1. Trang chủ
  2. » Công Nghệ Thông Tin

Hacker Professional Ebook part 171 docx

5 335 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 28,54 KB

Nội dung

the monographic transformations had multiple or homophonic alternatives for frequently-used letters. Generally smaller than a codebook, due to the use of the syllables instead of a comprehensive list of phrases. A sort of early manual cipher with some characteristics of a code, that operated like a codebook. Nominal In statistics, measurements which are in categories or "bins." Also see: ordinal, and interval. Nonlinearity The extent to which a function is not linear. See Boolean function nonlinearity. NOT A Boolean logic function which is the "complement" or the mod 2 addition of 1. Null Hypothesis In statistics, the particular statement or hypothesis H 0 which is accepted unless a statistic testing that hypothesis produces evidence to the contrary. Normally, the null hypothesis is accepted when the associated statistical test indicates "nothing unusual found." The logically contrary alternative hypothesis H 1 is sometimes formulated with the specific hope that something unusual will be found, but this can be very tricky to get right. Many statistical tests (such as goodness-of-fit tests) can only indicate whether something matches what we expect, or does not. But any number of things can cause a mismatch, including a fundamentally flawed experiment. A simple mismatch does not normally imply the presence of a particular quality. Even in the best possible situation, random sampling will produce a range or distribution of test statistic values. Often, even the worst possible statistic value can be produced by an unlucky sampling of the best possible data. It is thus important to know what distribution to expect because of the sampling alone, so if we find a different distribution, that will be evidence supporting the alternative hypothesis H 1 . If we collect enough statistic values, we should see them occur in the ideal distribution for that particular statistic. So if we call the upper 5 percent of the distribution "failure" (this is the significance level) we not only expect but in fact require such "failure" to occur about 1 time in 20. If it does not, we will in fact have detected something unusual, something which might even indicate problems in the experimental design. If we have only a small number of samples, and do not run repeated trials, a relatively few chance events can produce an improbable statistic value, which might cause us to reject a valid null hypothesis, and so commit a type I error. On the other hand, if there is a systematic deviation in the underlying distribution, only a very specific type of random sampling could mask that problem. With few samples and trials, though, the chance random masking of a systematic problem is still possible, and could lead to a type II error. Object Code Typically, machine language instructions represented in a form which can be "linked" with other routines. Also see source code. Objective In the study of logic, reality observed without interpretation. As opposed to subjective or interpreted reality. Alternately, a goal. Octal Base 8: The numerical representation in which each digit has an alphabet of eight symbols, generally 0 through 7. Somewhat easier to learn than hexadecimal, since no new numeric symbols are needed, but octal can only represent three bits at a time. This generally means that the leading digit will not take all values, and that means that the representation of the top part of two concatenated values will differ from its representation alone, which can be confusing. Also see: binary and decimal. Octave A frequency ratio of 2:1. From an 8-step musical scale. OFB OFB or Output FeedBack is an operating mode for a block cipher. OFB is closely related to CFB, and is intended to provide some of the characteristics of a stream cipher from a block cipher. OFB is a way of using a block cipher to form a random number generator. The resulting pseudorandom confusion sequence can be combined with data as in the usual stream cipher. OFB assumes a shift register of the block cipher block size. An IV or initial value first fills the register, and then is ciphered. Part of the result, often just a single byte, is used to cipher data, and also is shifted into the register. The resulting new register value is ciphered, producing another confusion value for use in stream ciphering. One disadvantage of this, of course, is the need for a full block-wide ciphering operation, typically for each data byte ciphered. The advantage is the ability to cipher individual characters, instead of requiring accumulation into a block before processing. One Time Pad The term "one time pad" (OTP) is rather casually used for two fundamentally different types of cipher: 1. The Theoretical One Time Pad: a theoretical random source produces values which are combined with data to produce ciphertext. In a theoretical discussion of this concept, we can simply assume perfect randomness in the source, and this assumption supports a mathematical proof that the cipher is unbreakable. But the theoretical result applies to reality only if we can prove the assumption is valid in reality. Unfortunately, we cannot do this, because provably perfect randomness apparently cannot be attained in practice. So the theoretical OTP does not really exist, except as a goal. 2. The Realized One Time Pad: a really random source produces values which are combined with data to produce ciphertext. But because we can neither assume nor prove perfect, theoretical-class randomness in any real generator, this cipher does not have the mathematical proof of the theoretical system. Thus, a realized one time pad is NOT proven unbreakable, although it may in fact be unbreakable in practice. In this sense, it is much like other realized ciphers. A realized one time pad (OTP) is essentially a stream cipher with a really random confusion sequence used exactly once. The confusion sequence is the key, and it is as long as the data. Since this amount of keying material can be awkward to transfer and keep, we often see "pseudo" one-time pad designs which attempt to correct this deficiency. Normally, the point is to achieve the theoretical advantages of a one-time pad without the costs; the problem with this is that the one-time pad theory of strength no longer applies. These variations are best seen as classic stream cipher designs. In a realized one time pad, the confusion sequence must be unpredictable (not generated from a small key value) and must be transported to the far end and held at both locations in absolute secrecy like any other secret key. But where a normal secret key might range perhaps from 16 bytes to 160 bytes, there must be as much OTP sequence as there will be data (which might well be megabytes). And a normal secret key could itself be sent under a key (as in a message key or under a public key). But an OTP sequence cannot be sent under a key, since this would make the OTP as weak as the key, in which case we might as well use a normal cipher. All this implies very significant inconveniences, costs, and risks, well beyond what one would at first expect, so even the realized one time pad is generally considered impractical, except in very special situations. In a realized one time pad, the confusion sequence itself must be random for, if not, it will be somewhat predictable. And, although we have a great many statistical randomness tests, there is no test which can certify a sequence as either random or unpredictable. This means that a sequence which we assume to be random may not be the unpredictable sequence we need, and we can never know for sure. (This might be considered an argument for using a combiner with strength, such as a Latin square or Dynamic Substitution.) In practice, the much touted "mathematically proven unbreakability" of the one time pad depends upon an assumption of randomness and unpredictability which we can neither test nor prove. The one time pad sometimes seems to have yet another level of strength above the usual stream cipher, the ever-increasing amount of "unpredictability" or entropy in the confusion sequence, leading to an indefinite unicity distance. In contrast, the typical stream cipher will produce a long sequence from a relatively small amount of initial state, and it can be argued that the entropy of an RNG is just the number of bits in its initial state. In theory, this might mean that the initial state or key used in the stream cipher could be identified after somewhat more than that same amount of data had been enciphered. But it is also perfectly possible for an unsuspected problem to occur in a really-random generator, and then the more sequence generated, the more apparent and useful that problem might be to an Opponent. Nor does even a theoretical one time pad imply unconditional security: Consider A sending the same message to B and C, using, of course, two different pads. Now, suppose the Opponents can acquire plaintext from B and intercept the ciphertext to C. If the system is using the usual additive combiner, the Opponents can reconstruct the pad between A and C. Now they can send C any message they want, and encipher it under the correct pad. And C will never question such a message, since everyone knows that a one time pad provides "absolute" security as long as the pad is kept secure. Note that both A and C have done this, and they are the only ones who had that pad. Various companies offer one time pad programs, and sometimes also the keying or "pad" material. One-To-One Injective. A mapping f: X -> Y where no two values x in X produce the same result f(x) in Y. A one-to-one mapping is invertible for those values of X which produce unique results f(x), but there may not be a full inverse mapping g: Y -> X. One Way Diffusion In the context of a block cipher, a one way diffusion layer will carry any changes in the data block in a direction from one side of the block to the other, but not in the opposite direction. This is the usual situation for fast, effective diffusion layer realizations. Onto Surjective. A mapping f: X -> Y where f(x) covers all elements in Y. Not necessarily invertible, since multiple elements x in X could produce the same f(x) in Y. + + + + | | ONTO | | | X | | Y = f(X) | | | f | | | | > | | + + + + Opcode Operation code: a value which selects one operation from among a set of possible operations. This is an encoding of functions as values. These values . than a codebook, due to the use of the syllables instead of a comprehensive list of phrases. A sort of early manual cipher with some characteristics of a code, that operated like a codebook is the "complement" or the mod 2 addition of 1. Null Hypothesis In statistics, the particular statement or hypothesis H 0 which is accepted unless a statistic testing that hypothesis. fundamentally flawed experiment. A simple mismatch does not normally imply the presence of a particular quality. Even in the best possible situation, random sampling will produce a range or

Ngày đăng: 04/07/2014, 11:20