux in Long Tubes at 1000 psi, ASME-65-WA/HT-30, ASME, New York. McAdams, W. H. (1954). Heat Transmission, 3rd ed., McGraw-Hill, New York, p. 267. McElhiney, J. E., and Preckshot, G. W. (1977). Heat Transfer in the Entrance Length of a Horizontal Rotating Tube, Int. J. Heat Mass Transfer, 20, 847–854. McQuiston, F. C., and Parker, J. D. (1967). Effect of Vibration on Pool Boiling, ASME-67-HT- 49, ASME, New York. Medwell, J. O., and Nicol, A. A. (1965). Surface Roughness Effects on Condensate Films, ASME-65-HT-43, ASME, New York. Megerlin, F. E., Murphy, R. W., and Bergles, A. E. (1974). Augmentation of Heat Transfer in Tubes by Means of Mesh and Brush Inserts, J. Heat Transfer, 96, 145–151. Mehta, M. H., and Raja Rao, M. (1979). Heat Transfer and Frictional Characteristics of Spirally Enhanced Tubes for Horizontal Condensers, in Advances in Enhanced Heat Transfer, J. M. Chenoweth et al., eds., ASME, New York, pp. 11–22. Menze, K., Fujii, M., and Webb, R. L. (1994). Review of Patents in Europe, Japan, and the U.S. for 1992, J. Enhanced Heat Transfer, 1(2), 135–143. Metwally, H. M., and Manglik, R. M. (2000). Numerical Solutions for Periodically-Developed Laminar Flow and Heat Transfer in Sinusoidal Corrugated Plate Channels with Constant Wall Temperature, Proc. 34th National Heat Transfer Conference, ASME, New York, Paper NHTC 2000-12216. Milton, R. M. (1971). Heat Exchange System with Porous Boiling Layer, U.S. patent 3,587,730. Min, K., and Chao, B. T. (1966). Particle Transport and Heat Transfer in Gas–Solid Suspension Flow under the Influence of an Electric Field, Nucl. Sci. Eng., 26, 534–546. Min, J., and Webb, R. L. (2001). Numerical Predictions of Wavy Fin Coil Performance, J. Enhanced Heat Transfer, 8(3), 2001. Miropolskii, Z. L., and Kurbanmukhamedov, A. (1975). Heat Transfer with Condensation of Steam within Coils, Therm. Eng., 5, 111–114. Mishra, P., and Gupta, S. N. (1979). Momentum Transfer in Curved Pipes, 1: Newtonian Fluids; 2: Non-Newtonian Fluids, Ind. Eng. Chem. Process Des. Dev., 18, 130–142. Morgan, A. I., Bromley, L. A., and Wilke, C. R. (1949). Effect of Surface Tension on Heat Transfer in Boiling, Ind. Eng. Chem., 41, 2767–2769. Mori, Y., and Nakayama, W. (1965). Study on Forced Convective Heat Transfer in Curved Pipes (1st Report, Laminar Region), Int. J. Heat and Mass Transfer, 8, 67–82. BOOKCOMP, Inc. — John Wiley & Sons / Page 1121 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 1121 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1121], (93) Lines: 2207 to 2242 ——— 0.0pt PgVar ——— Long Page PgEnds: T E X [1121], (93) Mori, Y., and Nakayama, W. (1967a). Study on Forced Convective Heat Transfer in Curved Pipes (2nd Report, Turbulent Region), Int. J. Heat Mass Transfer, 10, 37–59. Mori, Y., and Nakayama, W. (1967b). Study on Forced Convective Heat Transfer in Curved Pipes (3rd Report, Theoretical Analysis under the Condition of Uniform Wall Temperature and Practical Formulae), Int. J. Heat Mass Transfer, 10, 681–695. Mori, Y., and Nakayama, W. (1967c). Forced Convection Heat Transfer in a Straight Pipe Rotating around a Parallel Axis, Int. J. Heat Mass Transfer, 10, 1179–1194. Mori, Y., Hijikata, K., Hirasawa, S., and Nakayama, W. (1981). Optimized Performance of Condensers with Outside Condensing Surfaces, J. Heat Transfer, 103, 96–102. Muley, A., Borghese, J. B., Manglik, R. M., and Kundu, J. (2002). Experimental and Numeri- cal Investigation of Thermal–Hydraulic Characteristics of a Wavy-Channel Compact Heat Exchanger Heat Transfer 2002, Proc. 12th International Heat Transfer Conference, (4), 417–422. Muralidhar, Rao, M., and Sastri, V. M. K. (1995). Experimental Investigation of Fluid Flow and Heat Transfer in a Rotating Tube with Twisted-Tape Inserts, Heat Transfer Eng., 16(2), 19–28. Murata, A., and Mochizuki, S. (2001). Large Eddy Simulation of Heat Transfer in an Or- thogonally Rotating Square Duct with Angled Rib Turbulators, J. Heat Transfer, 123(5), 858–867. Murphy, R. W., and Truesdale, K. L. (1972). The Mechanism and the Magnitude of Flow Boiling Augmentation in Tubes with Discrete Surface Roughness Elements (III), Report B12-7294, Raytheon Co., Bedford, MA. Nakamura, H., and Tanaka, M. (1973). Cross-Rifled Vapor Generating Tube, U.S. patent 3,734,140. Nakayama, W., and Bergles, A. E. (1990). Cooling Electronic Equipment: Past, Present and Future, in Electronic and Microelectronic Equipment, A. E. Bergles, ed., Hemisphere Pub- lishing, New York, pp. 3–39. Nakayama, W., Daikoku, T., Kuwahara, H., and Kakizaki, K. (1975). High-Flux Heat Transfer Surfce Thermoexcel, Hitachi Rev., 24, 329–333. Nakayama, W., Daikoku, T., Kuwahara, H., and Nakajima, T. (1980a). Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, I: Experimental Investigation, J. Heat Transfer, 102, 445–450. Nakayama, W., Daikoku, T., Kuwahara, H., and Nakajima, T. (1980b). Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, II: Analytical Modeling, J. Heat Transfer, 102, 451–456. Nandakumar, K., and Masliyah, J. H. (1982). Bifurcation in Steady Laminar Flow through Curved Tubes, J. Fluid Mech., 119, 475–490. Nandakumar, K., and Masliyah, J. H. (1986). Swirling Flow and Heat Transfer in Coiled and Twisted Pipes, in Advances in Transport Processes, A. S. Mujumdar and R. A. Mashelkar, eds., Vol. IV, Wiley Eastern, New Delhi, India, pp. 49–112. Nelson, R. M., and Bergles, A. E. (1986). Performance Evaluation for Tubeside Heat Transfer Enhancement of a Flooded Evaporator Water Chiller, ASHRAE Trans., 92(1B), 739–755. Nelson, D. A., Zia, S., Whipple, R. L., and Ohadi, M. M. (2000). Corona Discharge Effects on Heat Transfer and Pressure Drop in Tube Flows, J. Enhanced Heat Transfer, 7(2), 81–95. Newson, I. H. (1978). Heat Transfer Characteristics of Horizontal Tube Multiple Effects (HTME) Evaporators: Possible Enhanced Tube Profiles, Proc. 6th International Sympo- sium on Fresh Water from the Sea, Vol. 2, pp. 113–124. BOOKCOMP, Inc. — John Wiley & Sons / Page 1122 / 2nd Proofs / Heat Transfer Handbook / Bejan 1122 HEAT TRANSFER ENHANCEMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1122], (94) Lines: 2242 to 2283 ——— 9.0pt PgVar ——— Long Page PgEnds: T E X [1122], (94) Newson, I. H., and Hodgson, T. D. (1973). The Development of Enhanced Heat Transfer Condenser Tubing, Desalination, 14, 291–323. Newton, D. C., and Allen, P. H. G. (1977). Senftleben Effect in Insulating Oil under Uniform Electric Stress, Lett. Heat Mass Transfer, 4(1), 9–16. Nicol, A. A., and Gacesa, M. (1970). Condensation of Steam on a Rotating Vertical Cylinder, J. Heat Transfer, 97, 144–152. Nicol, A. A., and Medwell, J. O. (1966). The Effect of Surface Roughness on Condensing Steam, Can. J. Chem. Eng., 44(6), 170–173. Nikuradse, J. (1933). Str ¨ omungsgesetze in rauhen Rohren, Forsch. Arb. Ing. Wes., 361; English translation as NACA-TM-1292 (1965). Nirmalan, V., Junkhan, G. H., and Bergles, A. E. (1986). Investigation of the Effects of Turbulence-Producing Inserts on Heat Transfer in Tubes with Application to Fire-Tube Boilers, ASHRAE Trans., 92(1B), 791–809. Nishikawa, K., Ito, T., and Tanaka, K. (1983). Augmented Heat Transfer by Nucleate Boiling at Prepared Surfaces, Proc. 1983 ASME-JSME Thermal Engineering Conference, Vol. 1, ASME, New York, pp. 387–393. Nishimura, T., Kunitsugu, K., and Morega, A. M. (1998). Fluid Mixing and Mass Transfer Enhancement in Grooved Channels for Pulsatile Flow, J. Enhanced Heat Transfer, 5(1), 23–37. Notaro, P. (1979). Enhanced Condensation Heat Transfer Device and Method, U.S. patent 4,154,294. Ogata, J., and Yabe, A. (1993). Basic Study on the Enhancement of Nucleate Boiling Heat Transfer by Applying Electric Fields, Int. J. Heat Mass Transfer, 36(3), 775–782. Ohadi, M. M., Li, S. S., and Dessiatoun, S. (1994). Elextrostatic Heat Transfer Enhance- ment in a Tube Bundle Gas-to-Gas Heat Exchanger, J. Enhanced Heat Transfer, 1, 327– 335. Oktay, S., and Schmeckenbecher, A. F. (1974). Preparation and Performance of Dendritic Heat Sinks, J. Electrochem. Soc., 21, 912–918. Oliver, D. R., and Aldington, R. W. J. (1986). Enhancement of Laminar Flow Heat Transfer Using Wire Matrix Turbulators, in Heat Transfer 1986, Vol. 6, Hemisphere Publishing, Washington, DC, pp. 2897–2902. Olsson, C O., and Sund ´ en, B. (1998). Experimental Study of Flow and Heat Transfer in Rib- Roughened Rectangular Channels, Exp. Therm. Fluid Sci., 16, 349–365. Ornatskii, A. P., and Shcherbakov, V. K. (1959). Intensification of Heat Transfer in the Critical Region with the Aid of Ultrasonics, Teploenergetika, 6(1), 84–85. Pabisz, R. A., Jr., and Bergles, A. E. (1996). Enhancement of Critical Heat Flux in Subcooled Flow Boiling Using Alcohol Additives and Twisted-Tape Inserts, Report HTL-25, Heat Transfer Laboratory, Rensselaer Polytechnic Institute, Troy, NY. Pabisz, R. A., Jr., and Bergles, A. E. (1997). Using Pressure Drop to Predict the Critical Heat Flux in Multiple Tube, Subcooled Boiling Systems, in Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, 1997, (Giot, M., Mayinger, F., and Celata, C. P., eds.), Edizioni ETS, Pisa, Italy, pp. 851–858. Pahl, M. H., and Muschelknautz, E. (1979). Einstaz und Auslegung statisher Mischer, Chem. Ing. Tech., 51, 347–364. Pais, C., and Webb, R. L. (1991). Literature Survey of Pool Boiling on Enhanced Surfaces, ASHRAE Trans., 97, Pt. 1, 79–89. BOOKCOMP, Inc. — John Wiley & Sons / Page 1123 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 1123 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1123], (95) Lines: 2283 to 2322 ——— 7.0pt PgVar ——— Long Page PgEnds: T E X [1123], (95) Patankar, S. V., Ivanovic, M., and Sparrow, E. M. (1979). Analysis of Turbulent Flow and Heat Transfer in Internally Finned Tubes and Annuli, J. Heat Transfer, 101, 29–37. Pearson, J. F., and Young, E. H. (1970). Simulated Performance of Refrigerant-22 Boiling inside of Tubes in a Four Pass Shell and Tube Heat Exchanger, AIChE Symp. Ser., 66(102), 164–173. Poulter, R., and Allen, P. H. G. (1986). Electrohydrodynamically Augmented Heat and Mass Transfer in the Shell/Tube Heat Exchanger, in Heat Transfer 1986, Vol. 6, Hemisphere Publishing, Washington, DC, pp. 2963–2968. Prakash, C., and Liu, Y D. (1985). Analysis of Laminar Flow and Heat Transfer in the Entrance Region of an Internally Finned Circular Duct, J. Heat Transfer, 107, 84–91. Prakash, C., and Zerkle, R. (1995). Prediction of Turbulent Flow and Heat Transfer in Ribbed Rectangular Duct with and without Rotation, J. Turbomachinery, 117, 255–264. Price, D. C., and Parker, J. D. (1967). Nucleate Boiling on a Vibrating Surface, ASME-67-HT- 58, ASME, New York. Prusa, J., and Manglik, R. M. (1994). Asymptotic and Numerical Solutions for Thermally Developing Flows of Newtonian and Non-Newtonian Fluids in Circular Tubes, Num. Heat Transfer, A26(2), 199–217. Prusa, J., and Yao, L. S. (1982). Numerical Solution for Fully Developed Flow in Heated Curved Tubes, J. Fluid Mech., 123, 503–522. Ragi, E. G. (1972). Composite Structure for Boiling Liquids and Its Formation, U.S. patent 3,684,007. Rao, K. S. (1983). Augmentation of Heat Transfer in the Axial Ducts of Electrical Ma- chines with Tape Generated Swirl Flow, IEEE Trans. Power Apparatus Syst., 102(8), 2750– 2756. Ravigururajan, T. S., and Bergles, A. E. (1986). Study of Water-Side Enhancement for Ocean Thermal Energy Conversion Heat Exchangers, Report HTL-44, ISU-ERI-Ames-87197, Heat Transfer Laboratory, Iowa State University, Ames, IA. Ravigururajan, T. S., and Bergles, A. E. (1996). Development and Verification of General Cor- relations for Pressure Drop and Heat Transfer in Single-Phase Turbulent Flow in Enhanced Tubes, Exp. Therm. Fluid Sci., 13, 55–70. Reynolds, B. L., and Holmes, R. E. (1976). Heat Transfer in a Corona Discharge, Mech. Eng., Oct., pp. 44–49. Rifert, V. G., and Leont’yev, G. G. (1976). An Analysis of Heat Transfer with Steam Con- densing on a Vertical Surface with Wires to Promote Heat Transfer, Teploenergetika, 23(4), 74–80. Robinson, G. C., McClude, C. M., III, and Hendricks, R., Jr. (1958). The Effects of Ultrasonics on Heat Transfer by Convection, Am. Ceram. Soc. Bull., 37, 399–404. Rohsenow, W. M. (1985). Boiling, in Handbook of Heat Transfer Fundamentals, W. M. Rohsenow, J. P. Hartnett, and E. M. Ganic, eds., McGraw-Hill, New York, Chap. 12. Rose, J. W. (1988). Some Aspects of Dropwise Condensation Theory, Int. Commun. Heat Mass Transfer, 15, 449–473. Rose, J. W. (1994a). Condensation on Low-Finned Tubes: An Equation for Vapor-Side En- hancement, in Condensation and Condenser Design, ASME, New York, pp. 317–333. Rose, J. W. (1994b). An Approximate Equation for the Vapor-Side Heat Transfer Coefficient for Condensation on Low-Finned Tubes, Int. J. Heat Mass Transfer, 37, 865–875. Rose, J., Utaka, Y., and Tanasawa, I. (1999). Dropwise Condensation, in Handbook of Phase BOOKCOMP, Inc. — John Wiley & Sons / Page 1124 / 2nd Proofs / Heat Transfer Handbook / Bejan 1124 HEAT TRANSFER ENHANCEMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1124], (96) Lines: 2322 to 2362 ——— 4.0pt PgVar ——— Custom Page (7.0pt) PgEnds: T E X [1124], (96) Change: Boiling and Condensation, S. G. Kandlikar, M. Shoji, and V. K. Dhir, eds., Taylor & Francis, Philadelphia, Chap. 20. Royal, J. H., and Bergles, A. E. (1978a). Pressure Drop and Performance Evaluation of Aug- mented In-Tube Condensation, in Heat Transfer 1978, Vol. 2, Hemisphere Publishing, Washington, DC, pp. 459–464. Royal, J. H., and Bergles, A. E. (1978b). Augmentation of Horizontal In-Tube Condensation by Means of Twisted-Tape Inserts and Internally-Finned Tubes, J. Heat Transfer, 100, 17–24. Rustum, I. M., and Soliman, H. M. (1988). Numerical Analysis of Laminar Forced Convection in the Entrance Region of Tubes with Longitudinal Internal Fins, J. Heat Transfer, 110, 310–313. Ryabov, A. N., Kamen’shchikov, F. T., Filipov, V. N., Chalykh, A. F., Yugay, T., Stolyarov, Y. V., Blagovestova, T. I., Mandrazhitskiy, V. M., and Yemelyanov, A. I. (1977). Boiling Crisis and Pressure Drop in Rod Bundles with Heat Transfer Enhancement Devices, Heat Transfer Sov. Res., 9(1), 112–122. Said, S. A., and Azer, N. Z. (1983). Heat Transfer and Pressure Drop during Condensation inside Horizontal Tubes with Twisted-Tape Inserts, ASHRAE Trans., 89, Pt. 1, 96–113. Said, M. N. A., and Trupp, A. C. (1984). Predictions of Turbulent Flow and Heat Transfer in Internally Finned Tubes, Chem. Eng. Commun., 31, 65–99. Salim, M. M., France, D. M., and Panchal, C. B. (1999). Heat Transfer Enhancement on the Outer Surface of Spirally Indented Tubes, J. Enhanced Heat Transfer, 6(5), 327–341. San, J Y., and Lai, M D. (2001). Optimum Jet-to-Jet Spacing of Heat Transfer for Staggered Arrays of Impinging Air Jets, Int. J. Heat Mass Transfer, 44(21), 397–407. Sato, K., Mimatsu, J., and Kumada, M. (1999). Turbulent Characteristics and Heat Transfer Augmentation of Drag Reducing Surfactant Solution Flow, Therm. Sci. Eng., 7(1), 41–51. Savkar, S. D. (1971). Dielectrophoretic Effects in Laminar Forced Convection between Two Parallel Plates, Phys. Fluids, 14, 2670–2679. Schlager, L. M., Pate, M. B., and Bergles, A. E. (1988). Evaporation and Condensation of Refrigerant–Oil Mixture in a Smooth Tube and a Micro-fin Tube, ASHRAE Trans., 94(1), 149–166. Schlager, L. M., Pate, M. B., and Bergles, A. E. (1990). Evaporation and Condensation Heat Transfer and Pressure Drop in Horizontal, 12-7-mm Micro-fin Tubes with Refrigerant 22, J. Heat Transfer, 112, 1041–1047. Schl ¨ under, E. U., and Chawla, M. (1969). Ortlicher W ¨ arme ¨ ubergang und Druckabfall bei der Str ¨ omung verdampfender K ¨ altemittel in innenberippten, waggerechten Rohren, Kaeltetech. Klim., 21(5), 136–139. Schmittle, K.V., and Starner, T. E. (1978). Heat Transfer in Pool Boiling, U.S. patent 4,074,753. Sephton, H. H. (1971). Interface Enhancement for Vertical Tube Evaporator: A Novel Way of Substantially Augmenting Heat and Mass Transfer, ASME-71-HT-38, ASME, New York. Sephton, H. H. (1975). Upflow Vertical Tube Evaporation of Sea Water with Interface En- hancement: Process Development by Pilot Plant Testing, Desalination, 16, 1–13. Shah, R. K., and Joshi, S. D. (1987). Convective Heat Transfer in Curved Ducts, in Handbook of Single-Phase Convective Heat Transfer, (Kakac¸, S., Shah, R. K., and Aung, W., eds.), Wiley, New York, Chap. 5. Shah, R. K., and London, A. L. (1978). Laminar Flow Convection in Ducts, Supplement 1 to Advances in Heat Transfer, T. F. Irvine, Jr., and J. P. Hartnett, eds., Academic Press, New York. BOOKCOMP, Inc. — John Wiley & Sons / Page 1125 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 1125 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1125], (97) Lines: 2362 to 2402 ——— * 15.0pt PgVar ——— Custom Page (7.0pt) PgEnds: T E X [1125], (97) Shah, R. K., Kraus, A. D., and Metzger, D. (1990). Compact Heat Exchangers: A Festschrift for A.L. London, Hemisphere Publishing, New York. Shah, R. K., Bell, K. J., Mochizuki, S., and Wadekar, V. V. (1997). Compact Heat Exchangers for the Process Industries, Begell House, New York. Shah, R. K., Zhou, S. Q., and Tagavi, K. A. (1999). The Role of Surface Tension in Film Condensation in Extended Surface Passages, J. Enhanced Heat Transfer, 6(2/4), 179– 216. Shakir, S., Thome, J. R., and Lloyd, J. R. (1985). Boiling of Methanol–Water Mixtures on Smooth and Enhanced Surfaces, in Multiphase Flow and Heat Transfer, ASME-HTD-47, ASME, New York, pp. 1–6. Shatto, D. P., and Peterson, G. P. (1996). A Review of Flow Boiling Heat Transfer with Twisted Tape Inserts, J. Enhanced Heat Transfer, 3(4), 233–257. Shikazono, N., Itoh, M., Uchida, M., Fukushima, T., and Hatada, T. (1998). An Analytical Model to Predict the Condensation Heat Transfer Coefficient in Horizontal Micro-fin Tube, ASHRAE Trans., 104(2), 143–152. Shinohara, Y., and Tobe, M. (1985). Development of an Improved Thermofin Tube, Hitachi Cable Rev., 4, 47–50. Shinohara, Y., Oizumi, K., Itoh, Y., and Hori, M. (1987). Heat Transfer Tubes with Grooved Inner Surface, U.S. patent 4,658,892. Shivkumar, C., and Raja Rao, M. (1988). Studies on Compound Augmentation of Laminar Flow Heat Transfer to Generalized Power Law Fluids in Spirally Corrugated Tubes by Means of Twisted Tape Inserts, Proc. 1988 National Heat Transfer Conference, ASME- HTD-96, Vol. 1, ASME, New York, pp. 685–691. Shizuya, M., Itoh, M., and Hijikata, K. (1995). Condensation of Nonazeotropic Binary Re- frigerant Mixtures including R22 as a More Volatile Component inside a Horizontal Tube, J. Heat Transfer, 117(2), 538–543. Shklover, G. G., and Gerasimov, A. V. (1963). Heat Transfer of Moving Steam in Coil-Type Heat Exchangers, Teploenergetika, 10(5), 62–65. Shome, B., and Jensen, M. K. (1996). Numerical Investigation of Laminar Flow and Heat Transfer in Internally Finned Tubes, J. Enhanced Heat Transfer, 4(1), 35–51. Sieder, E. N., and Tate, G. E. (1936). Heat Transfer and Pressure Drop of Liquids in Tubes, Ind. Eng. Chem., 28, 1429–1435. Smith, E. M. (1997). Thermal Design of Heat Exchangers, Wiley, Chichester, West Sussex, England. Smithberg, E., and Landis, F. (1964). Friction and Forced Convection Heat Transfer Charac- teristics in Tubes with Twisted Tape Swirl Generators, J. Heat Transfer, 86, 39–49. Soliman, H. M. (1989). Performance Evaluation of Multipassage Tubes for Laminar Flow Applications, J. Thermophys. Heat Transfer, 3(4), 461–469. Soliman, H. M., and Feingold, A. (1977). Heat Transfer, Pressure Drop, and Performance Evaluation of Quintuplex Internally Finned Tube, ASME-77-HT-46, ASME, New York. Somerscales, E. F. C., and Bergles, A. E. (1997). Enhancement of Heat Transfer and Fouling Mitigation, Adv. Heat Transfer, 30, 197–253. Sprott, A. L., Holman, J. P., and Durand, F. L. (1960). An Experimental Study of the Effects of Strong, Progressive Sound Fields on Free-Convection Heat Transfer from a Horizontal Cylinder, ASME-60-HT-19, ASME, New York. BOOKCOMP, Inc. — John Wiley & Sons / Page 1126 / 2nd Proofs / Heat Transfer Handbook / Bejan 1126 HEAT TRANSFER ENHANCEMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1126], (98) Lines: 2402 to 2443 ——— 0.0pt PgVar ——— Custom Page (7.0pt) PgEnds: T E X [1126], (98) Srinivasan, P. S., Nandapurkar, S. S., and Holland, F. A. (1968). Pressure Drop and Heat Transfer in Coils, Chem. Eng., 218, 113–119. Sund ´ en, B. (1999). Enhancement of Convective Heat Transfer in Rib-Roughened Rectangular Ducts, J. Enhanced Heat Transfer, 6(2/4), 89–103. Swenson, H. S., Carver, J. R., and Szoeke, G. (1962). The Effects of Nucleate Boiling versus Film Boiling on Heat Transfer in Power Boiler Tubes, J. Eng. Power, 84, 365–371. Taborek, J. (1997). Double-Pipe and Multitube Heat Exchangers with Plain and Longitudinal Finned Tubes, Heat Transfer Eng., 18(2), 34–45. Tamari, M., and Nishikawa, K. (1976). The Stirring Effect of Bubbles upon the Heat Transfer to Liquids, Heat Transfer Jpn. Res., 5(2), 31–44. Tanaka, H. (1975a). A Theoretical Study on Dropwise Condensation, J. Heat Transfer, 97, 72–78. Tanaka, H. (1975b). Measurement of Drop-Size Distribution during Transient Dropwise Con- densation, J. Heat Transfer, 97, 341–346. Tanasawa, I. (1978). Dropwise Condensation: The Way to Practical Applications, in Heat Transfer 1978, Vol. 6, Hemisphere Publishing, Washington, DC, pp. 393–405. Tang, S. I., and McDonald, T. W. (1971). A Study of Heat Transfer from a Rotating Horizontal Cylinder, Int. J. Heat Mass Transfer, 14, 1643–1658. Tang, L., Ohadi, M. M., and Johnson, A. T. (2000). Flow Condensation in Smooth and Micro- fin Tubes with HCFC-22, HFC-134a and HFC-410A Refrigerants, I: Experimental Results, J. Enhanced Heat Transfer, 7(5), 289–310. Taylor, G. I. (1929). The Criterion for Turbulence in Curved Pipes, Proc. R. Soc., A124, 243– 249. Thomas, D. G. (1967). Enhancement of Film Condensation Rates on Vertical Tubes by Vertical Wires, Ind. Eng. Chem. Fundam., 6(1), 97–102. Thomas, D. G. (1968). Enhancement of Film Condensation Rate on Vertical Tubes by Longi- tudinal Fins, AIChE J., 6(1), 644–649. Thome, J. R. (1990). Enhanced Boiling Heat Transfer, Hemisphere Publishing, New York. Toms, B. A. (1948). Some Observations on the Flow of Linear Polymer Solutions through Straight Tubes at Large Reynolds Numbers, Proc. International Congress on Rheology, Vol. II, p. 135. Tong, W., Bergles, A. E., and Jensen, M. K. (1996). Critical Heat Flux and Pressure Drop of Subcooled Flow Boiling in Small-Diameter Tubes with Twisted-Tape Inserts, J. Enhanced Heat Transfer, 3(2), 95–108. Torikoshi, K., and Ebisu, T. (1999). Japanese Advanced Technologies of Heat Exchanger in Air-Conditioning and Refrigeration Applications, in Compact Heat Exchangers and Enhancement Technology for the Process Industry, (Shah, R. K., Bell, K. J., Honda, H., and Thonon, B., eds.), Begell House, New York, pp. 17–24. Traviss, D. P., and Rohsenow, W. M. (1973). The Influence of Return Bends on the Downstream Pressure Drop and Condensation Heat Transfer in Tubes, ASHRAE Trans., 79(1), 129–137. Tzan, Y. L., and Yang, Y. M. (1990). Experimental Study of Surfactant Effects on Pool Boiling Heat Transfer, J. Heat Transfer, 112, 207–212. Uhl, V. W. (1970). Mechanically Aided Heat Transfer to Viscous Materials, in Augmentation of Convective Heat and Mass Transfer, A. E. Bergles and R. L. Webb, eds., ASME, New York, pp. 109–117. Usui, H., Sano, Y., and Iwashita, K. (1984). Heat Transfer Enhancement Effects by Combined . and Heat Transfer in Internally Finned Tubes, J. Heat Transfer, 123(6), 1035–1044. BOOKCOMP, Inc. — John Wiley & Sons / Page 1118 / 2nd Proofs / Heat Transfer Handbook / Bejan 1118 HEAT TRANSFER. Horizontal Integral-Fin Tubes, J. Heat Transfer, 110, 1287–1305. BOOKCOMP, Inc. — John Wiley & Sons / Page 1120 / 2nd Proofs / Heat Transfer Handbook / Bejan 1120 HEAT TRANSFER ENHANCEMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1120],. Free-Convection Heat Transfer from a Horizontal Cylinder, ASME-60-HT-19, ASME, New York. BOOKCOMP, Inc. — John Wiley & Sons / Page 1126 / 2nd Proofs / Heat Transfer Handbook / Bejan 1126 HEAT TRANSFER

Ngày đăng: 05/07/2014, 16:20

TỪ KHÓA LIÊN QUAN