PART THREE: TRANSPORT 562 Evidently Seguin quickly discovered their inadequacy, for he too was soon using exhaust steam to draw the fire. Americans, too, were at this stage closely observing railway development in Britain. In 1829, Horatio Allen obtained the locomotive Stourbridge Lion from Foster, Rastrick & Co. of Stourbridge. (Her sister locomotive Agenoria is now the oldest locomotive in Britain’s National Railway Museum.) She was intended for a railway belonging to the Delaware & Hudson Canal Co., but on trial she caused excessive damage to light track laid with wooden rails and iron straps, and was not put into regular service. The mainstream of locomotive development continued to be that of the Stephensons in Britain. Rocket’s cylinders were originally inclined at about 45°, which enabled her to be carried on springs, but she was still cumbersome at speed. The cylinders were soon lowered so as to be nearer horizontal. Then, in 1830, Robert Stephenson designed the locomotive Planet for the L&MR with cylinders positioned horizontally beneath the smokebox, and drive from the connecting rods to a crank axle. In its layout, Planet was the ancestor of all later conventional steam locomotives. THE RAILWAY AT WORK The Liverpool & Manchester Railway was opened on 15 September 1830. It had been promoted to carry freight between the growing port of Liverpool and the growing industrial town of Manchester, but it was in fact as a passenger carrier that it saw great and near-instant success. Britain at this period was crisscrossed with a highly developed network of horse-drawn coach services—over the previous fifty years improvements to the roads, and in administration of coaches, had halved journey times (see Chapter 8). Coaching was an effective and admired means of transport for passengers and mails. Yet however good the administration, however smooth the roads, coaches could never exceed the speed of galloping horses, which in practice, allowing for halts to change horses every ten miles or so, meant overall speeds of about 16kph (10mph). Rocket demonstrated at Rainhill for the first time the superiority of the steam railway over all other known forms of land transport. This was confirmed as soon as the Liverpool & Manchester was opened. A journey of four and a half hours by coach was reduced to one of two hours or less by train. Furthermore, the fare often shillings for the best coach accommodation was reduced to seven shillings for first class rail. Train speeds were subsequently increased, and fares reduced. By 1832 there was but one road coach left between Liverpool and Manchester, where formerly there had been 26. This effect was to be repeated wherever main line railways were built in Britain. The actual vehicles in which the L&M passengers were carried cannot have seemed too unfamiliar. In the absence of a precedent the first class railway RAIL 563 coaches were made up of three road coach bodies of the period mounted upon a single four-wheeled railway wagon underframe. When, later, railway coach bodies were built as a unit, the practice of dividing the accommodation into separate compartments continued. Those wealthy enough to travel by road in their own carriages took advantage of railway speed: private carriages, with their occupants, were carried on flat wagons wherever the railway coincided with a traveller’s intended route, or part of it. For those accustomed to travel outside on road coaches, second class railway coaches, simple but roofed, were provided, third class coaches, for the poor, were little more than open boxes on wheels, but to occupants whose only other option was travel at walking pace, whether on their own feet or by road carrier’s wagon, the speed alone must have seemed miraculous. Third class passengers were to be entitled by law from 1844 to be carried in carriages provided with seats and protected from the weather, in trains which ran at least once a day over each line. Railway coaches were coupled together by chains; dumb buffers, that is, extensions of the wooden frames, were soon made slightly resilient by leather padding. Spring buffers and screw couplings minimized the jerks of starting and stopping: they were invented by Henry Booth and introduced in the early 1830s. For goods traffic, which began nearly three months after passenger traffic, the L&MR provided four-wheeled open and flat wagons; for cattle and pigs, open wagons with slatted sides, and for sheep double-deck vans. Coal was carried in open wagons, and also in small containers, the practice of canals in the vicinity. The track of the Liverpool & Manchester Railway was made of malleable iron rails, weighing 35lb/yd (17.4kg/m) and 15ft (4.5m) long, carried in castiron chairs mounted on stone blocks or, in places where subsidence was possible, on oak sleepers. As for the gauge of the track, wagonways of north-east England had always been laid to gauges between four and five feet, convenient for a wagon to be hauled by a single horse, and George Stephenson adopted the gauge of 4ft 8in. (142cm) for the Stockton & Darlington Railway and then the Liverpool & Manchester. Later it was found necessary to add half an inch, to produce the British standard gauge of 4ft 8 1/2in. (1.435m). The rails soon proved too weak for locomotives and from 1833 rails weighing 50lb/yd (24.8kg/m) were substituted. The track was double, each track being used for trains in one direction: this was an early and important advance on the Stockton & Darlington, which was single track with passing sidings, an arrangement which would scarcely have been practicable with the much higher speeds of the L&M. Policemen were stationed at intervals of a mile or so along the route and indicated to drivers whether the road was clear or obstructed, using hand signals, or swinging lamps at night. From 1833, flagpoles were installed at junctions and crossings, from which flags were displayed to warn of obstructions, and the following year the first fixed signals were erected. Vertically pivoted boards were positioned at right angles to the track to indicate PART THREE: TRANSPORT 564 danger or parallel to it for ‘clear’. The practice arose of allowing one train to follow another only after a fixed minimum interval of time had elapsed—the time interval system. Apart from its western extremity, where tunnels operated by cable haulage led down to the docks and up to the passenger terminus, the route was for the most part easily graded and without sharp curves. To achieve this, there were substantial cuttings, embankments and viaducts. In these and other civil engineering works such as a skew bridge at Rainhill, and construction of that part of the line which lay across the Chat Moss peat bog on a foundation of hurdles and branches of trees, the builders of the railway used established techniques developed for canal and road construction. Locomotive development continued swiftly. The Stephensons had shown the way, but other engineers were quick to develop their own ideas and establish locomotive building works. Notable among them was Edward Bury, whose locomotive Liverpool, built in 1830, anticipated Planet in the use of near- horizontal cylinders driving a crank axle, but did not at first have a multitubular boiler: not until one was fitted did she perform satisfactorily. The frames of Liverpool and subsequent Bury locomotives were positioned ‘inside’, or between the wheels, and made from iron bar, giving them a deceptively insubstantial appearance. Planet, by contrast, had substantial outside frames of the ‘sandwich’ type—timber strengthened on both sides by iron plates, and additional inside frames which supported the crank axle. Sandwich frames became for many years a feature of Stephenson locomotives. The original Planet had her four wheels uncoupled: she was a 2–2–0. (The usual Whyte notation used to describe locomotive wheel arrangements gives the number of leading wheels, followed by the number of driving wheels, coupled together in groups where this applies, followed in turn by the number of trailing wheels.) In 1831, Robert Stephenson & Co. built two modified Planet-type locomotives, for the L&MR’s goods trains, as 0–4–0s, with the two pairs of wheels coupled by rods. Then, because four-wheeled locomotives were damaging the L&MR’s light track, they developed the 2–2–0 Planet into the 2– 2–2 Patentee. Locomotives with this wheel arrangement were to be familiar on British passenger trains for the rest of the nineteenth century. The 0–4–0 type was similarly developed into the 0–4–2 and the 0–6–0, which became the standard British goods locomotive. The first locomotives with horizontal cylinders positioned outside the frames were 2–2–0s built in 1834 by George Forrester of Liverpool for the L&MR and for the Dublin & Kingstown Railway, and subsequently for the London & Greenwich Railway. The latter two, opened in 1834 and 1836–8 respectively, were the first steam railways to reach the capitals of Ireland and England. Neither was very long, and to that extent they were typical of many railways opened in the early and mid-1830s. Some of these lines adopted the steam locomotive technology of the L&MR, and branch lines, built by separate RAIL 565 companies, had linked the L&MR with Warrington to the south (1831) and Wigan to the north (1832), subsequently extended to Preston. Others still continued in the earlier horse-railway tradition. Such was the Festiniog Railway, opened as a horse-and-gravity tramroad with an exceptionally narrow gauge of less than two feet (61cm) as late as 1836. THE FIRST TRUNK LINES Far more important than the short railways were the great trunk railways incorporated and built during the 1830s. Even before the Liverpool & Manchester Railway had been built there had been unrealized schemes for extensive long-distance horse railways: now the L&MR had demonstrated that long-distance steam railways were not merely practicable but highly desirable. None the less, it was only after considerable opposition in Parliament (from landowners, and those whose business lay with road or canal transport) that Acts were passed in 1833, on the same day, for the London & Birmingham Railway 180km (112 miles) long and the Grand Junction Railway 125km (78 miles). The latter was indeed to provide a grand junction line, from Birmingham to Warrington, whence Liverpool and Manchester were already accessible by rail, so that it would join three of the most important provincial towns in England. It was built, for the most part, under the supervision of the engineer Joseph Locke; the contractor for construction of its viaduct at Penkridge, Staffordshire, was Thomas Brassey, at the start of a career which was to make him the most famous of all Victorian railway contractors. Robert Stephenson, engineer of the London & Birmingham, had a harder task than Locke, for his route lay across the grain of the land: deep cuttings through the ridges had to be excavated at Tring and Roade, and tunnels at Watford and (famous for its length of over 2km (1.25 miles)) Kilsby. By these means the ruling gradient on the line was kept to 1 in 330, for as long before as 1818, George Stephenson had carried out experiments which had shown that a gradient as easy as 1 in 100 would reduce the load which could be hauled by a locomotive by half compared with a level line. Where the line left its London terminus, Euston, there was almost a mile of 1 in 70: on this inclined plane. stationary engines and cable haulage were at first used. Other long-distance lines were also being authorized. The London & Southampton Railway received its Act of Parliament in 1834, and much of it was built by Locke and Brassey. The Great Western Railway, from London to Bristol, was authorized in 1835, and the engineer Isambard Kingdom Brunel successfully convinced his directors that the track should in due course be laid to the broad gauge of 7ft 0 1/4in (2.14m). In the same year the Newcastle & Carlisle Railway, which had been authorized, pre-Rainhill, in 1829 as the longest British horse railway at 101km (63 miles) opened its first section, with PART THREE: TRANSPORT 566 locomotives. An injunction was served on it to prevent their use, and the company had to obtain a further Act to permit them. In the following year, 1836, Acts of Parliament were passed for a whole series of railways to form a cross-country route between Gloucester, Birmingham, Derby, Leeds, York and Newcastle; and also for the Manchester & Leeds Railway and (to extend the Great Western route) the Bristol & Exeter. In 1837 a second cross-Pennine route was authorized, the Sheffield, Ashton- under-Lyne & Manchester Railway, and so was the Lancaster & Preston Junction Railway, to extend the line of the London & Birmingham and Grand Junction Railways further northwards. Also in 1837 came the first fruits of this period of railway promotion and construction, with the opening of the Grand Junction Railway on 4 July. Part of it was laid with a form of track developed by Locke—double-headed rails, of 84lb/yd (41.7kg/m), held in chairs mounted on wooden sleepers. It was the prototype of the track, using bullhead rails, which was to be conventional in Britain for a century. Over Locke’s track, Stephenson-built 2–2–2s hauled trains of coaches similar to those on the L&MR, and took four and a half hours for the 15 6km (97 miles) from Manchester to Birmingham: that is to say, an average speed of 34.75kph (21.6mph) including stops. The first section of the London & Birmingham was opened later the same month, but extreme difficulties with the engineering works delayed completion. At one stage Robert Stephenson had no less than thirteen steam engines at work attempting to pump dry the quicksands encountered during construction of Kilsby tunnel. They were, eventually, successful, and the London & Birmingham was fully open throughout in September 1838. Intending passengers approached its station at Euston by a magnificent Doric arch, and at Birmingham Curzon Street the station building had a massive Ionic portico: the start of a world-wide custom that city stations were to receive the grandest architectural treatment of their day (see Chapter 18). Opening of the L&B meant that there was through railway communication not only between London, Liverpool and Manchester, but also, within a month, as far north as Preston. One immediate consequence was that the travelling post office, in which letters were sorted on the move, became a permanent institution between London and Preston. The system had first been tried experimentally earlier in the year on the GJR. Allied with this was the development of mail-bag exchange apparatus, with which bags could be dropped from, and picked up by, a train travelling at speed It was first installed at Boxmoor on the London & Birmingham in 1837. Edward Bury was appointed locomotive superintendent of the L&BR, and supplied it with locomotives to his design. The London & Southampton Railway was completed in 1840, having first changed its name to London & South Western Railway. The London & Croydon Railway, authorized in 1835 and in effect a branch of the London & RAIL 567 Greenwich, was opened in 1839, and the route extended to Brighton by the London & Brighton Railway opened in 1841. The Great Western opened its first section, at the London end, in 1838, and reached Bristol in 1841: Box tunnel, by which the line pierced a spur of the Cotswolds on a gradient of 1 in 100, had taken five years to make. By 1841 the Bristol & Exeter was already open to Bridgwater, and reached Exeter in 1844. The broad gauge Bristol & Gloucester Railway was opened the same year, and at Gloucester for the first time broad gauge met standard gauge, for the Birmingham & Gloucester had been opened in 1840. Most of the other railways authorized in 1836 to make a south-west to north-east route were completed between 1839 and 1844; the Manchester & Leeds was opened in 1840 and the Sheffield, Ashton-under- Lyne & Manchester in 1845. The first trunk railway in Scotland was the Edinburgh & Glasgow authorized in 1838 and opened in 1842. RAILWAY PROMOTION The early 1840s were a period of consolidation, when the railways authorized during the latter part of the previous decade were built and opened. Then, as the early main lines started to demonstrate how successful railways could be, not only as public utilities but also in their return to investors, interest in railway promotion re-awoke and soon, as speculators replaced investors, inflated rapidly into a vast financial bubble, the railway mania of 1845. Speculators would have covered Britain with a dense network of lines, but many of these railways were paper schemes which vanished with the collapse of the mania in 1846. Nevertheless there were sound substantial projects among them, and from this period there date many railways which were to form important components of the British railway network. From a little over 2570km (1600 miles) in 1842, the distance covered had grown to 9790km (6084 miles) in 1850, and by 1860 the basic railway network of lowland Britain was in existence. There remained to be built lines through the upland areas of Wales and Scotland, branch lines in country districts elsewhere, suburban lines, and main lines which would provide alternative routes to some of those already in existence and would be built, in accordance with the spirit of Victorian Britain, by competing companies. In this way most of the remainder of the railway system was built up over the ensuing sixty years. Brunel’s broad gauge had enabled the Great Western to run trains which were faster, steadier and more comfortable than those of the standard gauge railways: the disadvantage was the need to transfer passengers, freight and frightened livestock between trains wherever there was a break of gauge. It first became apparent at Gloucester and the supposed chaos of transfer at that point was probably exaggerated by protagonists of the standard gauge companies established in the Midlands and the North of England, which did not wish to PART THREE: TRANSPORT 568 see the Great Western authorized to extend into their territory. The outcome was the government-appointed Gauge Commission of 1845 which heard evidence from both sides, competitive trials of broad and standard gauge trains (suggested to the commission by Brunel) in which the broad gauge trains proved vastly superior, and the Gauge of Railways Act 1846, which nevertheless made the 4ft 8 1/2in gauge the legal standard, to which all new passenger railways in Britain must be built unless they extended existing broad gauge lines. The greater extent of standard gauge railways, 3600km (2236 miles) in 1844 compared with 375km (223 miles) of broad, had carried the day. Most broad gauge lines were eventually either made mixed gauge, by the addition of an extra rail, or narrowed; the last broad gauge sections were eventually converted in 1892. In the mid-1840s there was nevertheless a general feeling among engineers that, purely from an engineering viewpoint, a broader gauge than 4ft 8 1/2in was desirable, even though Brunel’s 7ft was excessive; and for Ireland, where the length of railways completed was still comparatively small, the Gauge of Railways Act set the standard gauge at 5ft 3in (1.60m), existing railways being altered to suit. MAIN LINE MOTIVE POWER AND OPERATION Locomotive developments, 1840–50 Perhaps the most important general consequence of Brunel’s broad gauge was the inducement it provided for designers of standard gauge locomotives to improve the breed. During the early 1840s the principal passenger trains on the Great Western were being hauled by 2–2–2s with 2.13m (7ft) diameter driving wheels; sixty-two of these had been built to a design which locomotive superintendent Daniel Gooch had developed from North Star, the GWR’s first successful locomotive which Robert Stephenson & Co had built in 1837. During the gauge trials, one of these averaged nearly 87kph (54mph) from Didcot to London with an 80-tonne train. An enlarged and improved version, the 4–2–2 Iron Duke class of 1846, had 2.4m (8ft) diameter driving wheels and a boiler which provided 431.8m 3 (4647.4ft 2 ) of heating surface. Such locomotives ran until the end of the broad gauge. The broad gauge allowed ample space in which to arrange the components of a locomotive. The standard gauge, it seemed, did not, particularly in view of the opinion of the period that, for stability, the centre of gravity must be kept low. In an attempt to increase boiler size and power, Robert Stephenson introduced the long boiler type of locomotive in 1841: the wheelbase was short, the boiler long, with the firebox overhanging the rear axle. Such locomotives not unnaturally proved unsteady at speed, particularly when built with outside cylinders. During the gauge trials, one of them overturned. It was RAIL 569 to a long-boiler locomotive, however, that R.Stephenson & Co. in 1842 first fitted link motion valve gear in place of the gab gear used previously. T.R.Crampton believed that a locomotive would ride steadily if its centre of gravity lay as near as possible to the horizontal line of the drawbar, and in 1842 patented two types of locomotive to achieve this. In one of them, the type which is generally associated with his name, the driving axle was situated to the rear of the firebox: this not only enabled a large boiler to be positioned low down, but meant that the cylinders, though outside, could be brought back to a position about mid-way along the locomotive and minimize any tendency for it to nose from side to side. Locomotives of this type were built from 1846 onwards; the London & North Western Railway (which had been formed from the London & Birmingham, Grand Junction and Liverpool & Manchester Railways) was an early user. In 1848 an exceptionally large Crampton locomotive, the Liverpool, was built for the LNWR with 2.4m (8ft) diameter driving wheels and a total heating surface of 212.75m 2 (2290ft 2 ) Liverpool had three pairs of carrying wheels and a total wheelbase of 5.6m (18ft 6in). She was on view at the Great Exhibition of 1851 where the public could compare her with the latest GWR broad gauge 4–2–2, Lord of the Isles. But whereas the Great Western locomotive was an example of a type already proven and highly successful, Liverpool damaged the track and was not perpetuated. She remained something of a freak, though Cramptons of lesser size did enjoy some popularity for several years on British railways and considerably more abroad. A much greater freak was the single locomotive built to Crampton’s other patented type, in which the boiler was located below the driving axle. This locomotive, Cornwall, was built by the LNWR at the same time that it built the first of its rear-driving- wheel Cramptons; her driving wheels were 2.6m (8ft 6in) in diameter and their axle passed through a recess in the top of the boiler. In 1858, by which date concern for a low centre of gravity had largely passed, Cornwall was rebuilt with a new boiler mounted in the normal location. Before that, indeed, during a period when many strange and curious designs for standard gauge locomotives were attempted, some engineers had already shown the way ahead: that it was wholly possible to design standard gauge locomotives which were simple and well-proportioned, rode well and had ample power for the work to be done. Notable among them was David Joy. As chief draughtsman for E.B.Wilson’s Railway Foundry, Leeds, Joy designed the Jenny Lind class 2–2–2 of which the first example was built for the London & Brighton Railway in 1847 (see Figure 11.2). The boiler was long and low, but the inside frames on which cylinders and driving axle were mounted stopped short at the firebox; leading and trailing wheels were mounted on outside frames, which meant that the firebox could be wide and the total heating surface was over 75m 2 (800ft 2 ): this, and a steam pressure of 8.3 bar (in a period when around 6 bar was usual) produced a machine of PART THREE: TRANSPORT 570 adequate power which, in the words of her designer, ‘at high speeds, always rolled softly, and did not jump and kick at a curve’. Many comparable designs of 2–2–2s were introduced, and 2–4–0s developed from them. There had been isolated instances in the 1830s and 1840s of locomotives with four wheels coupled, but they began to come into general use in the 1840s. The same applied to tank locomotives, and (to a lesser extent) locomotives with pivoted bogies on which two pairs of carrying wheels were mounted. Atmospheric traction During the 1840s there was a period when it seemed to many people that steam locomotives might be wholly superseded by atmospheric traction. In this system, patented by Clegg and the Samuda brothers in 1839, a large diameter iron tube was laid between the rails, with a continuous longitudinal slot along its top. This was sealed by a leather flap. A piston within the pipe was connected by a bracket through the slot to the leading vehicle of a train; the flap was opened ahead of the bracket and re-sealed behind it. When the pipe ahead of the train was exhausted by a stationary steam pump, atmospheric Figure 11.2: Jenny Lind, simple and well-proportioned, was the first of a highly successful class of passenger locomotives designed by David Joy and built from 1847 onwards. RAIL 571 pressure propelled the train forwards. On trial, it did so remarkably effectively. The system was installed on a one-mile extension of the Dublin & Kingstown Railway, with an average gradient of 1 in 128, and trains ran at 48kph (30mph) in service and considerably faster on test. It was then installed on part of the London & Croydon Railway, and Brunel began to install it on the steeply graded South Devon Railway. But in practice there were numerous problems—not least that of keeping the long leather flap airtight. The Croydon and Devon installations were never fully operational, the Irish one was discontinued in 1855. There was one feature of the Croydon line, however, which was a true forerunner of future developments: because of the difficulty of installing points and crossings on a line with an atmospheric tube, the single Croydon track equipped for atmospheric traction was, near Norwood, carried up and over the steam tracks by the first flyover. Signalling The London & Croydon, or rather its engineer C.H.Gregory, was responsible at this period for another development of lasting importance. This was the semaphore signal. By the early 1840s railways such as the Grand Junction and the Great Western were using disc signals, pivoted discs of various shapes which faced the driver of an oncoming train to indicate danger and were turned edgeways to indicate clear. Oil lamps displayed various colours to give equivalent signals by night. Gregory’s signal was an adaptation of the visual semaphore telegraph apparatus of the period (see p. 711ff.). Two arms, one for each direction of traffic, were mounted at the top of the post and operated by handles at the foot: an arm when horizontal indicated ‘danger’, one lowered to 45° ‘caution’, and a vertical arm (which was hidden within a slot in the post) ‘clear’. The first such signal was installed at New Cross, London, in 1841; they were installed on the London & Brighton Railway shortly afterwards and eventually came into general use. In 1843, at Bricklayers Arms Junction, Gregory introduced a simple form of interlocking to prevent signals for conflicting routes showing clear simultaneously, achieved by actuating the signals by foot-operated stirrups which were linked together. A lever frame operated the points. Gradually, levers to work signals and points were brought together in lever frames housed in signal boxes, and the signals positioned above the box. The first signalling installation in which points and signals were fully interlocked was designed by Austin Chambers and made at Kentish Town Junction, North London Railway, in 1859. Eventually, signal arms for different directions of travel came to be mounted separately; two indications only were given, ‘stop’ (horizontal) and ‘line clear’ (lowered to 45°), and signal posts were positioned at the place which, when ‘stop’ was shown, trains must not pass. . were the first steam railways to reach the capitals of Ireland and England. Neither was very long, and to that extent they were typical of many railways opened in the early and mid-1830s. Some of. network of lines, but many of these railways were paper schemes which vanished with the collapse of the mania in 1846. Nevertheless there were sound substantial projects among them, and from. construction of that part of the line which lay across the Chat Moss peat bog on a foundation of hurdles and branches of trees, the builders of the railway used established techniques developed for canal