1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Aircraft Flight Dynamics Robert F. Stengel Lecture13 Analysis of Time Response

12 264 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 1,08 MB

Nội dung

Time Response of Linear, Time-Invariant Systems 
 Robert Stengel, Aircraft Flight Dynamics
 MAE 331, 2012" •  Time-domain analysis" –  Transient response to initial conditions and inputs" –  Steady-state (equilibrium) response" –  Continuous- and discrete-time models" –  Phase-plane plots" –  Response to sinusoidal input" Copyright 2012 by Robert Stengel. All rights reserved. For educational use only.! http://www.princeton.edu/~stengel/MAE331.html ! http://www.princeton.edu/~stengel/FlightDynamics.html ! Linear, Time-Invariant (LTI) Longitudinal Model" Δ  V (t) Δ  γ (t) Δ  q(t) Δ  α (t) $ % & & & & & ' ( ) ) ) ) ) = −D V −g −D q −D α L V V N 0 L q V N L α V N M V 0 M q M α − L V V N 0 1 − L α V N $ % & & & & & & & & ' ( ) ) ) ) ) ) ) ) ΔV(t) Δ γ (t) Δq(t) Δ α (t) $ % & & & & & ' ( ) ) ) ) ) + 0 T δ T 0 0 0 L δ F / V N M δ E 0 0 0 0 −L δ F / V N $ % & & & & & ' ( ) ) ) ) ) Δ δ E(t) Δ δ T (t ) Δ δ F(t) $ % & & & ' ( ) ) ) •  Steady, level flight" •  Simplified control effects " •  Neglect disturbance effects " •  What can we do with it?" –  Integrate equations to obtain time histories of initial condition, control, and disturbance effects" –  Determine modes of motion" –  Examine steady-state conditions" –  Identify effects of parameter variations" –  Define frequency response " Gain insights about system dynamics! Linear, Time-Invariant System Model" •  General model contains" –  Dynamic equation (ordinary differential equation)" –  Output equation (algebraic transformation) " € Δ ˙ x (t) = FΔx(t) + GΔu(t) + LΔw(t), Δx(t o ) given Δy(t) = H x Δx(t) + H u Δu(t) + H w Δw(t) •  State and output dimensions need not be the same" dim Δx(t ) [ ] = n × 1 ( ) dim Δy(t ) [ ] = r × 1 ( ) System Response to Inputs and Initial Conditions" •  Solution of the linear, time-invariant (LTI) dynamic model " Δ  x(t) = FΔx(t) + GΔu(t) + LΔw(t), Δx(t o ) given Δx(t) = Δx(t o ) + FΔx( τ ) + GΔu( τ ) + LΔw( τ ) [ ] t o t ∫ d τ •  has two parts" –  Unforced (homogeneous) response to initial conditions" –  Forced response to control and disturbance inputs" Response to Initial Conditions Unforced Response to Initial Conditions" •  The state transition matrix, Φ, propagates the state from t o to t by a single multiplication" Δx(t ) = Δx(t o )+ FΔx( τ ) [ ] d τ t o t ∫ = e F t−t o ( ) Δx(t o ) = Φ t − t o ( ) Δx(t o ) e F t −t o ( ) = Matrix Exponential = I + F t − t o ( ) + 1 2! F t − t o ( ) " # $ % 2 + 1 3! F t − t o ( ) " # $ % 3 + = Φ t − t o ( ) = State Transition Matrix •  Neglecting forcing functions" Initial-Condition Response via State Transition" Φ = I + F δ t ( ) + 1 2! F δ t ( ) # $ % & 2 + 1 3! F δ t ( ) # $ % & 3 + Δx(t 1 ) = Φ t 1 − t o ( ) Δx(t o ) Δx(t 2 ) = Φ t 2 − t 1 ( ) Δx(t 1 ) Δx(t 3 ) = Φ t 3 − t 2 ( ) Δx(t 2 )  •  If (t k+1 – t k ) = Δ t = constant, state transition matrix is constant" Δx(t 1 ) = Φ δ t ( ) Δx(t o ) = ΦΔx(t o ) Δx(t 2 ) = ΦΔx(t 1 ) = Φ 2 Δx(t o ) Δx(t 3 ) = ΦΔx(t 2 ) = Φ 3 Δx(t o ) … •  Incremental propagation of Δx" •  Propagation is exact" Discrete-Time Dynamic Model" Δx(t k+1 ) = Δx(t k )+ FΔx( τ )+ GΔu( τ )+ LΔw( τ ) [ ] d τ t k t k+1 ∫ Δx(t k+1 ) = Φ δ t ( ) Δx(t k )+ Φ δ t ( ) e −F τ −t k ( ) & ' ( ) d τ t k t k+1 ∫ GΔu(t k )+ LΔw(t k ) [ ] = ΦΔx(t k )+ ΓΔu(t k )+ ΛΔw(t k ) •  Response to continuous controls and disturbances" •  Response to piecewise-constant controls and disturbances" Ordinary Difference Equation! •  With piecewise-constant inputs, control and disturbance effects taken outside the integral" •  Discrete-time model = Sampled-data model" Sampled-Data Control- and Disturbance-Effect Matrices" Γ = e F δ t − I ( ) F −1 G = I − 1 2! F δ t + 1 3! F 2 δ t 2 − 1 4! F 3 δ t 3 + $ % & ' ( ) G δ t Λ = e F δ t − I ( ) F −1 L = I − 1 2! F δ t + 1 3! F 2 δ t 2 − 1 4! F 3 δ t 3 + $ % & ' ( ) L δ t Δx(t k ) = ΦΔx(t k −1 ) + ΓΔu(t k −1 ) + ΛΔw(t k −1 ) •  As δ t becomes very small" Φ δ t →0 $ →$$ I + F δ t ( ) Γ δ t →0 $ →$$ G δ t Λ δ t →0 $ →$$ L δ t Discrete-Time Response to Inputs" Δx(t 1 ) = ΦΔx(t o )+ ΓΔu(t o )+ ΛΔw(t o ) Δx(t 2 ) = ΦΔx(t 1 )+ ΓΔu(t 1 )+ ΛΔw(t 1 ) Δx(t 3 ) = ΦΔx(t 2 )+ ΓΔu(t 2 )+ ΛΔw(t 2 )  •  Propagation of Δx, with constant Φ, Γ, and Λ" δ t = t k +1 − t k Continuous- and Discrete-Time Short-Period System Matrices" •  δ t = 0.1 s" •  δ t = 0.5 s" F = −1.2794 −7.9856 1 −1.2709 " # $ % & ' G = −9.069 0 " # $ % & ' L = −7.9856 −1.2709 " # $ % & ' Φ = 0.845 −0.694 0.0869 0.846 # $ % & ' ( Γ = −0.84 −0.0414 # $ % & ' ( Λ = −0.694 −0.154 # $ % & ' ( Φ = 0.0823 −1.475 0.185 0.0839 # $ % & ' ( Γ = −2.492 −0.643 # $ % & ' ( Λ = −1.475 −0.916 # $ % & ' ( •  Continuous-time (analog) system" •  Sampled-data (digital) system" δ t has a large effect on the digital model" δ t = t k +1 − t k Φ = 0.987 −0.079 0.01 0.987 # $ % & ' ( Γ = −0.09 −0.0004 # $ % & ' ( Λ = −0.079 −0.013 # $ % & ' ( •  δt = 0.01 s" Example: Continuous- and Discrete-Time Models" Δ  q Δ  α # $ % % & ' ( ( = −1.3 −8 1 −1.3 # $ % & ' ( Δq Δ α # $ % % & ' ( ( + −9.1 0 # $ % & ' ( Δ δ E • Note individual acceleration and difference sensitivities to state and control perturbations" Short Period" Δq k +1 Δ α k +1 # $ % % & ' ( ( = 0.85 −0.7 0.09 0.85 # $ % & ' ( Δq k Δ α k # $ % % & ' ( ( + −0.84 −0.04 # $ % & ' ( Δ δ E k Differential Equations Produce State Rates of Change" Difference Equations Produce State Increments" Learjet 23! M N = 0.3, h N = 3,050 m" V N = 98.4 m/s" δ t = 0.1sec Example: Continuous- and Discrete-Time Models" Δ  p Δ  φ # $ % % & ' ( ( ≈ −1.2 0 1 0 # $ % & ' ( Δp Δ φ # $ % % & ' ( ( + 2.3 0 # $ % & ' ( Δ δ A Roll-Spiral" Δp k +1 Δ φ k +1 # $ % % & ' ( ( ≈ 0.89 0 0.09 1 # $ % & ' ( Δp k Δ φ k # $ % % & ' ( ( + 0.24 −0.01 # $ % & ' ( Δ δ A k Differential Equations Produce State Rates of Change" Difference Equations Produce State Increments" Example: Continuous- and Discrete-Time Models" Δ  r Δ  β # $ % % & ' ( ( ≈ −0.11 1.9 −1 −0.16 # $ % & ' ( Δr Δ β # $ % % & ' ( ( + −1.1 0 # $ % & ' ( Δ δ R Dutch Roll" Δr k +1 Δ β k +1 # $ % % & ' ( ( ≈ 0.98 0.19 −0.1 0.97 # $ % & ' ( Δr k Δ β k # $ % % & ' ( ( + −0.11 0.01 # $ % & ' ( Δ δ R k Differential Equations Produce State Rates of Change" Difference Equations Produce State Increments" Initial-Condition Response" •  Doubling the initial condition doubles the output" Δ  x 1 Δ  x 2 " # $ $ % & ' ' = −1.2794 −7.9856 1 −1.2709 " # $ % & ' Δx 1 Δx 2 " # $ $ % & ' ' + −9.069 0 " # $ % & ' Δ δ E Δy 1 Δy 2 " # $ $ % & ' ' = 1 0 0 1 " # $ % & ' Δx 1 Δx 2 " # $ $ % & ' ' + 0 0 " # $ % & ' Δ δ E % Short-Period Linear Model - Initial Condition! ! F = [-1.2794 -7.9856;1. -1.2709];! G = [-9.069;0];! Hx = [1 0;0 1];! sys = ss(F, G, Hx,0);! ! xo = [1;0];! [y1,t1,x1] = initial(sys, xo);! ! xo = [2;0];! [y2,t2,x2] = initial(sys, xo);! plot(t1,y1,t2,y2), grid! ! figure! xo = [0;1];! initial(sys, xo), grid! Angle of Attack Initial Condition" Pitch Rate Initial Condition" Phase Plane Plots State (Phase) Plane Plots" •  Cross-plot of one component against another" •  Time or frequency not shown explicitly" % 2nd-Order Model - Initial Condition Response! ! clear! z = 0.1; % Damping ratio! wn = 6.28; % Natural frequency, rad/s! F = [0 1;-wn^2 -2*z*wn];! G = [1 -1;0 2];! Hx = [1 0;0 1];! sys = ss(F, G, Hx,0);! t = [0:0.01:10];! xo = [1;0];! [y1,t1,x1] = initial(sys, xo, t);! ! plot(t1,y1)! grid on! ! figure! plot(y1(:,1),y1(:,2))! grid on! Δ  x 1 Δ  x 2 " # $ $ % & ' ' ≈ 0 1 − ω n 2 −2 ζω n " # $ $ % & ' ' Δx 1 Δx 2 " # $ $ % & ' ' + 1 −1 0 2 " # $ % & ' Δu 1 Δu 2 " # $ $ % & ' ' Dynamic Stability Changes the State-Plane Spiral" •  Damping ratio = 0.1" •  Damping ratio = 0.3" •  Damping ratio = –0.1" Superposition of Linear Responses Step Response" •  Stability, speed of response, and damping are independent of the initial condition or input" •  Doubling the input doubles the output" Δ  x 1 Δ  x 2 " # $ $ % & ' ' = −1.2794 −7.9856 1 −1.2709 " # $ % & ' Δx 1 Δx 2 " # $ $ % & ' ' + −9.069 0 " # $ % & ' Δ δ E Δy 1 Δy 2 " # $ $ % & ' ' = 1 0 0 1 " # $ % & ' Δx 1 Δx 2 " # $ $ % & ' ' + 0 0 " # $ % & ' Δ δ E % Short-Period Linear Model - Step! ! F = [-1.2794 -7.9856;1. -1.2709];! G = [-9.069;0];! Hx = [1 0;0 1];! sys = ss(F, -G, Hx,0); % (-1)*Step! sys2 = ss(F, -2*G, Hx,0); % (-1)*Step! ! % Step response! step(sys, sys2), grid! Δ δ E t ( ) = 0, t < 0 −1, t ≥ 0 % & ' ( ' Superposition of Linear Responses" •  Stability, speed of response, and damping are independent of the initial condition or input" Δ  x 1 Δ  x 2 " # $ $ % & ' ' = −1.2794 −7.9856 1 −1.2709 " # $ % & ' Δx 1 Δx 2 " # $ $ % & ' ' + −9.069 0 " # $ % & ' Δ δ E Δy 1 Δy 2 " # $ $ % & ' ' = 1 0 0 1 " # $ % & ' Δx 1 Δx 2 " # $ $ % & ' ' + 0 0 " # $ % & ' Δ δ E % Short-Period Linear Model - Superposition! ! F = [-1.2794 -7.9856;1. -1.2709];! G = [-9.069;0];! Hx = [1 0;0 1];! sys = ss(F, -G, Hx,0); % (-1)*Step! ! xo = [1; 0];! t = [0:0.2:20];! u = ones(1,length(t));! ! [y1,t1,x1] = lsim(sys,u,t,xo);! [y2,t2,x2] = lsim(sys,u,t);! ! u != zeros(1,length(t));! [y3,t3,x3] = lsim(sys,u,t,xo);! ! plot(t1,y1,t2,y2,t3,y3), grid! 2 nd -Order Comparison: Continuous- and Discrete- Time LTI Longitudinal Models" Short ! Period" Phugoid" Δ  V Δ  γ # $ % % & ' ( ( ≈ −0.02 −9.8 0.02 0 # $ % & ' ( ΔV Δ γ # $ % % & ' ( ( + 4.7 0 # $ % & ' ( Δ δ T Δ  q Δ  α # $ % % & ' ( ( = −1.3 −8 1 −1.3 # $ % & ' ( Δq Δ α # $ % % & ' ( ( + −9.1 0 # $ % & ' ( Δ δ E Δq k +1 Δ α k +1 # $ % % & ' ( ( = 0.85 −0.7 0.09 0.85 # $ % & ' ( Δq k Δ α k # $ % % & ' ( ( + −0.84 −0.04 # $ % & ' ( Δ δ E k ΔV k +1 Δ γ k +1 # $ % % & ' ( ( = 1 −0.98 0.002 1 # $ % & ' ( ΔV k Δ γ k # $ % % & ' ( ( + 0.47 0.0005 # $ % & ' ( Δ δ T k Learjet 23! M N = 0.3, h N = 3,050 m" V N = 98.4 m/s" Differential Equations Produce State Rates of Change" Difference Equations Produce State Increments" δ t = 0.1sec 4 th - Order Comparison: Continuous- and Discrete-Time Longitudinal Models" Phugoid and Short Period" Δ  V Δ  γ Δ  q Δ  α $ % & & & & & ' ( ) ) ) ) ) = −0.02 −9.8 0 0 0.02 0 0 1.3 0 0 −1.3 −8 −0.002 0 1 −1.3 $ % & & & & ' ( ) ) ) ) ΔV Δ γ Δq Δ α $ % & & & & ' ( ) ) ) ) + 4.7 0 0 0 0 −9.1 0 0 $ % & & & & ' ( ) ) ) ) Δ δ T Δ δ E $ % & ' ( ) ΔV k+1 Δ γ k+1 Δq k+1 Δ α k+1 $ % & & & & & ' ( ) ) ) ) ) = 1 −0.98 −0.002 −0.06 0.002 1 0.006 0.12 0.0001 0 0.84 −0.69 −0.0002 0.0001 0.09 0.84 $ % & & & & ' ( ) ) ) ) ΔV k Δ γ k Δq k Δ α k $ % & & & & & ' ( ) ) ) ) ) + 0.47 0.0005 0.0005 −0.002 0 −0.84 0 −0.04 $ % & & & & ' ( ) ) ) ) Δ δ T k Δ δ E k $ % & & ' ( ) ) Learjet 23! M N = 0.3, h N = 3,050 m" V N = 98.4 m/s" Differential Equations Produce State Rates of Change" Difference Equations Produce State Increments" δ t = 0.1sec Equilibrium Response Equilibrium Response" Δ  x(t ) = FΔx(t ) + GΔu(t) + LΔw(t ) 0 = FΔx(t ) + GΔu(t ) + LΔw(t ) Δx* = −F −1 GΔu * +LΔw * ( ) •  Dynamic equation" •  At equilibrium, the state is unchanging" •  Constant values denoted by (.)*" Steady-State Condition" •  If the system is also stable, an equilibrium point is a steady-state point, i.e.," –  Small disturbances decay to the equilibrium condition" F = f 11 f 12 f 21 f 22 ! " # # $ % & & ; G = g 1 g 2 ! " # # $ % & & ; L = l 1 l 2 ! " # # $ % & & Δx 1 * Δx 2 * " # $ $ % & ' ' = − f 22 − f 12 − f 21 f 11 " # $ $ % & ' ' f 11 f 22 − f 12 f 21 ( ) g 1 g 2 ) * + + , - . . Δu *+ l 1 l 2 ) * + + , - . . Δw * " # $ $ % & ' ' 2 nd -order example" sI − F = Δ s ( ) = s 2 + f 11 + f 22 ( ) s + f 11 f 22 − f 12 f 21 ( ) = s − λ 1 ( ) s − λ 2 ( ) = 0 Re λ i ( ) < 0 System Matrices" Equilibrium " Response with Constant Inputs" Requirement for Stability" Equilibrium Response of" Approximate Phugoid Model" Δx P * = −F P −1 G P Δu P * +L P Δw P * ( ) ΔV * Δ γ * # $ % % & ' ( ( = − 0 V N L V −1 g V N D V gL V # $ % % % % % & ' ( ( ( ( ( T δ T L δ T V N # $ % % % & ' ( ( ( Δ δ T * + D V −L V V N # $ % % % & ' ( ( ( ΔV W * + , - - . - - / 0 - - 1 - - •  Equilibrium state with constant thrust and wind perturbations" Steady-State Response of" Approximate Phugoid Model" ΔV * = − L δ T L V Δ δ T * + ΔV W * Δ γ * = 1 g T δ T + L δ T D V L V % & ' ( ) * Δ δ T * •  With L δ T ~ 0, i.e., no lift produced directly by thrust, steady-state velocity depends only on the horizontal wind" •  Constant thrust produces steady climb rate" •  Corresponding dynamic response to thrust step, with L δ T = 0" Steady horizontal wind affects velocity but not flight path angle! Equilibrium Response of" Approximate Short-Period Model" Δx SP * = −F SP −1 G SP Δu SP * +L SP Δw SP * ( ) Δq * Δ α * # $ % % & ' ( ( = − L α V N M α 1 −M q # $ % % % & ' ( ( ( L α V N M q + M α * + , - . / M δ E − L δ E V N # $ % % % & ' ( ( ( Δ δ E * − M α −L α V N # $ % % % & ' ( ( ( Δ α W * 1 2 3 3 4 3 3 5 6 3 3 7 3 3 •  Equilibrium state with constant elevator and wind perturbations" Steady-State Response of" Approximate Short-Period Model" •  Steady pitch rate and angle of attack response to elevator are not zero" •  Steady vertical wind affects steady-state angle of attack but not pitch rate" Δq * = − L α V N M δ E % & ' ( ) * L α V N M q + M α % & ' ( ) * Δ δ E * Δ α * = − M δ E ( ) L α V N M q + M α % & ' ( ) * Δ δ E + Δ α W * with L δ E = 0" Dynamic response to elevator step with L δ E = 0! Scalar Frequency Response Speed Control of Direct-Current Motor" u(t) = C e(t) where e(t) = y c (t) − y(t) •  Control Law (C = Control Gain)" Angular Rate" Characteristics of the Motor" •  Simplified Dynamic Model" –  Rotary inertia, J, is the sum of motor and load inertias" –  Internal damping neglected" –  Output speed, y(t), rad/s, is an integral of the control input, u(t)! –  Motor control torque is proportional to u(t) " –  Desired speed, y c (t), rad/s, is constant" –  Control gain, C, scales command-following error to motor input voltage" Model of Dynamics and Speed Control" •  Dynamic equation" y(t) = 1 J u(t)dt 0 t ∫ = C J e(t)dt 0 t ∫ = C J y c (t) − y(t) [ ] dt 0 t ∫ dy(t) dt = u(t) J = Ce(t) J = C J y c (t) − y(t) [ ] , y 0 ( ) given •  Integral of the equation, with y(0) = 0" • Direct integration of y c (t)" • Negative feedback of y(t)" Step Response of Speed Controller" y(t) = y c 1− e − C J " # $ % & ' t ( ) * * + , - - = y c 1− e λ t ( ) + , = y c 1− e − t τ ( ) * + , - •  where"   λ = –C/J = eigenvalue or root of the system (rad/s)"   τ = J/C = time constant of the response (sec)" Step input : y C (t) = 0, t < 0 1, t ≥ 0 " # $ % $ •  Solution of the integral, with step command" y c t ( ) = 0, t < 0 1, t ≥ 0 " # $ % $ Angle Control of a DC Motor" •  Closed-loop dynamic equation, with y(t) = I 2 x(t)! € u(t) = c 1 y c (t) − y 1 (t) [ ] − c 2 y 2 (t)  x 1 (t)  x 2 (t) ! " # # $ % & & = 0 1 −c 1 / J −c 2 / J ! " # # $ % & & x 1 (t) x 2 (t) ! " # # $ % & & + 0 c 1 / J ! " # # $ % & & y c •  Control law with angle and angular rate feedback! ω n = c 1 J ; ζ = c 2 J ( ) 2 ω n c 1 /J = 1 " c 2 /J = 0, 1.414, 2.828" % Step Response of Damped " Angle Control" " F1 = [0 1;-1 0];" G1 = [0;1];" " F1a = [0 1;-1 -1.414];" F1b = [0 1;-1 -2.828];" " Hx = [1 0;0 1];" " Sys1 = ss(F1,G1,Hx,0);" Sys2 = ss(F1a,G1,Hx,0);" Sys3 = ss(F1b,G1,Hx,0);" " step(Sys1,Sys2,Sys3)" Step Response of Angle Controller, with Angle and Rate Feedback" •  Single natural frequency, three damping ratios! ω n = c 1 J ; ζ = c 2 J ( ) 2 ω n Angle Response to a Sinusoidal Angle Command" € Amplitude Ratio (AR) = y peak y C peak Phase Angle = −360 Δt peak Period , deg •  Output wave lags behind the input wave" •  Input and output amplitudes different! y C t ( ) = y C peak sin ω t Effect of Input Frequency on Output Amplitude and Phase Angle" •  With low input frequency, input and output amplitudes are about the same" •  Rate oscillation leads angle oscillation by ~90 deg" •  Lag of angle output oscillation, compared to input, is small" y c (t) = sin t / 6.28 ( ) , deg ω n = 1 rad / s ζ = 0.707 At Higher Input Frequency, Phase Angle Lag Increases" y c (t) = sin t ( ) , deg [...]... deg Angle and Rate Response of a DC Motor over Wide InputFrequency Range " Very low damping! Moderate damping! High damping! !  Long-term response of a dynamic system to sinusoidal inputs over a range of frequencies" !  Determine experimentally from time response or " !  Compute the Bode plot of the system s transfer functions (TBD)! Next Time: Root Locus Analysis Reading Flight Dynamics, 357-361, . Time Response of Linear, Time- Invariant Systems 
 Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012" •  Time- domain analysis& quot; –  Transient response to initial. •  Damping ratio = –0.1" Superposition of Linear Responses Step Response& quot; •  Stability, speed of response, and damping are independent of the initial condition or input" • . time response or " !  Compute the Bode plot of the systems transfer functions (TBD)! Very low damping! Moderate damping! High damping! Next Time:  Root Locus Analysis  Reading Flight

Ngày đăng: 04/07/2014, 19:26

TỪ KHÓA LIÊN QUAN