PART THREE: TRANSPORT 452 The year after the Act was repealed, Frederick and George Lanchester built the first all-British car, with pneumatic tyres, Ackermann steering and drive, through an epicyclic gearbox, to a rear axle with a differential gear. Lanchester was also the first to develop disc brakes in 1901. An important entrant into the field was Henry Royce, a Manchester crane-maker who, with the Hon. Charles S.Rolls, built three 7.5kW (10hp), two-cylinder cars in 1905. Two years later the 30–37.5kW (40–50hp) ‘Silver Ghost’ Rolls Royce appeared, shortly to be accepted as the finest car in the world, eagerly sought after by potentates, princes and premiers of every race, colour and creed, a coveted position that the marque has held to this day. Across the Atlantic inventors and manufacturers were just as active as those in Europe. In August 1859 Edwin L.Drake had struck oil in Pennsylvania at a depth of 69 1/2 feet (21m), starting an industry which, in fifteen years, reached a production of 10 million barrels, each of 360lb (163kg), per day. Initially most of this was used for lamp oil but it was to form a useful source of motor fuel in the future. By 1982, 250,000 million 36-gallon (43.2 US, 163.7l) barrels of oil had been extracted by the world’s oil industry. Henry Ford ran his first ‘horseless carriage’ through the streets of Detroit in 1896. The Ford Motor Company built six hundred cars at the first mass production car plant at Dearborn, Michigan, in 1903, and built the first of his famous Model T series in 1908, producing 19,000 in that year and 1.25 million by 1920. By 1927 over 15 million had been built, a record in production only to be surpassed by the Volkswagen Beetle of Ferdinand Porsche forty-five years later. The adoption of Ford’s mass production techniques in Europe started with the Citroën Type A in 1919. An important adjunct to the car industry was in the electrical components, in which Bosch, Delco and Lucas predominated, all producing complete electrical systems including headlights by 1911 when Austro-Daimler also offered electric starting as an optional extra, a year before Cadillac installed it as standard. Duesenberg had mechanical four-wheel brakes in 1910 and the first hydraulic brakes on all four wheels originated from the same company in 1920. Triumph led the way with them in Britain five years later. The first entry of the American industry into Europe was in 1924 when General Motors took over the German Opel works. The same year they were producing 100 of their Tree-Frog model a day. Paralleling Ford’s oft-quoted dictum about the model T, ‘You can have it in any colour you like as long as it’s black’, the Opel Tree- Frog was only available in green. The first series-produced front-wheel drive car in the world, the Alvis 12/75, appeared in 1928. The 1930s saw the introduction of the fully synchromesh gearbox, patented by the German component company ZF and first fitted by Alvis to their Speed 20 of 1933. Sir William Morris, later Lord Nuffield, set his sights on producing a British ‘people’s car’ for under £100 and launched the Morris Cowley in 1931. His competitor, Herbert Austin, came out with the inexpensive ‘Baby’ ROADS, BRIDGES AND VEHICLES 453 Austin 7 about the same time. Ford, which had started building cars at Trafford Park in Manchester in 1911, was, by 1931, producing 500 vehicles a day from its new plant at Dagenham, Essex. They started production of their £100 Ford Popular in 1933. The ‘Baby’ Austin was to be the start of the Japanese motor car industry, for in 1935 Datsun started to manufacture it under licence. This firm was to become Nissan-Datsun under the ownership of the Nippon Steel Company. Today with their competitors—Honda, Toyota, Subaru, Mazda, Mitsubishi, Suzuki and Daihatsu—the Japanese motor car industry is the largest in the world, producing over 7 million vehicles a year. Volume production owes much to the use of industrial robots for, of some 10,000 in the world, over 4000 are at work in Japan and over two-thirds of these are in the automobile industry. This achievement is all the more remarkable in the light of the fact that the first Japanese-designed car was built by Toyota as recently as 1955, while motorcycle manufacturer Honda did not produce a car or commercial vehicle until 1962. Also in 1955, in France, Citroën introduced their revolutionary design the GS 19, with a hydraulic system so comprehensive and so complex that many dealers were reluctant to handle it, predicting that it would not sell, while service garages were equally hesitant to dabble in the unknown mysteries of hydraulics. The car had hydro-pneumatic suspension that could be adjusted to accommodate different loads and road conditions, hydraulically assisted braking, steering and gear change as well as a glass fibre roof and a single- spoke steering wheel. The prophets of gloom were wrong. It did sell and the same principles have been applied to subsequent models. Opposing the trend towards the increased use of hydraulics, the Dutch manufacturers DAF developed a continuously variable mechanical automatic transmission, the ‘Variomatic’ belt drive, launched in 1958. The following year, BMC, as it then was, ushered in a new era of cheaper motoring with Alec Issigonis’s transverseengined Mini with front-wheel drive, in which four passengers could be accommodated within a body no more than 3.09m long. AUTOMOTIVE ENGINES As related elsewhere (see Chapter 5), the steam engine was the first thermodynamic form of power, used originally for mine pumping by Savery and Newcomen and producing rotary motion when Watt added his sun-and-planet gearing in 1783. Even before this the minds of many ingenious men had turned towards propelling ships and carriages, the two forms of transport then in use, by engines. Jonathan Hulls published his proposals for marine propulsion in 1737, Nicolas Cugnot built his steam- driven gun carriage in 1770. It was not until the advent of ‘strong steam’, PART THREE: TRANSPORT 454 i.e. steam at high pressure, that the steam engine became light enough and small enough to be useful as a mobile engine, Richard Trevithick, Sir Goldsworthy Gurney, Thomas Hancock, William Murdock and William Symington were among the most notable pioneers of steam-driven road transport (see p. 458). The introduction of the gas engine, first by Etienne Lenoir in 1860, and then the development of the four-stroke cycle by Nikolaus Otto in 1876, came at a time when road transport was in a decline in opposition to the success of the railways which were sweeping many lands. William D.Priestman built the first successful oil engine in 1886 and Herbert Ackroyd Stuart developed it further with hot-bulb ignition. Rudolf Diesel had studied under Professor Carl von Linde who had shown him a cigar lighter based on the principle of the Malayan fire piston, in which rapid compression of a gas generated sufficient heat to cause it to explode or ignite. Thus was born the idea of compression- ignition, successfully translated into a practical vehicle engine at the Maschinenfabrik Augsburg AG in 1893, the prototype of the diesel engine, one of the two principal types used in road vehicles today. The petrol engine, like the oil engine, developed from the original gas engine. It differs from gas and oil engines in that liquid fuel is vaporized before it reaches the combustion chamber and that it is light enough to vaporize at atmospheric pressure and temperature. The first inventor was Samuel Moray who experimented with such an engine, using a mixture of alcohol and turpentine, at Orford, New Hampshire, USA, between 1826 and 1829. Otto’s partner, Eugen Langen, had in fact heard of the use of petroleum residue by Siegfried Marcus, and went so far as to try to propel a tramcar on the same principle in Liège by a gas engine. It was, however, the Germans, Daimler and Benz, who produced the first successful petrol engines, both incorporating their engines into practical road vehicles. Daimler was greatly assisted by Wilhelm Maybach who developed the surface carburettor and subsequently the spray type, efficient atomization of the liquid fuel being an essential feature of the petrol engine. The four-stroke cycle (suction, compression, power and exhaust) could be considered wasteful, having only one power stroke for every two revolutions of the crankshaft. On the other hand, the stroke that preceded the ignition stroke was devoted to compression of the explosive mixture, the lack of which had made earlier engines, such as those of Lenoir, inefficient. In 1880 Sir Dugald Clerk devised a two-stroke cycle in which the cylinder is exhausted at the end of the expansion stroke and a new charge admitted at the start of the compression stroke, a low pressure pump being required for this. Increasing the pressure, which Clerk did some ten years later, in effect initiated the concept of supercharging. Two-stroke and four-stroke engines have since co- existed, each filling a useful place in the scheme and neither proving to have an overall superiority. ROADS, BRIDGES AND VEHICLES 455 Just as the increased cost of fodder and the rising price of horses during the Napoleonic War gave a fillip to the development of the steam carriage, so did the oil crisis of 1973 encourage designers to save petrol and to try to develop engines which would run on alternative fuels such as methyl, ethyl and hydrogen. None reverted to the roof-mounted balloon gas tanks that became a feature of motoring during the Second World War and little success was achieved. However, as the world’s petroleum resources are undoubtedly finite, a reversion to these experiments may well come about towards the end of the century. ‘Lean burn’ engines which use a lower octane petrol and some 10–15 per cent less of it have been developed so far by Austin Rover and Ford in Britain. They are based on an American system using a three-way catalytic converter and fuel injection system. The further development of fuel cells is likely, as well as the production of efficient light-weight batteries for electrically- propelled town runabouts. Experiments to improve on the conventional internal combustion engine and its efficiency have been a constant preoccupation of engineers in the automobile industry since the days of Daimler, Benz and Diesel. There have also been spasmodic attempts to design a petrol or oil engine that does not conform to the orthodox internal combusion engine configuration. The most notable of these are the Rover gas turbine and the Wankel engine, the latter having made some impact on the commercial market. The Rover gas turbine motor car, the first in the world, made its appearance in 1950. Based on a standard Rover 75 converted to a two-seater open body, the car was powered by a twin-shaft Rover T8 gas turbine developing 200hp at 40,000 compressor rpm driving the rear axle through a 6:1 helical reduction gear. It was started by an electric motor of 12 volts which rotated the compressor shaft and also supplied the ignition plug in the combustion chamber, the trembler coil and the batteries, but which cut out when the turbine was running. The fuel was paraffin. In 1952 it reached a speed of nearly 245kph (152mph) a world record for this type of car. The 1.2 tonne car could reach 160kph (100mph) from a standing start in 13.2 seconds. The car was not fitted with a heat exchanger which resulted in an unacceptably high fuel consumption of only 4mpg (1.4km/l). Professor Felix Wankel started work on a preliminary design for a rotary combustion engine in 1954 and the first experimental model was run in 1957, although his ideas had originated much earlier (see p. 325ff.). The first production car to which it was fitted was a German NSU Spyder which, with a 500cc Wankel engine located at the rear, achieved a top speed of 150kph (93mph) and an acceleration of 0–96kph (0–60mph) in 14 seconds. The engine gave 41kW (55bhp) at 6000rpm with a compression ratio of 8.5:1. The touring fuel consumption of the lightweight car was 12.4km/l (35mpg, 29 US) and, in town driving, it registered only 9.2km/l (26mpg, 21.6 US). Though the Wankel engine has since been licensed to such manufacturers as Mazda in PART THREE: TRANSPORT 456 Japan and there seem to be advantages in terms of weight and size, the relatively high fuel consumption figures oppose the general adoption of this radical and ingenious substitute for the orthodox design of internal combustion petrol engine. TRAMS AND TROLLEYBUSES Tramways had long been in use in collieries and were the origin of railways (see Chapter 11). They also spawned the street tramways which became popular as public transport for passengers in the nineteenth and early twentieth centuries. They originated in the USA where, due to the soil conditions and the lack of plentiful stone for road building, conditions were particularly favourable for their employment. The first horse-drawn tram was built in 1831 by John Stephenson for the New York & Harlem Street Railway, opened in 1832. Its coach-built body had three compartments and was slung on leather straps on an unsprung underframe running on four wheels, with the driver’s seat on the roof. It carried thirty passengers. The idea of the street tramway gradually spread to other American towns and then overseas, reaching Paris in 1855 and Birkenhead, on Merseyside, in 1860. An American merchant, appropriately named G.F.Train, was responsible for the Birkenhead tramway and, later the same year, laid a line between Marble Arch and Notting Hill Gate in London, opened in 1861. He used the 5 inch (12.5cm) flat rail with a 7/8 inch (22mm) raised flange at one side that had originated in Philadelphia in 1851. It weighed 50lb per yard (24.8kg/m). Train laid similar lines from Westminster Bridge to Kennington and between Buckingham Palace and Victoria Station but, having failed to obtain parliamentary sanction, the concession was withdrawn by the city authority and no further tramways were laid in London until 1869 when the North Metropolitan tramline started up. Horse-drawn trams are still to be seen in operation today in the summer season in Douglas, Isle of Man. Not unnaturally steam enjoyed a period of favour as a form of traction, its foremost proponents being Messrs Kitson & Co of Leeds, though Manning, Wardle & Co of the same city were before them, having built a car for export to Pernambuco, Brazil, as early as 1866. The first steam tram in England, patented by J.Grantham, ran between Victoria and Vauxhall in London, starting in 1873. Early steam trams had the engine and boiler mounted within the passenger cars, but in some of the later designs the source of dirt, smoke and heat was set at a distance from the passengers, engine and boiler being mounted on a separate trailer. Kitsons, probably the most successful builders of steam trams—they built over 300 of them between 1879 and 1901—started building to the design of W.R.Rowland for Copenhagen in 1876 and ROADS, BRIDGES AND VEHICLES 457 developed their own designs by experiment from 1878. It is notable that six steam tramcars exported to New Zealand in 1879 were all still working in 1937. The last steam tramway in England ran between Wolverton and Stony Stratford until 1926. Electric traction was the optimum solution for tramways but in most cases had to wait until a suitable source of supply was available. In some instances, as at Bristol, the tramway company built its own power supply station. Leeds led in Britain, having electric trams in 1891, although Werner von Siemens had built them for Berlin where they were running in 1882. A roof-mounted collector was used in most cases, taking electric current from overhead wires strung from poles, although, in some installations, a collector-shoe running through a narrow slot between the rails into a wider electrified groove performed the same function. Rail gauges used varied widely, 3ft 6in, 4ft and 4ft 8 1/2in (106.7cm, 121.9cm, 143.5cm) all being common. Varying gauges were often found in neighbouring towns, some almost contiguous, a point certainly not in favour of the tramways. The main disadvantage of street tramways was that halts could only be made by the car pulling up in the middle of the roadway with a consequent danger to ascending and descending passengers from being struck by other vehicles in spite of preventive legislation. An alternative was the trolleybus, which could collect current from the same overhead wires and yet, running on wheels as opposed to rails, could draw up close to the kerb. Developed in the USA before the First World War and having pneumatic tyres, the trolleybus became popular municipally between the wars. It still had, however, the other disadvantage, that one trolleybus could not overtake another on the same line. As a result, their heyday was a short one. London withdrew its fleet in 1960 but they survived in Bradford from 1911 until 1972. Glasgow retained its tramcars until September 1962. They are, of course, still used in towns where they are particularly suitable such as Moscow, where the streets are wide and there is relatively little other conventional traffic. BUSES Until late in the nineteenth century, the steam engine was virtually the only form of motive power available for ‘locomotion’ apart from human and animal power. The improvements in the roads, especially those made by Telford and McAdam (see p. 434–5), were conducive to efforts to replace the horse with a steam engine, as was the considerable increase in the cost of fodder for horses that was brought about by the war with Napoleon. Trevithick’s use of high pressure steam was a major contribution towards reducing the weight as well as the size of the steam engine so as to make it an acceptable form of traction for road vehicles. PART THREE: TRANSPORT 458 The period 1820 to 1840 was a particularly active one, with a host of steam carriage experiments of which, perhaps, those of Walter Hancock and of Sir Goldsworthy Gurney were the most notable. Some were for private carriages but others, carrying between 12 and 24 passengers, particularly in the London area, plied for hire and competed with the horse-drawn ‘omnibus’ that George Shillibeer had first put into service in July 1829. Drawn by three horses harnessed abreast, it ran between Paddington Green and the Bank. Later ‘buses’, particularly from the period of the Great Exhibition of 1851, had seats longitudinally along the roof, the passengers, seated back to back, being separated by a ‘knifeboard’ backrest. Horse buses were not finally replaced by internal combustion engined buses in London until 1911. ELECTRICALLY OPERATED VEHICLES The need for fuel economy revived interest in the subject of electric vehicles and their viability. Around 1900 there was a short period when they became popular as ‘town carriages’, largely on account of their quietness and smoothness of operation compared with vehicles driven by the internal combustion engines of the time. The Krieger Electric Brougham, made by the Compagnie des Voitures Electriques was typical. The front wheels of this heavy machine were each driven independently by a pair of motors (compound wound 4-pole) supplied by twenty 193 ampere-hour cells giving a range of some 80km (50 miles) when fully charged and a maximum speed of 29–32kph (18–20mph). The lead-acid batteries must have made up much of the car’s 2-tonne weight, a failing of many more recently developed electric vehicles which has restricted their use to such applications as milk floats, runabouts for lazy golfers and motorized transport for the elderly and disabled. It is noteworthy that the Krieger vehicle had a regenerative braking system which allowed the motors to become generators when coasting. A similar characteristic applied to certain designs of bus with hydrostatic transmission which were developed in the 1960s. At the beginning of the twentieth century, electric vehicles competed seriously with the internal combustion engine. Four out often cars sold in the United States were electric, another four were steam-driven while only two had petrol engines. The first road vehicle to travel at over 100kph (62mph) was Camille Jenatzy’s battery-powered ‘La Jamais Contente’ in 1899. The London Electrobus Company, formed in 1906, planned to have 300 electric buses running within a year. Unfortunately the technology was not sufficiently advanced and passengers on their first bus in 1907 objected strongly to the acid fumes from the batteries to which they were subjected. The company was wound up three years later. Recent attempts at economy have included Sir Clive Sinclair’s C 5 electric three-wheeled car which seemed to have little more in its favour than the fact ROADS, BRIDGES AND VEHICLES 459 that it could be driven without holding a licence. Production, never notable, soon ceased for it would seem that Sir Clive or his marketing team misread the signs. Today, only some 40,000 of the 21 million or so vehicles in Britain are electric, but there is a chance of a real resurgence with the introduction of Alcan’s new and experimental alumium/air battery. The Alcan battery would have an alkaline or saline electrolyte, with the aluminium anode as the replaceable element. Another alternative is the sodium/ sulphur battery developed by Chloride Silent Power. Here again is the promise of a battery with three times the output and only half the weight of a lead-acid battery which would greatly increase the chances of electric drive as a replacement for the internal combustion engine. Non-vehicular applications are also conceived by the makers for the future. ROAD TRANSPORT ANCILLARIES The automobile age has spawned a host of ancillaries, of greater or lesser importance, to the carriageways and their accompanying vehicles. It is estimated that if William Symington (see p. 441) had built a full-scale carriage and run it on the roads, he would have had to stop every 8 or 10 miles (12– 16km) to replenish his boiler water as the engine was non-condensing. In all probability supplies would not have been readily available, muddy ditch-water being hardly conducive to good boiler operation and long life. This is an early example of the need for the now ubiquitous service station. When in 1888 Frau Benz, unknown to her husband, took a day-trip with her two teenage sons in one of his experimental cars, they stopped to buy petrol from an apothecary, the only retailer who then stocked it, and later at a cobbler’s to have a new piece of leather fixed on to the wooden brake block. Naturally, at both places, they topped up the radiator with water. The petrol pump was invented as early as 1885 by Sylvanus F.Bowser of Fort Wayne, Indiana, but he did not have the motor car in mind: the cask in which he stored kerosene was tainting the nearby buttercask in Gumper’s General Store. Not for a further twenty years did he apply his idea to the petrol used in automobiles. Bowser’s pump measured out a gallon (US, 3.785l) at each stroke. In 1925 he produced a pump which registered the amount drawn off on a dial gauge and in 1932 he incorporated an automatic price indicator. Hand-operated Bowsers were installed at filling stations in the UK in 1920 and the following year an enterprising proprietor in Manchester put in an automatic Bowser pump at his garage. The first known service station or garage dates from 1896 when A.Borol in Bordeaux advertised his motor workshop and the fact that he would send out petrol, oil and spares to motorists in need of them. He was also the agent for Peugeot. A service station was advertised in the local press in Brighton in 1897. PART THREE: TRANSPORT 460 The advertisement also appeared in the Autocar magazine. The Automobile Gasoline Company opened the first bulk storage filling station at St Louis, Missouri, in 1905. Two years later Standard Oil of California set the trend in canopied forecourts when they opened the first at Seattle, Washington. In the UK, the first was at Aldermaston, Berkshire, in 1920, with a hand pump supplying National Benzole, an air compressor, water tap, fire extinguisher and a telephone. The station was manned by Automobile Association patrolmen and was for the use of members only. (‘Garage’ is, of course, a word of French origin, meaning a place of shelter, and is contemporary with chauffeur, literally a man employed to warm or heat up the engine before starting. This was a lengthy but essential process with hottube ignition such as preceded electrical systems. A bunsen-like spirit flame was applied to the outer end of the tube, the other end of which ran into the combustion chamber.) Road and street lighting are very different from medieval days when an Act called for the citizens of the City of London to light their streets, using containers shaped like frying pans and filled with fat or tallow. Mention must be made here of traffic lights which are allied to railway signals but specifically an adjunct of the road. The first in Great Britain were lit by red and green gaslights, a pair of coloured filters being carried in the extension of a pair of semaphore arms. They were erected in 1868 in Bridge Street, New Palace Yard, Westminster, but did not immediately find universal favour for the gas exploded, killing an unfortunate police constable. The inventor was a Mr J.P. Knight, as one might expect a railway signalling engineer. Cleveland, Ohio, was the first city to have electrically powered red and green lights, in 1914. Amber was added to these colours for the traffic lights installed in New York in 1918, which were manually operated. In 1925 traffic lights were installed at the junction of St James’s Street and Piccadilly in London, manually controlled by a policeman in a central ‘signal-box’. The next year saw time-controlled lights for the first time, in Wolverhampton. In 1932 the first vehicle-operated traffic lights in Britain started operation at the junction of Gracechurch Street and Cornhill, in the City of London. Painting white lines on the road surface originated in Wayne County, Michigan, in 1911 and was introduced into Britain in 1914 when they were used at Ashford, Kent. The first traffic signs came before the motor car, for they were put up by the Bicycle Union in 1879. The first for motorists were warnings on Birdlip Hill, Gloucestershire, erected by the Royal Automobile Club in 1901. The safety of pedestrians involved traffic islands, which started in Liverpool in 1862: the first in London was privately installed in St James’s Street by Colonel Pierpoint so that he could cross safely to his club. Further consideration for pedestrians was shown by the introduction of pedestrian crossings, the first in Britain being in Parliament Square in 1926 and soon after round Piccadilly Circus. Lighted globes were used in the ROADS, BRIDGES AND VEHICLES 461 Belisha beacons first in Kensington in 1934, while the present zebra crossings date from 1951. An equally necessary but, to the motorist, less attractive device is the parking meter first heard of in the 1930s. Carl C.Magee of Oklahoma City applied for a US patent for such a meter in December 1932, but the patent was not granted until 1936. In the meantime Professor H.G.Thuesen and Gerald A.Hale of Oklahoma State University had also made a similar application which was successful and resulted in the first motorist, the Revd C.H.North, having the doubtful record of being booked for outstaying his welcome. The first parking meters in Britain were installed, appropriately enough, outside the United States Embassy in Grosvenor Square, London, in July 1958. ROAD MAPS Road books, showing the main towns, features and crossroads and the distances between them had existed as early as Roman times, the Itinerarium Antoninus being compiled about AD 200. The Romans probably measured distances in paces, not the most reliable method. Leonardo da Vinci illustrated in his notebook a form of ‘perambulator’ or odometer, in which a pebble fell into a box every time the wheel revolved but, like so many of the inventions that he sketched, it is doubtful if it was ever made. The frontispiece of John Ogilvy’s Britannia, published in 1675, shows a waywiser being trundled along a roadway with a more sophisticated form of gearing to count the revolutions of its wheel. Waywisers, for measuring road distances, became quite common by the mid-eighteenth century and, with more people travelling, there was a growing demand for road books. When John Cary first became involved with the mail service in 1794, he was to be paid 9d a mile by the Post Office to measure the routes travelled, but he also took care to retain the right to publish the results of his inspectors in a road book, which he did in 1798. Publishers of earlier road books were quick to produce new editions using Cary’s measurements: Cary sued them—and won. Today we can rely on precise and accurate maps of the whole of Great Britain produced by the Ordnance Survey by the process known as trigonometrical surveying. The first set of such maps on a scale of an inch to a mile was begun in the late eighteenth century shortly after the Ordnance Survey was established in 1791 by the Duke of Richmond as Master-General of Ordnance. It was concluded in the following century. The initial purpose of the first triangulation was, in fact, to establish the distance between London and Paris. All maps were originally printed by engraving processes as they were successively developed; today the techniques of computer aided design and photolitho printing, as applied to cartography, allow a high degree of accuracy and frequent updating. . conceived by the makers for the future. ROAD TRANSPORT ANCILLARIES The automobile age has spawned a host of ancillaries, of greater or lesser importance, to the carriageways and their accompanying. to the outer end of the tube, the other end of which ran into the combustion chamber.) Road and street lighting are very different from medieval days when an Act called for the citizens of the. BRIDGES AND VEHICLES 455 Just as the increased cost of fodder and the rising price of horses during the Napoleonic War gave a fillip to the development of the steam carriage, so did the oil crisis of