1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Heat Transfer Handbook part 112 ppsx

10 427 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Nội dung

BOOKCOMP, Inc. — John Wiley & Sons / Page 1107 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 1107 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1107], (79) Lines: 1646 to 1682 ——— 12.0pt PgVar ——— Normal Page PgEnds: T E X [1107], (79) Bergles, A. E., Junkhan, G. H., and Webb, R. L. (1979). Energy Conservation via Heat Trans- fer Enhancement, Report COO-4649-5, Heat Transfer Laboratory, Iowa State University, Ames, IA. Bergles, A. E., Collier, J. G., Delhaye, J. M., Hewitt, G. F., and Mayinger, F. (1981). Two-Phase Flow and Heat Transfer in the Power and Process Industries, Hemisphere Publishing, Washington, DC. Bergles, A. E., Nirmalan, V., Junkhan, G. H., and Webb, R. L. (1983). Bibliography of Aug- mentation of Convective Heat and Mass Transfer, II, Report HTL-31, ISU-ERI-Ames- 84221, Heat Transfer Laboratory, Iowa State University, Ames, IA. Bergles, A. E., Jensen, M. K., Somerscales, E. F. C., and Manglik, R. M. (1991). Literature Review of Heat Transfer Enhancement Technology for Heat Exchanges in Gas-Fired Ap- plications, Report GRI 91-0146, Gas Research Institute, Chicago. Bergles, A. E.,Jensen, M. K., and Shome, B. (1995). Bibliography on Enhancement of Convec- tive Heat and Mass Transfer, Report HTL-23, Heat Transfer Laboratory, Rensselaer Poly- technic Institute, Troy, NY. Bergles, A. E., Jensen, M. K., and Shome, B. (1996). The Literature on Enhancement of Convective Heat and Mass Transfer, J. Enhanced Heat Transfer, 4(1), 1–6. Bhatnagar, R. K., and Manglik, R. M. (2002). Enhanced Heat and Mass Transfer Litera- ture: Case for a Digital Library with Intelligent Information Retrieval, Thermal Fluids and Thermal Processing Laboratory, Report TFTPL-CS1, University of Cincinnati, Cincinnato, OH. Bhattacharya, S. C., and Harrison, D. (1976). Heat Transfer in a Pulsed Fluidized Bed, Trans. Inst. Chem. Eng., 54, 281–286. Blatt, T. A., and Adt, R. R. (1963). The Effects of Twisted Tape Swirl Generators on the Heat Transfer Rate and Pressure Drop of Boiling Freon 11 and Water, ASME-63-WA-42, ASME, New York. Blomgren, O. C., Sr., and Blomgren, O. C., Jr. (1972). Method and Apparatus for Cooling the Workpiece and/or the Cutting Tools of a Machining Apparatus, U.S. patent 3,670,606. Boling, C., Donovan, W. J., and Decker, A. S. (1953). Heat Transfer of Evaporating Freon with Inner-Fin Tubing, Refrig. Eng., 61, 1338–1340, 1384. Bologa, M. K., Pushkov, V. V., and Berkov, A. B. (1985). Electric Field Induced Heat Transfer Enhancement in a Gas–Solid Suspension Heat Exchanger, Int. J. Heat Mass Transfer, 20, 1245–1255. Bonilla, C. F., Grady, J. J., and Avery, G. A. (1965). Pool Boiling Heat Transfer from Scored Surfaces, Chem. Eng. Prog. Symp. Ser., 61(57), 281–288. Brauer, H. (1961). Str ¨ omungswiderstand und W ¨ arme ¨ ubergang bei Ringspalten mit rauhen Rohren, Atomkernenergie, 4, 152–159. Briggs, A., and Rose, J. W. (1994). Effect of Fin Efficiency on a Model for Condensation Heat Transfer on a Horizontal Integral-Fin Tube, Int. J. Heat Mass Transfer, 37, 457– 463. Brodov, Y. M., Salev’yev, R. Z., Permayakov, V. A., Kuptsov, V. K., and Gal’perin, A. G. (1977). The Effect of Vibration on Heat Transfer and Flow of Condensing Steam on a Single Tube, Heat Transfer Sov. Res., 9(1), 153–155. Carnavos, T. C. (1979a). Heat Transfer Performance of Internally Finned Tubes in Turbulent Flow, in Advances in Heat Transfer, ASME, New York, pp. 61–67. BOOKCOMP, Inc. — John Wiley & Sons / Page 1108 / 2nd Proofs / Heat Transfer Handbook / Bejan 1108 HEAT TRANSFER ENHANCEMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1108], (80) Lines: 1682 to 1725 ——— * 15.0pt PgVar ——— Custom Page (9.0pt) PgEnds: T E X [1108], (80) Carnavos, T. C. (1979b). Cooling Air in Turbulent Flow with Internally Finned Tubes, Heat Transfer Eng., 1(2), 41–46. Carnavos, T. C. (1980). An Experimental Study: Condensing R-11 on Augmented Tubes, ASME-80-HT-54, ASME, New York. Cary, J. D., and Mikic, B. B. (1973). The Influence of Thermocapillary Flow on Heat Transfer in Film Condensation, J. Heat Transfer, 95, 20–24. Celata, G. P., Cumo, M., and Mariani, A. (1994). Enhancement of Water Subcooled Flow Boiling CHF in Tubes with Helically Coiled Wires, Int. J. Heat Mass Transfer, 37(1), 53– 67. Champagne, P. R., and Bergles, A. E. (2001). Development and Testing of a Novel, Variable- Roughness Technique to Enhance, on Demand, Heat Transfer in a Single-Phase Heat Ex- changer, J. Enhanced Heat Transfer, 8(5), 341–352. Chamra, L. M., Webb, R. L., and Randlett, M. R. (1996). Advanced Micro-fin Tubes for Condensation, Int. J. Heat Mass Transfer, 39(9), 1839–1846. Chandran, R., and Watson, F. A. (1976). Condensation on Static and Rotating Pinned Tubes, Trans. Inst. Chem. Eng., 54, 65–72. Chen, Y., and Liu, Z. (1999). Study on Enhancement of Nucleate Boiling Heat Transfer by EHD Effect, J. Enhanced Heat Transfer, 6(6), 457–466. Cheng, K. C., and Yuen, F. P. (1987). Flow Visualization Studies on Secondary Flow Patterns in Straight Tubes Downstream of a 180 deg Bend and in Isothermally Heated Horizontal Tubes, J. Heat Transfer, 109(1), 49–54. Chhabra, R. P., and Richardson, J. F. (1999). Non-Newtonian Flow in the Process Industries, Butterworth-Heinemann, Oxford. Chiang, R. (1993). Heat Transfer and Pressure Drop during Evaporation and Condensation of R-22 in 7.5 mm and 10 mm Diameter Axial and Helical Grooved Tubes, AIChE Symp. Ser., 89(295), 205–210. Chien, L H., and Webb, R. L. (1998). A Nucleate Boiling Model for Structured Enhanced Surfaces, Int. J. Heat Mass Transfer, 41(14), 2183–2195. Cho, Y. I., and Hartnett, J. P. (1980). Heat Transfer Performance of Concentrated Polyethylene Oxide and Polyacrylamide Solutions, AIChE J., 26, 250–256. Choi, H. Y. (1961). Electrohydrodynamic Boiling Heat Transfer, Report 63-12-1, Department of Mechanical Engineering, Tufts University, Medford, MA. Chu, R. C., and Chrysler, G. M. (1998). Recent Developments of Cooling Technology and Thermal Design for Leading-Edge Electronic Products, Int. J. Transp. Phenomema, 1(1), 31–40. Chu, R. C., and Moran, K. P. (1977). Method for Customizing Nucleate Boiling Heat Transfer from Electronic Units Immersed in Dielectric Coolant, U.S. patent 4,050,507. Chu, R. C., Takano, K., Nishio, S., and Tanasawa, I. (2000). Study on Enhancement of Con- densation Heat Transfer Using Electric Field, Heat Transfer Asian Res., 29(4), 269–279. Chu, R. C., Nishio, S., and Tanasawa, I. (2001). Enhancement of Condensation Heat Transfer on a Finned Tube Using an Electric Field, J. Enhanced Heat Transfer, 8(4), 215–229. Chukhman, G. I. (1972). The Internal Heat Transfer in Evaporative Air Coolers with Flow Turbulization, Heat Transfer Sov. Res., 4(4), 67–70. Cie ´ sli ´ nski, J. T. (2002). Nucleate Pool Boiling on Porous Metallic Coatings, Exp. Therm. Fluid Sci., 25(7), 557–564. BOOKCOMP, Inc. — John Wiley & Sons / Page 1109 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 1109 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1109], (81) Lines: 1725 to 1762 ——— 6.0pt PgVar ——— Custom Page (9.0pt) PgEnds: T E X [1109], (81) Collins, W. M., and Dennis, S. C. R. (1975). The Steady Motion of a Viscous Fluid in a Curved Tube, Q. J. Mech. Appl. Math., 28, 133–156. Cooper, P. (1990). EHD Enhancement of Nucleate Boiling, J. Heat Transfer, 112, 458–464. Cornaro, C., Fleischer, S. A., Rounds, M., and Goldstein, J. R. (2001). Jet Impingement Cooling of a Convex Semi-cylindrical Surface, Int. J. Thermal Sci., 40(10), 890–898. Cox, R. B., Pascale, A. S., Matta, G. A., and Stromberg, K. S. (1969). Pilot Plant Tests and Design Study of a 2.5 MGD Horizontal-Tube Multiple-Effect Plant, Report 492, Office of Saline Water Research and Development, Washington, DC. Cox, R. B., Matta, G. A., Pascale, A. S., and Stomberg, K. G. (1970). Second Report on Horizontal Tubes Multiple-Effect Process Pilot Plant Tests and Design, Reprot 592, Office of Saline Water Research and Development, Washington, DC. Cumo, M., Farello, G. E., and Ferrari, G. (1972). The Influence of Curvature in Post Dry-Out Heat Transfer, Int. J. Heat Mass Transfer, 15, 2045–2062. Czikk, A. M., and O’Neill, P. S. (1979). Correlation of Nucleate Boiling from Porous Metal Films, in Advances in Enhanced Heat Transfer, (Chenoweth, J. M., Kaellis, J., Michel, J. W., and Shenkman, S., eds.), ASME, New York, pp. 53–60. Dahl, M. M., and Erb, L. D. (1976). Liquid Heat Exchanger Interface and Method, U.S. patent 3,990,862. Dalle Donne, M. (1978). Heat Transfer in Gas Cooled Fast Reactor Cores, Ann. Nucl. Energy, 5, 439–453. Dalle Donne, M., and Meyer, L. (1977). Turbulent Convective Heat Transfer from Rough Surfaces with Two-Dimensional Rectangular Ribs, Int. J. Heat Mass Transfer, 20, 583– 620. Darabi, J., Ohadi, M. M., and Dessiatoun, S. V. (2000). Compound Augmentation of Pool Boiling on Three Selected Commercial Tubes, J. Enhanced Heat Transfer, 7(5), 347–360. Das, A. K., Incheck, G. A., and Marto, P. J. (1999). The Effect of Fin Height during Steam Condensation on a Horizontal Stainless Steel Integral-Fin Tube, J. Enhanced Heat Transfer, 6(2–4), 237–250. Das, A. K., Kilty, H. P., Marto, P. J., Kumar, A., and Andeen, G. B. (2000). Dropwise Con- densation of Steam on Horizontal Corrugated Tubes Using an Organic Self-Assembled Monolayer Coating, J. Enhanced Heat Transfer, 7(2), 109–123. Date, A. W., and Singham, J. R. (1972). Numerical Prediction of Friction and Heat Transfer Characteristics of Fully Developed Laminar Flow in Tubes Containing Twisted Tapes, ASME-72-HT-17, ASME, New York. Davidson, J. H., Kulacki, F. A., and Dunn, P. F. (1987). Convective Heat Transfer with Electric and Magnetic Fields, in Handbook of Single-Phase Convective Heat Transfer, (Kakac¸, S., Shah, R. K., and Aung, W., eds.), Wiley, New York, Chap. 9. Dean, W. R. (1927). Note on the Motion of Fluid in a Curved Pipe, Philos. Mag., Ser.7,4, 208–233. Dean, W. R. (1928). The Stream Line Motion of Fluid in a Curved Pipe, Philos. Mag., Ser. 7, 5(30), 673–695. Dippery, D. F., and Sabersky, R. H. (1963). Heat and Momentum Transfer in Smooth and Rough Tubes at Various Prandtl Numbers, Int. J. Heat Mass Transfer, 6, 329–353. Dong, Y., Huixiong, L., and Tingkuan, C. (2001). Pressure Drop, Heat Transfer and Perfor- mance of Single-Phase Turbulent Flow in Spirally Corrugated Tubes, Exp. Therm. Fluid Sci., 24, 131–138. BOOKCOMP, Inc. — John Wiley & Sons / Page 1110 / 2nd Proofs / Heat Transfer Handbook / Bejan 1110 HEAT TRANSFER ENHANCEMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1110], (82) Lines: 1762 to 1800 ——— 9.0pt PgVar ——— Custom Page (10.0pt) PgEnds: T E X [1110], (82) Dreitser, G. A., Levin, E. S., and Mikhailov, A. V. (1988). Intensification of Heat Transfer in the Condensation of Water Vapor on Horizontal Tube with Annular Grooves, J. Eng. Phys., 55(5), 789–793. Dri ˇ zius, M R., Shkema, R. K., and Shlan ˇ ciauskas, A. A. (1978). Boiling Crisis in Swirled Flow of Water in Pipes, Heat Transfer Sov. Res., 10(4), 1–7. Durant, W. S., and Mirshak, S. (1959). Roughening of Heat Transfer Surfaces as a Method of Increasing Heat Flux at Burnout, E.I. Dupont de Nemours and Co., Savannah, GA. Durant, W. S., Towell, R. H., and Mirshak, S. (1965). Improvement of Heat Transfer to Water Flowing in an Annulus by Roughening the Heated Wall, Chem. Eng. Prog. Symp. Ser., 60(61), 106–113. Ebadian, M. A., and Dong, Z. F. (1998). Forced Convection, Internal Flow in Ducts, in Hand- book of Heat Transfer, 3rd ed., (Rohsenow, W. M., Hartnett, J. P., and Cho, Y. I., eds.), McGraw-Hill, New York, Chap. 5. Ebisu, T., and Torikoshi, K. (1998). Experimental Study on Evaporation and Condensation Heat Transfer Enhancement for R407C Using Herringbone Heat Transfer Tube, ASHRAE Trans., 104, Pt. 2, 1044–1052. Eckels, S. J., Doerr, T. M., and Pate, M. B. (1994a). Heat Transfer and Pressure Drop of R-134a and Ester Lubricant Mixtures in a Smooth and a Micro-fin Tube, I: Evaporation, ASHRAE Trans., 100(2), 265–281. Eckels, S. J., Doerr, T. M., and Pate, M. B. (1994b). Heat Transfer and Pressure Drop of R-134a and Ester Lubricant Mixtures in a Smooth and a Micro-fin tube, II: Condensation, ASHRAE Trans., 100(2), 283–294. Edwards, D. P., and Jensen, M. K. (1994). An Investigation of Turbulent Flow and Heat Trans- fer in Longitudinally Finned Tubes, Report HTL-18, Heat Transfer Laboratory, Rensselaer Polytechnic Institute, Troy, NY. Edwards, D. A., Brenner, H., and Wassan, D. T. (1991). Interfacial Transport Processes and Rheology, Butterworth-Heinemann, Boston, MA. Ekkad, S. V., and Han, J. C. (1997). Detailed Heat Transfer Distributions in Two-Pass Square Channels with Rib Turbulators, Int. J. Heat Mass Transfer, 40, 2525–2537. Ekkad, S. V., Pamula, G., and Acharya, S. (2000). Influence of Crossflow-Induced Swirl and Impingement on Heat Transfer in an Internal Coolant Passage of a Turbine Airfoil, J. Heat Transfer, 122(3), 587–597. Elenbaas, W. (1942). Heat Dissipation of Parallel Plates by Free Convection, Physica, 9(1), 1–28. Eliades, V., Nikitopoulos, E. D., and Acharya, S. (2001). Mass-Transfer Distribution in Ro- tating, Two-Pass, Ribbed Channels with Vortex Generators, J. Thermophys. Heat Transfer, 15(3), 266–274. Elsdon, R., and Shearer, C. J. (1977). Heat Transfer in Gas Fluidized Bed Assisted by an Alternating Electric Field, Chem. Eng. Sci., 32, 1147–1153. Esen, E. B., Obot, N. T., and Rabas, T. J. (1994). Enhancement, I: Heat Transfer and Pressure Drop Results for Air Flow through Passages with Spirally Shaped Roughness, J. Enhanced Heat Transfer, 1(2), 145–156. Eustice, J. (1911). Experiments on Stream-Line Motion in Curved Pipes, Proc. R. Soc., A85, 119–131. Evans, L. B., and Churchill, S. W. (1963). The Effect of Axial Promoters on Heat Transfer and Pressure Drop inside a Tube, Chem. Eng. Prog. Symp. Ser., 41(59), 36–46. BOOKCOMP, Inc. — John Wiley & Sons / Page 1111 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 1111 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1111], (83) Lines: 1800 to 1841 ——— 5.0pt PgVar ——— Custom Page (10.0pt) PgEnds: T E X [1111], (83) Fan, L. T., Lin, S. T., and Azer, N. Z. (1978). Surface Renewal Model of Condensation Heat Transfer in Tubes with In-Line Static Mixers, Int. J. Heat Mass Transfer, 21, 849–854. Fand, R. M. (1965). The Influence of Acoustic Vibrations on Heat Transfer by Natural Con- vection from a Horizontal Cylinder to Water, J. Heat Transfer, 87, 309–310. Fand, R.M., and Kaye,J. (1961). The Influence of Sound on Free Convection from a Horizontal Cylinder, J. Heat Transfer, 83, 133. Fand, R. M., and Peebles, E. M. (1962). A Comparison of the Influence of Mechanical and Acoustical Vibrations on Free Convection from a Horizontal Cylinder, J. Heat Transfer, 84, 268–270. Fand, R. M., Roos, J., Cheng, P., and Kaye, J. (1962). The Local Heat-Transfer Coefficient around a Heated Horizontal Cylinder in an Intense Sound Field, J. Heat Transfer, 84, 245– 250. Feinstein, L., and Lundberg, R. E. (1963). Study of Advanced Techniques for Cooling Very High Power Microwave Tubes, Report RADC-TDR-63-242, Rome Air Development Cen- ter, Rome, NY. Fenner, G. W., and Ragi, E. (1979). Enhanced Tube Inner Surface Heat Transfer Device and Method, U.S. patent 4,154,291. Fletcher, L. S., and Andrews, M. J. (1994). Technical/Market Assessment of Heat Exchanger Technology for Users of Natural Gas, Report GRI-94/0248, Gas Research Institute, Chi- cago. Fossa, M., and Tagliafico, L. A. (1995). Experimental Heat Transfer of Drag-Reducing Poly- mer Solutions in Enhanced Surface Heat Exchangers, Exp. Therm. Fluid Sci., 10, 221– 228. Fraas, A. P. (1989). Heat Exchanger Design, 2nd ed., Wiley, New York. Fujie, K., Itoh, N., Innami, T., Kimura, H., Nakayama, N., and Yanugidi, T. (1977). Heat Transfer Pipe, U.S. patent 4,044,797. Fujii, T. (1995). Enhancement to Condensing Heat Transfer: New Developments, J. Enhanced Heat Transfer, 2(1/2), 127–137. Fujii, M., Nishiyama, E., and Yamanaka, G. (1979). Nucleate Pool Boiling Heat Transfer from Microporous Heating Surface, in Advances in Enhanced Heat Transfer, J. M. Chenoweth et al., eds., ASME, New York, pp. 45–51. Fujikake, J. (1980). Heat Transfer Tube for Use in Boiling Type Heat Exchangers and Method of Producing the Same, U.S. patent 4,216,826. Fuls, G. M., and Geiger, G. E. (1970). Effect of Bubble Stabilization on Pool Boiling Heat Transfer, J. Heat Transfer, 97, 635–640. Gaertner, R. F. (1967). Methods and Means for Increasing the Heat Transfer Coefficient be- tween a Wall and Boiling Liquid, U.S. patent 3,301,314. Gambill, W. R., Bundy, R. D., and Wansbrough, R. W. (1961). Heat Transfer, Burnout, and Pressure Drop for Water in Swirl Flow Tubes with Internal Twisted Tapes, Chem. Eng. Prog. Symp. Ser., 57(32), 127–137. Gao, X., and Sund ´ en, B. (2001). Heat Transfer and Pressure Drop Measurements in Rib- Roughened Rectangular Ducts, Exp. Therm. Fluid Sci., 24, 25–34. Garimella, S., and Christensen, R. N. (1995a). Heat Transfer and Pressure Drop Characteristics of Spirally Fluted Annuli, I: Hydrodynamics, J. Heat Transfer, 117, 54–60. Garimella, S., and Christensen, R. N. (1995b). Heat Transfer and Pressure Drop Characteristics of Spirally Fluted Annuli, II: Heat Transfer, J. Heat Transfer, 117, 61–68. BOOKCOMP, Inc. — John Wiley & Sons / Page 1112 / 2nd Proofs / Heat Transfer Handbook / Bejan 1112 HEAT TRANSFER ENHANCEMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1112], (84) Lines: 1841 to 1887 ——— 7.0pt PgVar ——— Long Page PgEnds: T E X [1112], (84) Gasljevic, K., and Matthys, E. F. (1997). Experimental Investigation of Thermal and Hydro- dynamic Development Regions for Drag-Reducing Surfactant Solutions, J. Heat Transfer, 119, 80–88. Gaspari, G. P., and Cattadori, G. (1994). Subcooled Flow Boiling in Tubes with and without Turbulence Promoters, Exp. Therm. Fluid Sci., 8, 28–34. Glicksman, L. R., Mikic, B. B., and Snow, D. F. (1973). Augmentation of Film Condensation on the Outside of Horizontal Tubes, AIChE J., 19, 636–637. Gnielinski, V. (1986). Correlations for the Pressure Drop in Helically Coiled Tubes, Int. Chem. Eng., 26(1), 36–44. Gomelauri, V. I., and Magrakvelidze, T. S. (1978). Mechanism of Influence of Two Dimen- sional Artificial Roughness on Critical Heat Flux in Subcooled Water Flows, Therm. Eng., 25(2), 1–3. Gregorig, R. (1954). Hautkondensation an Feingewellten Oberfl ¨ achen bei Ber ¨ ucksichtigung der Oberfl ¨ achenspannungen, Z. Angew. Math. Phys., 5, 36–49. Griffith, P. (1985). Dropwise Condensation, in Handbook of Heat Transfer Fundamentals, W. M. Rohsenow, J. P. Hartnett, and E. N. Ganic, eds., McGraw-Hill, New York, Chap. 11, Pt. 2. Griffith, P., and Wallis, J. D. (1960). The Role of Surface Conditions in Nucleate Boiling, Chem. Eng. Prog. Symp. Ser., 56(49), 49–63. Groehn, H. G., and Scholz, F. (1976). Heat Transfer and Pressure Drop of In-Line Tube Banks with Artificial Roughness, in Heat and Mass Transfer Sourcebook, Scripta Publishing, Washington, DC, pp. 21–24. Gunter, A. Y., and Shaw, W. A. (1942). Heat Transfer, Pressure Drop and Fouling Rates of Liquids for Continuous and Noncontinuous Longitudinal Fins, Trans. ASME, 64, 795–802. Gupta, M. K., Herzener, A. L., and Hartnett, J. P. (1967). Turbulent Heat Transfer Characteristic of Viscoelastic Fluids, Int. J. Heat Mass Transfer, 10, 1211–1224. Guy, A. R. (1983). Double-Pipe Heat Exchangers, in Heat Exchanger Design Handbook, E. U. Schl ¨ under, ed., Vol. 3, Hemisphere Publishing, Washington, DC, Sec. 3.2. Hagge, J. K., and Junkhan, G. H. (1974). Experimental Study of a Method of Mechanical Augmentation of Convective Heat Transfer Coefficients in Air, Report HTL-3, ISU-ERI- Ames-74158, Iowa State University, Ames, IA. Hall, W. B. (1962). Heat Transfer in Channels Having Rough and Smooth Surfaces, J. Mech. Eng. Sci., 4, 287–291. Hall, D. E., Incropera, F. P., and Viskanta, R. (2001a). Jet Impingement Boiling from a Circular Free-Surface Jet during Quenching, 1: Single Phase Jet, J. Heat Transfer, 123(5), 901–910. Hall, D. E., Incropera, F. P., and Viskanta, R. (2001b). Jet Impingement Boiling from a Circular Free-Surface Jet during Quenching, 2: Two Phase Jet, J. Heat Transfer, 123(5), 911–917. Hampson, H., and Ozisik, N. (1952). An Investigation into the Condensation of Steam, Proc. Inst. Mech. Eng., 1B, 282. Han, J C. (1988). Heat Transfer and Friction Characteristics in Rectangular Channels with Rib Turbulators, J. Heat Transfer, 110, 321–328. Han, J C., Zhang, Y. M., and Lee, C. P. (1991). Augmented Heat Transfer in Square Channels with Parallel, Crossed and V-Shaped Angled Ribs, J. Heat Transfer, 113, 590–596. Han, J C., Huang, J. J., and Lee, C. P. (1993). Augmented Heat Transfer in Square Channels with Wedge-Shaped and Delta-Shaped Turbulence Promoters, J. Enhanced Heat Transfer, 1(1), 37–52. BOOKCOMP, Inc. — John Wiley & Sons / Page 1113 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 1113 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1113], (85) Lines: 1887 to 1925 ——— 9.0pt PgVar ——— Long Page PgEnds: T E X [1113], (85) Hannemann, R. J. (1977). Recent Advances in Dropwise Condensation Theory, ASME-77- WA/HT-21, ASME, New York. Harms, T. M., Jog, M. A., and Manglik, R. M. (1998). Effects of Temperature-Dependent Vis- cosity Variations and Boundary Conditions onFully Developed LaminarForced Convection in a Semicircular Duct, J. Heat Transfer, 120, 600–605. Hartnett, J. P. (1992). Viscoelastic Fluids: A New Challenge in Heat Transfer, J. Heat Transfer, 114, 296–303. Hartnett, J. P., and Cho, Y. I. (1998). Non-Newtonian Fluids, in Handbook of Heat Transfer, 3rd ed., W. M. Rohsenow, J. P., Hartnett, and Y. I. Cho, eds., McGraw-Hill, New York, Chap. 10. Hartnett, J. P., and Kostic, M. (1985). Heat Transfer to a Viscoelastic Fluid in Laminar Flow through a Rectangular Channel, Int. J. Heat Mass Transfer, 28, 1147. Hasegawa, S., Echigo, R., and Irie, S. (1975). Boiling Characteristics and Burnout Phenomena on a Heating Surface Covered with Woven Screens, J. Nuc. Sci. Technol., 12(II), 722–724. Helmer, W. A., and Iqbal, I. (1980). Laminar Heat Transfer in a Circular Tube with Twisted Tapes during Condensation, ASHRAE Trans., 86, Pt. 2, 662–674. Hesse, G. (1973). Heat Transfer in Nucleate Boiling, Maximum Heat Flux and Transition Boiling, Int. J. Heat Mass Transfer, 16, 1611–1627. Hesselgreaves, J. E. (2001). Compact Heat Exchangers: Selection, Design and Operation, Pergamon Press, Amsterdam, The Netherlands. Hetsroni, G., Zakin, J. L., Lin, Z., Mosyak, A., Pancallo, E. A., and Rozenblit, R. (2000). The Effect of Surfactants on Bubble Growth, Wall Thermal Patterns and Heat Transfer in Pool Boiling, Int. J. Heat Mass Transfer, 44, 485–497. Hewitt, G. F. (1992). Handbook of Heat Exchanger Design, Begell House, New York. Hewitt, G. F., Shires, G. L., and Bott, T. R. (1993). Process Heat Transfer, CRC Press, Boca Raton, FL. Hilding, W. E., and Coogan, C. H., Jr. (1964). Heat Transfer and Pressure Loss Measurements in Internally Finned Tubes, Proc. Symposium on Air-Cooled Heat Exchangers, ASME, New York, pp. 57–85. Holden, K. M., Wanniarachchi, A., Marto, P. J., Boone, D. H., and Rose, J. W. (1987). The Use of Organic Coatings to Promote Dropwise Condensation of Steam, J. Heat Transfer, 109(3), 768–774. Honda, H., and Kim, K. (1995). Effect of Fin Geometry on the Condensation Heat Transfer Performance of a Bundle of Horizontal Low-Finned Tubes, J. Enhanced Heat Transfer, 2(1/2), 139–147. Honda, H., and Nozu, S. (1987). A Prediction Method for Heat Transfer during Film Conden- sation on Horizontal Low Integral-Fin Tubes, J. Heat Transfer, 109(1), 218–225. Honda, H., and Rose, J. (1999). Augmentation Techniques in External Condensation, in Hand- book of Phase Change: Boiling and Condensation, (Kandlikar, S. G., Shoji, M., and Dhir, V. K., eds.), Taylor & Francis, Philadelphia, Chap. 22. Honda, H., Nozu, S., and Uchima, B. (1988). A Generalized Prediction Method for Heat Transfer during Film Condensation on a Horizontal Low Finned Tube, JSME Int. J., Ser. 2, 31(4), 709–717. Honda, H., Takamatsu, H., and Kim, K. (1994). Condensation of CFC-11 and HCFC-123 in In-Line Bundles of Horizontal Finned Tubes: Effect of Fin Geometry, J. Enhanced Heat Transfer, 1(2), 197–209. BOOKCOMP, Inc. — John Wiley & Sons / Page 1114 / 2nd Proofs / Heat Transfer Handbook / Bejan 1114 HEAT TRANSFER ENHANCEMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1114], (86) Lines: 1925 to 1965 ——— 6.0pt PgVar ——— Normal Page PgEnds: T E X [1114], (86) Hong, S. W., and Bergles, A. E. (1976). Augmentation of Laminar Flow Heat Transfer in Tubes by Means of Twisted-Tape Inserts, J. Heat Transfer, 98, 251–256. Honma, M., Nishihara, A., and Atarashi, T. (2001). Numerical Analysis of Impinging Air Flow and Heat Transfer in Plate-Fin Type Heat Sinks, J. Electron. Packag., 123(3), 315–318. Hsieh, R., and Marsters, G. F. (1973). Heat Transfer from a Vibrating Vertical Array of Hori- zontal Cylinders, Can. J. Chem. Eng., 51, 302–306. Hudina, M. (1979). Evaluation of Heat Transfer Performances of Rough Surfaces from Exper- imental Investigation in Annular Channels, Int. J. Heat Mass Transfer, 22, 1381–1392. Hughes, T. G., and Olson, D. R. (1975). Critical Heat Fluxes for Curved Surfaces during Subcooled Flow Boiling, Trans. Can. Soc. Mech. Eng., 3(3), 122–130. Hwang, J J., and Chang, B Y. (2000). Effect of Outflow Orientation on Heat Transfer and Pressure Drop in a Triangular Duct with an Array of Tangential Jets, J. Heat Transfer, 122(4), 669–678. Hwang, U. P., and Moran, K. P. (1981). Boiling Heat Transfer of Silicon Integrated Circuits Chip Mounted on a Substrate, in Heat Transfer in Electronic Equipment, M. D. Kelleher and M. M. Yovanovich, eds., ASME-HTD-20, ASME, New York, pp. 53–59. Hwang, G. J., and Tzeng, S. C., Mao, C. P., and Soong, C. Y. (2001). Heat Transfer in a Radially Rotating Four-Pass Serpentine Channel with Staggered Half-V Rib Turbulators, J. Heat Transfer, 123(1), 39–50. Iacovides, H., Jackson, D. C., Kelemenis, G., Launder, B. E., and Yuan, Y. M. (2001). Flow and Heat Transfer in a Rotating U-Bend with 45° Ribs, Int. J. Heat Fluid Flow, 22(3), 308–314. Iltscheff, S. (1971). ¨ Uber einige Versuche zur Erzielung von Tropfkondensation mit Fluorierten K ¨ altemitteln, Kultetech. Klim., 23, 237–241. Inasaka, F., Nariai, H., Fujisaki, W., and Ishiguro, H. (1991). Critical Heat Flux of Subcooled Flow Boiling in Tubes with Internal Twisted Tape, Proc. ASME/JSME Thermal Engineering Joint Conference, Vol. 2, ASME, New York, pp. 65–70. Ito, H. (1959). Friction Factors for Turbulent Flow in Curved Pipes, Trans. ASME, J. Basic Eng., 81, 123–134. Itoh, M., and Kimura, H. (1979). Boiling Heat Transfer and Pressure Drop in Internal Spiral- Grooved Tubes, Bull. Jpn. Soc. Mech. Eng., 22(171), 1251–1257. Itoh, M., Shikazono, N., and Uchida, M. (1997). Enhancement of Condensation Heat Transfer in a Horizontal Micro-fin Tube for Zeotropic Refrigerant Mixtures, Proc. Oji International Seminar, Japan, pp. 233–238. Janssen, L. A. M., and Hoogenedoorn, C. J. (1978). Laminar Convective Heat Transfer in Helical Coiled Tubes, Int. J. Heat Mass Transfer, 21, 1179–1206. Jensen, M. K. (1980). Boiling Heat Transfer and Critical Heat Flux in Helical Coils, Ph.D. dissertation, Iowa State University, Ames, IA. Jensen, M. K. (1984). A Correlation for Predicting Critical Heat Flux Condition with Twisted Tape Swirl Generators, Int. J. Heat Mass Transfer, 27(11), 2171–2173. Jensen, M. K., and Bensler, H. P. (1986). Saturated Forced Convective Boiling Heat Transfer with Twisted Tape Inserts, J. Heat Transfer, 108, 93–99. Jensen, M. K., and Bergles, A. E. (1981). Critical Heat Flux in Helically Coiled Tubes, J. Heat Transfer, 103, 660–666. Jensen, M. K., and Bergles, A. E. (1982). Critical Heat Flux in Helical Coils with a Circumfer- ential Heat Flux Tilt toward the Outside Surface, Int. J. Heat Mass Transfer, 25, 1383–1395. BOOKCOMP, Inc. — John Wiley & Sons / Page 1115 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 1115 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1115], (87) Lines: 1965 to 2001 ——— 10.0pt PgVar ——— Normal Page PgEnds: T E X [1115], (87) Jensen, M. K., and Shome, B. (1994). Literature Survey on Heat Transfer Enhancement Tech- niques in Refrigeration Applications, Report ORNL/Sub/91-SL794, Oak Ridge National Laboratory, Oak Ridge, TN. Jensen, M. K., Trewin, R. R., and Bergles, A. E. (1992). Crossflow Boiling in Enhanced Tube Bundles, in Two-Phase Flow in Energy Systems, ASME-HTD-220, ASME, New York, pp. 11–17. Jones, T. B. (1978). Electrohydrodynamically Enhanced Heat Transfer in Liquids: A Review, Adv. Heat Transfer, 14, 107–148. Joshi, S. D., and Bergles, A. E. (1981). Analytical Study of Laminar Flow Heat Transfer to Pseudoplastic Fluids with Uniform Wall Temperature, AIChE Symp. Ser., 77(208), 114– 122. Joule, J. P. (1861). On the Surface Condensation of Steam, Philos. Trans. R. Soc. London, 151, 133–160. Junkhan, G. H., Bergles, A. E., Nirmalan, V., and Hanno, W. (1988). Performance Evaluation of the Effects of a Group of Turbulator Inserts on Heat Transfer from Gases in Tubes, ASHRAE Trans., 94(2), 1195–1201. Kabata, Y., Nakajima, R., and Shioda, K. (1996). Enhancement of Critical Heat Flux for Flow Boiling of Water in Tubes with a Twisted Tape and Helically Coiled Wire, Proc. ASME- JSME 4th International Conference on Nuclear Engineering, Vol. 1, Pt. B, 639–646. Kakac¸, S., and Liu, H. (2002). Heat Exchangers: Selection, Rating, and Thermal Design, 2nd ed., CRC Press, Boca Raton, FL. Kakac¸, S., Bergles, A. E., and Oliveira Fernandes, E. (1988). Two-Phase Flow Heat Exchang- ers: Thermal-Hydraulic Fundamentals and Design, Kluwer Academic, Dordrecht, The Netherlands. Kakac¸, S., Bergles, A. E., Mayinger, F., and Y ¨ unc ¨ u, H. (1999). Heat Transfer Enhancement of Heat Exchangers, Kluwer Academic, Dordrecht, The Netherlands. Kandlikar, S. G., Shoji, M., and Dhir, V. K. (1999). Handbook of Phase Change: Boiling and Condensation, Taylor & Francis, Philadelphia. Kang, Y. T., and Christensen, R. N. (2000). The Effect of Fluid Property Variations on Heat Transfer in Annulus Side of a Spirally Fluted Tube, J. Enhanced Heat Transfer, 7(1), 1–9. Karayiannis, T. G., and Xu, Y. (1998a). Electric Field Effect in Boiling Heat Transfer, A: Simulation of the Electric Field and Electric Forces, J. Enhanced Heat Transfer, 5(4), 217– 229. Karayiannis, T. G., and Xu, Y. (1998b). Electric Field Effect in Boiling Heat Transfer, B: Electrode Geometry, J. Enhanced Heat Transfer, 5(4), 213–247. Katz, D. L., Meyers, J. E., Young, E. H., and Balekjian, G. (1955). Boiling outside Finned Tubes, Pet. Refiner, 34, 113–116. Kays, W. M., and London, A. L. (1984). Compact Heat Exchangers, 3rd ed., McGraw-Hill, New York. Kedzierski, M. A. (1993). Simultaneous Visual and Calorimetric Measurements of R-11, R- 123, and R-123 Alkybenzene Nucleate Flow Boiling, in Heat Transfer with Alternative Refrigerants, ASME-HTD-423, ASME, New York, pp. 27–33. Kedzierski, M. A., and Goncalves, J. M. (1997). Horizontal Convective Condensation of Alter- native Refrigerants within a Micro-fin Tube, NISTIR 6095, National Institute of Standards and Technology, Gaithersburg, MD. BOOKCOMP, Inc. — John Wiley & Sons / Page 1116 / 2nd Proofs / Heat Transfer Handbook / Bejan 1116 HEAT TRANSFER ENHANCEMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [1116], (88) Lines: 2001 to 2047 ——— 7.0pt PgVar ——— Long Page PgEnds: T E X [1116], (88) Kedzierski, M. A., and Kim, M. S. (1997). Convective Boiling and Condensation Heat Transfer with a Twisted-Tape Insert for R12, R22, R152a, R134a, R290, R32/R134a, R32/R152a, R290/R134a, R134a/R600a, Report NISTIR 5905, National Institute of Standards and Tech- nology, Gaithersburg, MD. Kelkar, K. M., and Patankar, S. V. (1990). Numerical Prediction of Fluid Flow and Heat Transfer in a Circular Tube with Longitudinal Fins Interrupted in the Streamwise Direction, J. Heat Transfer, 112, 342–348. Kemeny, G. A., and Cyphers, J. A. (1961). Heat Transfer and Pressure Drop in an Annulus Gap with Surface Spoilers, J. Heat Transfer, 83, 189–198. Kenning, D. B. R., and Kao, Y. S. (1972). Convective Heat Transfer to Water Containing Bubbles: Enhancement Not Dependent on Thermocapillarity, Int. J. Heat Mass Transfer, 15, 1709–1718. Kern, D. Q., and Kraus, A. D. (1972). Extended Surface Heat Transfer, McGraw-Hill, New York. Kettner, I. J., Degani, D., and Guffinger, G. (1991). Numerical Study of Heat Transfer in Internally Finned Tubes, Numer. Heat Transfer, A20, 159–180. Khanpara, J. C., Bergles, A. E., and Pate, M. D. (1986). Augmentation of R-113 In-Tube Condensation with Micro-fin Tubes, in Heat Transfer in Air Conditioning and Refrigeration Equipment, ASME-HTD-65, ASME, New York, pp. 21–32. Kim, C J., and Bergles, A. E. (1985). Structured Surfaces for Enhanced Nucleate Boiling, Report HTL-36, ISU-ERI-Ames-86220, Iowa State University, Ames, IA. Kim, N H., and Choi, K K. (2001). Nucleate Pool Boiling on Structured Enhanced Tubes Having Pores with Connecting Gaps, Int. J. Heat Mass Transfer, 44(1), 17–28. Kitto, J. B., and Wiener, M. (1982). Effects of Nonuniform Circumferential Heating and Inclination on Critical Heat Flux in Smooth and Ribbed Bore Tubes, in Heat Transfer, 1982, Vol. 4, Hemisphere Publishing, New York, pp. 297–302. Koch, R. (1958). Druckverlust und W ¨ arme ¨ ubergang bei verwirbelter Str ¨ omung, VDI For- schungsh., B24(469), 1–44. Kovalev, S. A., Solov’yev, S. L., and Ovodkov, O. A. (1990). Theory of Boiling Heat Transfer on a Capillary Porous Surface, Proc. 9th International Heat Transfer Conference, Vol. 2, pp. 105–110. Kraus, A. D. (1982). Analysis and Evaluation of Extended Surface Thermal Systems, Hemi- sphere Publishing, New York. Kraus, A. D., and Bar-Cohen, A. (1995). Design and Analysis of Heat Sinks, Wiley, New York. Kraus, A. D., Aziz, A., and Welty, J. (2001). Extended Surface Heat Transfer, Wiley, New York. Kryukov, Y. V., and Boykov, G. P. (1973). Augmentation of Heat Transfer in an Acoustic Field, Heat Transfer Sov. Res., 5(1), 26–28. Kubair, V., and Kuloor, N. R. (1963). Pressure Drop and Heat Transfer in Spiral Tube Coils, Indian J. Technol., 1, 336–338. Kubair, V., and Kuloor, N. R. (1966a). Comparison of Performance of Helical and Spiral Coil Heat Exchangers, Indian J. Technol., 4, 1–8. Kubair, V., and Kuloor, N. R. (1966b). Heat Transfer to Newtonian Fluids in Coiled Pipes in Laminar Flow, Int. J. Heat Mass Transfer, 9, 63–75. Kubanek, G. R., and Miletti, D. L. (1979). Evaporative Heat Transfer and Pressure Drop Per- formance of Internally-Finned Tubes with Refrigerant 22, J. Heat Transfer, 101, 447–452. . Hydrodynamics, J. Heat Transfer, 117, 54–60. Garimella, S., and Christensen, R. N. (1995b). Heat Transfer and Pressure Drop Characteristics of Spirally Fluted Annuli, II: Heat Transfer, J. Heat Transfer, . J. Heat Transfer, 84, 268–270. Fand, R. M., Roos, J., Cheng, P., and Kaye, J. (1962). The Local Heat- Transfer Coefficient around a Heated Horizontal Cylinder in an Intense Sound Field, J. Heat Transfer, . Pool Boiling Heat Transfer from Microporous Heating Surface, in Advances in Enhanced Heat Transfer, J. M. Chenoweth et al., eds., ASME, New York, pp. 45–51. Fujikake, J. (1980). Heat Transfer Tube

Ngày đăng: 05/07/2014, 16:20

TỪ KHÓA LIÊN QUAN