1. Trang chủ
  2. » Công Nghệ Thông Tin

A textbook of Computer Based Numerical and Statiscal Techniques part 24 pdf

10 220 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 119,6 KB

Nội dung

Use Everett’s formula to determine k 0.25... Find the value of log 337.5 by using Laplace Everett’s formula... CHAPTER 5Interpolation with Unequal Interval 5.1 INTRODUCTION The interpola

Trang 1

Difference table is:

308

896

By Everett’s formula,

(1.25 (0.25) 0.75) ( )( ) ( ) (1.75 0.75 ( 0.25))( ) ( )

= 4064

Hence f(30) = 4064.

Example 3 Apply Laplace Everett’s formula to find the value of log 2375 from the data given below: x

x

log 1.3222 1.3424 1.3617 1.3802 1.3979 1.4150

Sol Here h = 1

We take origin at 23

Now difference table is given by

log

0.0202

0.0171

Trang 2

Here h = 1

u = 23.75 23 0.75

1

x a h

w = 1 – 0.75 = 0.25

From Laplace Everett formula, we have

( 1 () 1) 2 ( 2)( 1) ( 1)( 2) 4

( 1) ( 1) 2 ( 2)( 1) ( 1)( 2) 4

= 0.75 1.3802 (1.75)(0.75)( 0.25) ( 0.0008) (1.75 2.75 0.75)( )( )( 0.25)( 1.25) (0.0002)

+ 0.25(1.25)( 0.75( 0.0008) (2.25 (1.25)(0.25)( 0.75)( 1.75))

= 1.035419 + 0.340455

= 1.375874

log 2375 = log (23.75 × 100) = log 23.75 + log 100

⇒ log 2375 = 1.375872 + 2 = 3.375872

Example 4 Find the value of e –x when x = 1.748 from the following data:

x

x

e

0.1790 0.1773 0.1755 0.1738 0.1720 0.1703

Sol Here h = 0.01, take origin as 1.74.

The difference table for the given data is as:

x

1.72 0.1790

0.0017

0.0017 1.77 0.1703

Trang 3

1.748 1.74

0.8 0.01

w = 0.2

( )( )( )(2.8 1.8 0.8 0.2)( 1.2 (0.0004)) (0.8) 0.8(0.1738) (0.8)(1.8)( 0.2)( 0.00017)

120

( 0.8 0.2 1.2)( )( ) ( ) ( )( )( )(1.2 2.2 0.2 0.8)( 1.8) ( )

= 0.13904 + 0.0000816 + 0.000003225 + 0.0351 – 0.0000032 + 0.000002534

= 0.174224

Example 5 Prove that if third differences are assumed to be constant

of y 11 and y 16 if y 0 = 3010, y 5 = 2710, y 10 = 2285, y 15 = 1860, y 20 = 1560, y 25 =1510, y 30 = 1835.

Sol 1

11 10

0.2, 5

x = − =

2

16 15

0.2

5

x = − =

300

325

Using given formula,

x

11

1.2 (0.2)( 0.8) 0.8)(0.64 1

= 2196

Trang 4

( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )

16

= 1786

Example 6 Find the compound interest on the sum of Rs 10,000/- at 7% for the period 16 years

if,

n

(1.07) 1.40255 1.96715 2.75903 3.86968 5.42743 7.61236 Sol The difference table can be formed as:

0.5646

2.18493

3 30 7.61236

Here, h = 5

5

x a h

w = 1− = −u 1 0.2 0.8=

On applying Laplace Everett formula, we have

0.2(0.2 1)(0.2 1) 0.2(0.2 2)(0.2 1)(0.2 1)(0.2 2)

0.8 2.75903 0.8(0.8 1)(0.8 1 0.8(0.8 2)(0.8 1)(0.8 1)(0.8 2)

= 0.776593 + 2.189027 = 2.96595 (Approx.)

Trang 5

Example 7 The values of the ellipitc integral ( ) / 2( 2 )1/ 2

0

k m =π∫ 1 m sin− θ − dθ for certain equidistant values of m are given below Use Everett’s formula to determine k (0.25).

m

k m

( ) 1.659624 1.669850 1.680373 1.691208 1.702374 1.713889

Sol Here h = 0.02, take origin as 0.24

u = 0.25 0.24 0.5

0.02

x a h

w = 1 – u = 0.5

( ) 0.20 1.659624

0.010226

0.011515 0.30 1.713889

= ( )(0.5 1.691208) (0.5)(1.5)( 0.5)(0.000331) ( 1.5)( )( )( )( )(.5 5 1.5 2.5 0.000001)

( )(0.5 1.680073) ( )( )( )(.5 1.5 .5 0.000312) ( )( ).5 1.5 ( 5) 2.5( )( 1.5) (.000004)

= 0.845604 – 0.00002069 – 0.00000014 + 0.84018650 – 0.0000195 + 0.00000005

= 1.685750

Trang 6

Example 8 Find the value of log 337.5 by using Laplace Everett’s formula Given that:

x

x

log 2.49136 2.50515 2.51851 2.53148 2.54407 2.55630

Sol Here h = 10, take origin as 340

337.5 340

0.25 10

x a

u

h

w = 1 – u = 1+ 0.25 = 1.25

For the given data difference table is as:

3 310 2.49136

0.01379

0.01223

2 360 2.55630

( ) ( ) ( 1) ( 1) 2 ( ) ( 2)( 1) ( 1)( 2) 4 ( )

( ) ( 1) ( 1) 2 ( ) ( 2)( 1) ( 1)( 2) 4 ( )

( 0.25) 2.54407 ( 1.25)( 0.25 0.75)( ) ( 0.00036) 1.25 2.53148

6

(0.25 1.25 2.25)( )( )( 0.00038)

6

+ − (3.25 2.25 1.25 0.25)( )( )( )( 0.75)(0.00001)

120

− +

= –0.6360175–0.0000140625 + 3.16435 – 0.00004453125 – 0.0000001428

= 2.528273 (Approx.)

Trang 7

PROBLEM SET 4.7

1 Eliminate odd difference from the Gauss Forward formula to drive Everett’s formula:

u

y = −u f + δ =u − − S δ + + − S δ +

where u x x0

h

=

2 From the following table of values of x and y = e x , interpolate the value of y when x = 1.91:

5.4739 6.0496 6.6859 7.3891 8.1662 9.0250

x

x

y=e

[Ans 6.7531]

3 From the following present value annuity a n table:

n

x

a

11.4699 12.7834 13.7648 14.4982 15.0463

Find the present value of the annuity a31, a33

[Ans 13.9186, 14.2306]

4 Find the value of x1/3 when x = 51 to 54 from the data:

x

x1/3

3.4200 3.3569 3.6840 3.8030 3.9149 4.0207

[Ans 3.7084096, 3.7325079, 3.7563005, 3.7797956]

5 From the following data, find the value of f(31), f(32),

f(20) = 3010, f(25) = 3979, f(30) = 4771, f(35) = 5441,

f(40) = 6021, f(45) = 6532

[Ans 4913, 5052]

6 Apply Everett’s formula to find the value of f(26) and f(27) from the data given below:

x

f x

( ) 12.849 16.351 19.524 22.396 24.999 27.356

[Ans 20.121431, 20.707077]

7 The following table gives the values of e x for certain equidistant values of x:

1.840431 1.858928 1.877610 1.896481 1.915541 1.934792 1.954237

x

x

e

Find the value of e x when x = 0.644 using Everett’s formula.

[Ans 1.904082]

Trang 8

8 Apply Everett’s formula to find the values of e –x for x = 3.2, 3.4, 3.6, 3.8 if,

0.36788 0.13534 0.04979 0.01832 0.00674 0.00248

x

x

e

[Ans 0.04087, 0.03354, 0.02749, 0.02248]

9 Use Everett’s formula to find the present value of the annuity of n = 36 from the table:

12.7834 13.7648 14.4982 15.0463 15.4558 15.7619

x

x

a

[Ans 14.620947]

10 Obtain the value of y 25, given that:

y20 = 2854, y24 = 3162, y28 = 3544, y32 = 3992 [Ans 3250.875]

GGG

Trang 9

CHAPTER 5

Interpolation with Unequal Interval

5.1 INTRODUCTION

The interpolation formulae derived before for forward interpolation, Backward interpolation and central interpolation have the disadvantages of being applicable only to equally spaced argument values So it is required to develop interpolation formulae for unequally spaced argument values

of x Therefore, when the values of the argument are not at equally spaced then we use two such

formulae for interpolation

1 Lagrange’s Interpolation formula

2 Newton’s Divided difference formula

The main advantage of these formulas is, they can also be used in case of equal intervals but the formulae for equal intervals cannot be used in case of unequal intervals

5.2 LAGRANGE’S INTERPOLATION FORMULA

Let f(x0), f(x1) f(x n ) be (n + 1) entries of a function y = f(x), where f(x) is assumed to be a polynomial corresponding to the arguments x0, x1, x2, x0 So that

The polynomial f(x) may be written as

f(x) = A0 (x – x1) (x – x2) (x – x n ) + A1 (x – x1) (x – x2) (x – x n) +

+ A n (x – x1) (x – x2) (x – x n–1) (1)

where A0, A1, A n, are constants to be determined

Putting x = x0, x1, x2, , x n in (1) successively, we get

For x = x0 , f(x0) = A0 (x 0 – x1) (x 0 – x2) (x0 – x n)

( 0 1)( 0 02) ( 0 n)

f x

For x = x1 , f(x1) = A1 (x 1 – x0)(x 1 – x2) (x1 – x n)

( 1 0) ( 1 12) ( 0 n)

f x

Similarly,

For x = x n , f(x n ) = A n (x n – x0)(x n – x1) (x n – x n–1)

224

Trang 10

A n = ( )

( 0)( 2) ( 1)

n

f x

Substituting the values of A0, A1, A n, in equation (1), we get

( 1)( 2 ) ( ) ( )0 ( ( 0)( )( 2) ( ) ( ) ) ( )1

+

( 00) ( 11) ( 11) ( )

n

n

f x

This is called Lagrange’s interpolation formula In equation (5), dividing both sides by

(x – x0) (x – x1) (x – x n), Lagrange’s formula may also to written as

( 0)( 1) ( ) ( 0 1)( 0 2) (0 0 )( 0)

( 1 0)( 1 12) ( 1 ) ( 1) ( 0)( 1) ( 1) ( )

n

Corollary Show that Lagrange’s formula can be put in the form

( ) 0( ) ( ))

( ) ( '

n

r n

r

x f x

P x

=

φ

=

where ( )

0

n

r

x

=

φ = ∏(x – x r) and φ’(x r) = d { } ( )

x dx

( 0)(0 11) ( 11)( 11) ( )

0

n

r

=

( ) ( )( ) ( ( )− )( + ) ( )

=

n

r

r

f x x

0

n

x xr

r∏ −

Therefore, φ( )x = (x x− 0)(xx1)(xx2) (xx r−1) (xx r) (xx r+1) (xx n)

∴ φ′(x) = (xx1) (xx2) ( xx r) ( xx n) (+ xx0)(xx2) ( xx r) ( x xn)

+ (xx0)(xx1) ( xx r)(x xr+1) ( xx n) (+ xx0)(xx1) ( xx r) ( x xn−1)

⇒ φ′(x) = [φ′(x)] x = xr = (x r – x 0 ) (x r – x1) (x r – x r–1 ) (x r – x r+ 1 ) (x r – x n) (2) Hence from equation (1)

( ) ( )

( ) ( ) 0

( )

'

n

r n

r

x f x

P x

=

φ

=

Ngày đăng: 04/07/2014, 15:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w