PART THREE: TRANSPORT 572 Of greater importance even than effective signals for railway operating was the electric telegraph, which fortuitously was brought to practical form by William F.Cooke and Charles Wheatstone (see p. 714) at precisely the period that the first trunk railways were being built. Cooke carried out successful experiments alongside the London & Birmingham Railway between Euston and Camden Town in 1837 and, although the L&B company did not take up the telegraph at that time, the following year at the instance of Brunel the Great Western decided to do so. The electric telegraph was completed between Paddington and West Drayton in 1839 and subsequently extended, and it was used to pass messages of all sorts, from requests for horses to be available for passengers on arrival at Paddington, to notifying the presence of a suspicious character on a train which led to his arrest for murder. The electric telegraph was first used to control train operations in 1840 on the London & Blackwall Railway, opened that year. This line was worked by reciprocating cable haulage: when coaches standing at the stations had been connected to the cable, the stationary engine driver was telegraphed that it was safe to start winding. The following year, 1841, the electric telegraph was installed through Clayton tunnel, London & Brighton Railway, between signalmen at each end with instructions not to let a train enter until the previous train had emerged. This was the first instance of the block system, of trains separated by an interval of space rather than time. Other installations were soon made through tunnels and on cable-worked inclines. The Norwich & Yarmouth Railway, opened in 1844, was the first railway to be worked throughout by the block system, using the electric telegraph on principles developed by Cooke, and because of this it had been possible to build it as a single line with passing loops. That was an economy, but in general the installation of a full electric telegraph system on an existing line was expensive, and it was many years before the block system wholly superseded time interval working. EARLY RAI LWAY DEVE LOP M E NT I N TH E U N ITE D STATES In the Britain of the 1830s there was already a comprehensive transport network for passengers and goods by road, canal and coastal shipping built up over the previous eighty years, but steam railways showed sufficient advantages to be superimposed on this. In the USA there was no such network, despite construction of some canals and long-distance roads in the eastern states and, particularly, rapid increase of steamboats on rivers and coastal waterways since their introduction in 1807 by Robert Fulton. Distances were longer and the demand for improved transport was even greater, especially for better means of crossing the Appalachian Mountains to link the coastal states with the interior. So although the earliest lines were short, as in RAIL 573 Britain, and often connected with canals, much longer lines were soon being built. The first wholly steam-operated railway in the USA was the South Carolina Railroad, which opened its first short section late in 1830; by 1833 it had 220km (136 miles) of track in operation. The Baltimore & Ohio was 122km (76 miles) long by 1835 and entirely operated by steam also; in that year there were some 1600km (1000 miles) of railway in the USA, and by 1850 this had grown to nearly 14,500km (9000 miles). Therefore, while British railways had substantial and expensive engineering works designed apparently to last for all time, a different engineering tradition rapidly developed in the USA. (So did a distinct railway terminology, but for simplicity British terms will be used here. A list of some British terms with their American equivalents appears on pp. 607– 8). In the USA there was a strong inducement to build railways cheaply and quickly, with sharp curves, steep gradients and timber trestle bridges— improvements could came later, and be paid for out of revenue. Iron was scarce, timber plentiful: so track at first continued to consist of iron straps along wooden rails. Iron flat-bottom rails were first imported from England in 1830, but it was not until 1844 that they were first rolled in the USA, and subsequently American track was typically made up of light flat-bottom rails spiked to innumerable sleepers spaced far more closely together than elsewhere. Various gauges were used from 4ft 8 1/2in. up to 6ft (1.43– 1.83m); the broad gauge lines were eventually converted to standard. Light, hastily laid track prompted consequential developments in locomotive design. Robert Stephenson is said to have recommended the use of bogies to a party of visiting American engineers as early as 1830 or thereabouts, though the John Bull supplied by Robert Stephenson & Co to the Camden & Amboy Railroad, New Jersey, in 1831 was a 0–4–0 derived from Planet. Having seen her, Matthias Baldwin built his first locomotive: the Baldwin Locomotive Works were in due course to build in enormous quantity. After a couple of years a separate two-wheeled sub-frame or pilot was added to John Bull at the front, to reduce the number of derailments to which she was subject. John Bull is now preserved by the Smithsonian Institution, and is the oldest surviving workable steam locomotive. The first bogie locomotive in the USA, a 4–2–0, was built by John B.Jervis in 1832, and the first locomotives of this type built in Britain were completed in 1833 for export to the USA. Such locomotives were well adapted to American conditions and became popular; at the end of the decade demand for greater power led to the enlargement of the type into the 4–4–0 with a front bogie and driving wheels before and behind the firebox. With bar frames derived originally from the designs for Edward Bury (but subsequently little used in the UK) this became the classic American locomotive of the nineteenth century. Bogies were also adopted for both goods and passenger rolling stock; this meant that vehicles could be double the length of their British counterparts, PART THREE: TRANSPORT 574 and the interior layout of American passenger coaches was derived, apart from some very early examples, not from road coach practice as in Britain, but from the river steamboats with which Americans were already familiar. Instead of separate compartments, American coaches had open interiors with seats either side of a central passageway, and were entered from end balconies. Most American railways were single track with passing loops. Development of the electric telegraph was invaluable in enabling a general dispatcher to issue instructions to agents at stations to deviate from the timetable if necessary. The telegraph was first used for this purpose in 1851. During the 1850s the American railway system continued to expand rapidly, with the emphasis on states west of the Appalachians. Where railways were built into regions still to be settled, grants of public lands were made to the railway companies which they could sell, once their lines were open, to pay off construction costs and, from subsequent settlement, provide traffic. The pattern thus emerged, throughout much of the USA, that railways came first and settlement followed. By 1860 there were over 48,000km (30,000 miles) of railway in the USA and still construction continued, with scarcely a hiccup caused by the Civil War. Now began perhaps the greatest of all railway epics—construction of the first transcontinental route to link the East Coast with the West. The Central Pacific Railroad, run by hard-headed local merchants, built eastwards from Sacramento, California, up and over the Sierra Nevada, and immigrant Chinese proved their worth as navvies a decade before there was any sort of railway in China itself. The Union Pacific, headed by shady Eastern financiers spurred on by land grants per mile of track and aided by the tracklaying abilities of Irish navvies, built rapidly west from the railhead on the Missouri. When the two lines met at Promontory Point, Utah, in 1869 they had built a railway 2864km (1780 miles) long. CONTINENTAL EUROPE While trunk railways were being built in Britain and the USA, they started to spread to European countries also. The first steam railway in Germany, running five miles from Nuremberg to Furth, was opened in 1835. A Stephenson 2–2–2 hauled the first train. By the end of the decade long-distance lines were being built and by 1850 some 4800km (3000 miles) were open. In Belgium a state railway system was planned from the start, with the first section opened in 1835, and the first steam railway in Austria was opened in 1837. Construction of main line railways in France was delayed by ideological arguments about whether funding and control should be by the state or by private enterprise. Work on the first long-distance railway, from Paris to Rouen, began in 1841. It was financed in part by the London & South Western RAIL 575 Railway (which saw it as an extension of its own line), engineered by Locke and built by Brassey, and was opened in 1843. Meanwhile legislation of 1842 produced a plan for a national system radiating from Paris, and by 1848 about 2000km (1250 miles) of railway had been built. Steam railways came later to some countries—Switzerland, for instance, where the first, 24km (15 mile) long, line from Zurich to Baden was opened in 1847. In Imperial Russia the first 22.5km (14 mile) line from St Petersburg to Tsarskoye Selo was opened in 1837, but it was another ten years before the first section of the St Petersburg-Moscow railway was open, using the broad gauge of 1.525m (5ft) which became the Russian standard. Further afield, the first steam railway in India was opened in 1854, and so was the first in Australia: both used broad gauges, of 5ft 6in (1.675m) and 5ft 3in (1.60m) respectively. From these starts, railways quickly spread. In Australia, although Victoria and South Australia used the 5ft 3in gauge, New South Wales built to 4ft 8 1/2in (1.425m). Locomotives and rolling stock on the continent of Europe were for the most part at first derived from British practice, although both the Crampton and long-boiler types saw much more prolonged use than in Britain—the former particularly in France, the latter, for slow-moving freight trains, in many countries. Outside cylinders tended to be preferred by continental designers, who indeed tended to place more fittings of all sorts on the outsides of their locomotives than their British counterparts. British designs generally had a simpler and, to many eyes, more handsome appearance. Notable continental contributions to locomotive engineering were the Belgian Egide Walschaert’s valve gear, first used in 1848, and the injector for boiler feed water invented by the Frenchman Henri Giffard in 1859. American influence was noticeable in Austria, where the mountain-crossing exploits of American railroads such as the Baltimore & Ohio had been noted, and in Russia. NARROW GAUGE By the early 1860s traffic on the 1ft 11 1/2in (60cm) gauge Festiniog Railway had increased to the point at which its engineer C.E.Spooner considered it necessary to replace horse haulage by steam locomotives. It was generally considered impossible to build locomotives for so narrow a gauge, but eventually two small 0–4–0 tank locomotives, with tenders for coal, were supplied by George England in 1863; they proved successful enough for passenger trains to be introduced in 1865. Traffic continued to increase and the former horse tramroad was in due course fully re-equipped as a steam railway. In 1869 it received its first double-ended locomotive carried on bogies to Robert Fairlie’s patent of 1864, which proved considerably more powerful than two ordinary locomotives, and in 1872 two bogie coaches, the first in Britain, were put into service. PART THREE: TRANSPORT 576 A railway of less than 2ft gauge, and abounding in sharp curves, which nevertheless carried heavy traffic efficiently and economically through a mountainous region, was a spectacle which had a marked effect on the thinking of railway engineers. This was emphasized by the absence of other railways of less than standard gauge, a consequence of the Gauge of Railways Act passed in 1846. It was realized that there was considerable scope for railways of narrow gauge, particularly in mountainous areas, where they could be constructed cheaply compared with standard gauge lines; not only were the engineering works smaller, but sharper curves meant there need be fewer of them; and the locomotives and rolling stock were small and cheap to buy and run in proportion. Some narrow gauge lines were built in Britain—the Talyllyn Railway, opened in 1866, was the first narrow gauge railway laid out for steam traction from the start—but the effect in Britain, where there were still memories of the gauge controversy of the 1840s, proved less marked than in many other countries. An extensive network of 3ft (91.5cm) gauge railway was built in the Rocky Mountains in the USA; many railways with a gauge of one metre or less were built in India; in Australia, Queensland opened its first railway on the 3ft 6in. (1.06m) gauge as early as 1865 and Western Australia followed suit. Light railways of narrow gauge were built in many European countries as feeders to the standard gauge network whether the terrain was mountainous or not. France, Austria, Germany, Holland, all made use of them; and the metre gauge was much used in Switzerland, particularly in the Alps. After about 1870 it became rare for a developing country, in which railways were being built for the first time, to use the full standard gauge; and in some instances short existing standard or broad gauge lines were narrowed. This was the case in New Zealand, where the 3ft 6in gauge was adopted early in the 1870s. The same thing happened in South Africa, where in 1872 the Cape government expropriated the few existing standard gauge lines and narrowed them to match the 3ft 6in gauge system built to open up the country. Most other southern or central African countries built to either the 3ft 6in or the metre gauge. JAPAN AND CHINA The introduction of railways to Japan is of particular interest. The Americans had completed a railway across the isthmus of Panama in 1855 and among its passengers, in 1860, was a party of samurai, members of a mission sent by Japan to the USA to ratify a treaty of friendship. These were the first Japanese to encounter rail travel, apart from a few shipwrecked mariners rescued by American ships and taken to the USA before return to Japan. The Japanese were amazed by the experience of rail travel, not merely by the speed, but even by the RAIL 577 presence of several people travelling together in the same coach. For Japan had still to emerge from 200 years of isolation during which the government not only minimized contact with the outside world almost to non-existence, but also restricted travel within Japan itself as much as possible. There were no passenger vehicles: travellers had the options of an extremely uncomfortable palanquin, a packhorse or their own feet—most, whether from choice or economic necessity, chose to walk—and they were required to present a permit at barriers built across the highways at intervals in order to be allowed to proceed at all. Attendants of the samurai on the American mission recorded extremely detailed observations of the Panama railway, from the locomotive, its construction and working to details of the track and signalling. In 1869 the Japanese government changed and isolation ended: the new rulers decided to construct railways. The superintendent appointed to the government railway bureau in 1872 was Inoue Masaru who during the 1860s had been studying civil engineering at London University (illegally, by then current Japanese thinking). From his studies in Britain at this period he concluded that a gauge of 1.06m would be most suitable for his mountainous homeland, and this was the gauge adopted. The first railway in Japan, from Tokyo to Yokohama, 27km (17 miles) was opened in 1872. Japan was still totally unindustrialized: Britain provided not merely capital and equipment, but engineering and operating staff. But from the first the Japanese intended (with British encouragement) to build and operate their own railways and railway equipment themselves. Within 20 years they were doing so. The first locomotive built in Japan, a 2–4–2 tank locomotive, was completed in 1893. It incorporated many parts made in Britain, and the locomotive superintendent under whose guidance it was constructed was R.F. Trevithick, Richard Trevithick’s grandson. By 1907 there were 10,760km (6690 miles) of railway in Japan, with over 2000 locomotives. Locomotive manufacturing progressed so rapidly that from 1915 imports were almost entirely discontinued. China’s entry into the railway age was even later and much slower. A first, short, line built by the British in the mid-1870s was dismantled later in the decade after a Chinese worker was run down and killed by the train, and it was not until the late 1890s that railway-building started in earnest, mostly on the standard gauge. PULLMAN AND WAGONS-LIT By the 1850s in the USA the marvel of rail travel was beginning to wear thin, and the discomforts, particularly during the night, were all too evident. At the end of the decade, several people including George Mortimer Pullman were experimenting with simple sleeping cars, and in 1865 Pullman’s first purpose- PART THREE: TRANSPORT 578 built sleeping car, the Pioneer, entered service on the Chicago & Alton Railroad. By day it appeared a normal, though luxurious, passenger coach of the usual American pattern; by night, the seats converted into longitudinal sleeping berths, and upper berths, also longitudinal, hinged down from above the windows. Partitions separated berths from one another, heavy curtains separated them from the central gangway. Vehicles such as this proved popular and their use spread rapidly. Simple dining cars first went into service in 1863, and in 1868 a de luxe Pullman dining car was running on the Chicago & Alton Railroad. In the late 1860s the Belgian Georges Nagelmackers visited the USA and was impressed by what Pullman was achieving with his sleeping cars. He returned home in 1869, determined to emulate it in Europe by forming a company to operate sleeping cars internationally, across frontiers between countries as well as between different railway administrations. By the end of 1872 he had sleeping cars on trial over three routes: Ostend-Berlin, Paris- Cologne and Vienna-Munich. They were four-wheeled vehicles, with three compartments each for four passengers, convertible for day or night use and with a side corridor. Nagelmackers’s activities got off to a difficult start, however: finance, persuading railways to co-operate, and attracting the passengers all presented problems. James Allport, general manager of the Midland Railway in England, made an extensive tour of American railways in 1872 and was as impressed as Nagelmackers had been by Pullman’s sleeping cars. The Midland, old- established as a provincial railway based on Derby, had opened its own route to London, St Pancras, in 1868, and was even then building it own route through the Pennines to Carlisle. When complete this would enable the Midland, in co-operation with two Scottish companies, to compete for Anglo- Scottish traffic with the existing West Coast Route from Euston and the East Coast Route from Kings Cross. On both of these, six-wheeled sleeping cars were introduced in 1873. But the Midland route to Scotland was long, and by British standards steeply graded. Some extra attraction was needed. Allport was already having improved coaches built, and in 1873 the Midland arranged with G.M.Pullman to build and send over some Pullman sleeping cars (they were shipped in parts and assembled at Derby) for operation on the Midland Railway. The first, the Midland, entered service early in 1874: it was much more luxurious than anything seen in Britain previously. It was also, of course, carried on bogies, the first standard gauge bogie coach in Britain. Several others followed, some of them ‘parlour’ or drawing room cars, luxury vehicles for daytime use. Pullman sleeping cars provided a great inducement to passengers to use the Midland route to Scotland when it was completed in 1876. They were not, however, the only inducement. Ever since the Liverpool & Manchester, most British railways had offered three, and sometimes four, classes of passenger accommodation. On the Midland, Allport, pursuing his RAIL 579 policy of improvement, had abolished second class in 1875. Second class coaches were re-graded third class and the old third class ones replaced as soon as possible: all third class carriages were to have upholstered seats. At the same period, the Midland started to build bogie coaches—with compartment bodies of British pattern—for its long-distance trains. It also continued to assemble Pullman cars at Derby for use on other railways as well as its own, and on occasion to modify them. In 1878 a parlour car was rebuilt to include a kitchen and became the first dining car to run in Britain the following year, on the Great Northern Railway between Leeds and London. Another car was modified in 1881 to become the first railway vehicle, anywhere, equipped with electric light. On the Continent, Nagelmackers founded the Compagnie Internationale des Wagons-Lit in 1876 to take over his operation, and despite earlier difficulties it had 53 sleeping cars and 22 contracts to operate them. In 1881 the company first operated a dining car, and in 1883 the Orient Express, it passenger coaches being Wagons-Lit company sleeping cars and dining car, was established between Paris, Vienna and Giurgevo (now Giurgiu), Romania, whence ferry, rail and steamer services carried passengers onward to Constantinople. Six-wheeled coaches were used at first, but after a few months the company’s first bogie sleeping cars and dining car were available. From 1889 the journey was made throughout by rail. LARGER LOCOMOTIVES Although the 4–4–0 was the typical American locomotive during the middle of the nineteenth century, by the 1860s and 1870s larger locomotives were needed for increasingly heavy trains. Traffic was increasing, but long single- track routes with few passing loops resulted in a tendency for trains to become longer and heavier rather than more frequent. Also, rail which was still light necessitated construction of locomotives with many wheels to spread axle loadings along the track. Three enlarged versions of the 4–4–0 developed. The ten-wheeler or 4–6–0, first built in 1847, was initially used, like the 4–4–0, for both passenger and freight trains. The 2–6–0 was introduced in the 1860s and, more powerful size-for-size than a 4–4–0, came to be used increasingly for freight trains. Where something more powerful still was needed, 2–8–0s were used—the first was built for the Lehigh Valley Railroad, Pennsylvania, about 1866. The 4–6–0 was largely displaced from freight trains, but locomotives of this wheel arrangement were used increasingly for heavy passenger trains. Speeds increased as the standard of track improved. For special purposes much larger locomotives were built. The Central Pacific, on the east side of the Sierra Nevada, had a climb of 850m (2800ft) in 40km (25 miles), and for this a 4–8–0 was introduced in 1882. The following PART THREE: TRANSPORT 580 year an even larger version, the 4–10–0 El Gobernador was built, the largest locomotive of her day in the world, She remained an isolated example, but the 4–8–0 became the first of a type used successfully on this line for many years. Brakes had originally been applied throughout a train by brakesmen moving from vehicle to vehicle. In 1868, George Westinghouse introduced continuous air brakes, operated throughout the train by compressed air supplied by the locomotive. They had the disadvantage that if a coupling broke and the train split, so did the air pipe, with the effect that the brakes ceased to operate on the disconnected part of the train. Westinghouse then developed the idea of an automatic air brake, patented in 1871, which would operate automatically on all vehicles in a train if it became divided. Air reservoirs on each vehicle were charged with compressed air from the locomotive through the train pipe. Reduced air pressure in the train pipe, deliberate or not, caused a valve to open and admit compressed air from the reservoir to the brake cylinder. In Britain, trains tended to be lighter and more frequent than in the USA, and track, at least until towards the end of the century, was heavier and more substantial. W.Bridges Adams had invented the fishplate for joining rails in 1847, bringing to an end the practice of connecting rails by butting them together in joint chairs. Steel rails were first laid in 1857, and by the 1870s they were common on main lines. Locomotives, therefore, tended to be smaller and less powerful than in the USA, but could have high axle loadings. ‘Single driver’ locomotives, that is, with a single pair of driving wheels, continued to be popular for fast, light trains, for designers feared that coupling driving wheels together reduced a locomotive’s ability to run fast. However the typical British locomotive for passenger trains in the last three decades of the century was the 4–4–0 with inside cylinders and frames and a front bogie; the first were built for the North British Railway in 1871. The inside-cylinder 0–6–0 continued to be the usual locomotive for freight trains. British trains, then and now, were and are smaller in height and width than their standard gauge counterparts elsewhere: the price of having pioneered railways is that bridges and tunnels on early lines which seemed, when built, to be of ample size have later proved restrictive and so the British loading gauge, that is the dimensions to which trains can be built or loaded without risk of fouling lineside structures, is smaller than that of other countries. During the 1870s British railways experimented, amid considerable controversy, with various types of continuous brakes—some operated by chains, or atmospheric pressure (vacuum brakes) rather than compressed air, some non-automatic, some automatic. In 1889 there was a serious accident near Armagh on the Great Northern Railway of Ireland: an excursion train fitted with non-automatic vacuum brakes stalled on a gradient and was divided, after which the rear portion ran away and collided with a following train. Eighty people were killed. Later the same year the Regulation of RAIL 581 Railways Act 1889 made automatic continuous brakes compulsory on passenger trains. However, while some railway companies adopted Westinghouse brakes, more of them used vacuum brakes—a less effective system, since it is dependent on atmospheric pressure, though simpler, for the partial vacuum in the train pipe and cylinders could be created by a steam ejector on the locomotive rather than a pump. The desirable aim of having all goods wagons fitted with continuous brakes has eluded British railways down to the present day. Most European railways adopted air brakes on both passenger and freight stock. The effect of the Armagh accident would have been mitigated if the block system had been in full operation on the section of line concerned, which was still being worked on the old time interval system. The 1889 Act not only made continuous brakes compulsory, but also the block system, and interlocking of points and signals. In the USA, block signalling came into use in the 1860s, and interlocking in the 1870s. Another important safety device which came into use in Britain at this period affected single lines. These had been worked by timetable and telegraph, or (from about 1860) by train staff and ticket, or both. The train staff was a wood or metal staff, unique to its section of line, handed to a driver as authority to take his train on to it. Where two trains were to follow one another, the driver of the first was shown the staff and given a ticket authorizing him to proceed. This arrangement lacked flexibility, and in 1879 Edward Tyer introduced his electric train tablet apparatus: several metal tablets, each of which could authorize a driver to enter a section, were housed in instruments at each end of the section which were electrically linked so that only one tablet could be removed from them at any time. The tablet was a driver’s authority to proceed, and the system enabled several trains to follow one another through a section. Electric train staff instruments introduced soon afterwards performed the same function but used train staffs of similar form to those used for staff and ticket working. COMPOUNDS Compounding, that is to say expansion of steam successively in one cylinder after another, was applied to stationary engines in the 1760s and marine engines in the 1850s, after which, because of the resulting economy, it became popular in this usage of the steam engine (see p. 278). Application to locomotives was delayed until the late 1870s, presumably not only because of the difficulty of adapting it to the cramped and specialized layout of the locomotive, but also because exhaust steam was needed at a fairly high pressure to draw the fire, instead of being condensed as was usual in marine practice. . to open up the country. Most other southern or central African countries built to either the 3ft 6in or the metre gauge. JAPAN AND CHINA The introduction of railways to Japan is of particular. American conditions and became popular; at the end of the decade demand for greater power led to the enlargement of the type into the 4–4–0 with a front bogie and driving wheels before and behind the. it was another ten years before the first section of the St Petersburg-Moscow railway was open, using the broad gauge of 1.525m (5ft) which became the Russian standard. Further afield, the first