1. Trang chủ
  2. » Công Nghệ Thông Tin

Tự học Excel 2010 part 8 docx

10 290 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 355,21 KB

Nội dung

 nhn ca tp s liu, biu th mc nhn hay mc phng i ca m so v chun LARGE (array, k) : Tr v  ln nht th k trong mt tp s liu MAX (number1, number2, ) : Tr v  ln nht ca mt t MAXA (number1, number2, ) : Tr v  ln nht ca mt t, bao gm c    c. MIN (number1, number2, ) : Tr v  nh nht ca mt t MINA (number1, number2, ) : Tr v  nh nht ca mt t, bao gm c   MODE (number1, number2, ) : Tr v  xut hin nhiu nht trong mt m  th k c trong mt mng d liu PERCENTRANK (array, x, significance) : Tr v th hng (v i) ca mt tr trong mt mng d li pha mng d li PERMUT (number, number_chosen) : Tr v  cng. m t  ca tp d lio  li p h  hng ca mt s  SKEW (number1, number2, ) : Tr v  lch c  i xng ca i quanh tr  SMALL (array, k) : Tr v  nh nht th k trong mt tp s  lch chu mu  lch chu mu, bao gm c nh tr logic  lch chu tp hp  lch chu tp hp, k c ch  logic VAR (number1, number2, ) : Tr v  mu VARA (value1, value2, ) : Tr v u, bao gm c   VARP (number1, number2, ) : Tr v  tp hp VARPA (value1, value2, ) : Tr v  tp hp, bao gm c   n trong ca mt tp d liu, bi t l phm d liu   cui tp d liu. b. Nhóm hàm về phân phối xác suất BETADIST (x, alpha, beta, A, B) : Tr v  c  beta. BETAINV (probability, alpha, beta, A, B) : Tr v ngho c  su BINOMDIST (number_s, trials, probability_s, cumulative) : Tr v t ca nhng ln th i nh  CHIDIST (x, degrees_freedom) : Tr v t mi chi-squared. CHIINV (probability, degrees_freedom) : Tr v ngho ct mi chi-squared. CHITEST (actual_range, expected_range) : Tr v  ct t i chi-squared  bc t ng. CONFIDENCE (alphang tin cy cho mt k vt CRITBINOM (trials, probability_s, alpha) : Tr v  nh nhi nh th   bng dt cht ng EXPONDIST (x, lambda ng thi gian gin c FDIST (x, degree p s liu m  o c su  bip s liu FTEST (array1, array2) : Tr v kt qu ca m  nh xem hai m FISHER (x) : Tr v i Fisher t kim tra gi thuyt d s    quan ging s liu GAMMADIST (x, alpha, beta, cumulative) : Tr v gamma   lch GAMMAINV (probability, alpha, beta) : Tr v ngho c   HYPGEOMDIST (number1, number2, ) : Tr v t ca mt s ln  o c lognormal ca x (LOGNORMDIST) LOGNORMDIST (x, mean, standard_dev) : Tr v  logarit t i vi   NEGBINOMDIST (number_f, number_s, probability_s) : Tr v i nh th v  su n tht b i ca mt llity_s) NORMDIST (x, mean, standard_dev, cumulative) : Tr v i chun (normal distribution). c s dng trong vic thm c vic kim tra gi thuyt n NORMSDIST (z) : Tr v n tc (standard normal cumulative distribution function  lch chu o cn tc POISSON (x, mean, cumulative) : Tr v   ng bin c s xy ra trong mt khong thi gian nhnh t c m gia hai gii hn STANDARDIZE (x, mean, standard_dev) : Tr v tr chu i biu th b standard_dev TDIST (x, degrees_freedom, tails) : Tr v t ci t), trong    c sut. TINV (probability, degrees_freedom) : Tr v  t ci Student. t kt hp v Student. WEIBULL (x, alpha, beta, cumulative) : Tr v ng s dng trong ph  tin ci th a mt thit b. ZTEST (array, x, sigma) : Tr v t m z. c. Nhóm hàm về tương quan và hồi quy tuyến tính  s a hai m nh mi quan h ca hai    lch ca mi cm d liu, r      d hin i quy tuy  ng d ki  d kin hi INTERCEPT m giao nhau ca mng thng vi trc y bng  d c LINEST (known_y's, known_x's, constng b i thi ng thp nht vi d liu, ri tr v m ng th dc mng.  ng p vi d lic cung cp, ri tr v m    dc mng PEARSON  s t ch m th ng t -n 1, ph m rng quan h tuya hai tp s liu  s  m d li  s ng hi quy tuy m d liu STEYX (known_y's, known_x's) : Tr v sai s chun ca tr d i vi mi tr x trong hi quy. TREND (known_y's, known_x's, new_x's, const) : Tr v  theo xu th tuy d. Các hàm tài chính - financian functions ACCRINT (issue, first_interest, settlement, rate, par, frequency, basis, calc t ch nh k i vi ch  k hn AMORDEGRC (cost, date_purchased, first_period, salvage, period, rate, basis) : u hao trong m i hn s dng cn (s d thng k  u hao trong m  d thng k    t u k t    m c  k COUPDA    tip COUPNCD (settlement, maturity, frequency, basis) : Tr v mt con s th hi tip k t  COUPNUM (settlement, maturit lt phi tr trong khong t n COUPPCD (settlement, maturity, frequency, basis) : Tr v mt con s th hi  CUMIPMT (rate, nper, pv, sti ti tr i vi khon vay trong khong thi gian gi CUMPRINC (rate, nper, pv, start_period, end_period, type) : Tr v tin vi tr i vi khon vay trong khong thi gian gi u hao cho mn s d m dn theo mt mc c nh (fixed-declining balance method) trong mt khong thi nh. DDB (cost, u hao cho mn s d m d-declining balance method), hay gim dn theo mt t l  mt khong thnh. DISC (settlement, maturity, pr, redemption, ba l chit khu ca mt ch DOLLARDE (fractional_dollar, fraction) : Chuydollar  d  dng th DOLLARFR (decimal_dollar, fraction) : Chuy dng th   d i hn hiu lc Macauley dng mi hn hiu l hin ti ca n tin m s phn hi li nhun c u) t thc t h hng s k   k hn ca s c chi tr c nh theo k t c nh  k hn ca mt vng mt chu k hn cho mi) INTRATE (settlement, maturity, investment, redemption, basist cho mt chng  IPMT (rate, per, nper, pv, fv, type) : Tr v khoc chi tr c nh theo k i Ii sut nt chung tin mc th hin b s  ti ti mt k i vi mt kho su s tin gc phi tr cho k  MDURATION (settlement, maturity, coupon, yld, frequencyi hn Macauley sa i cho chng m  sut doanh li ni ti trong mt chu chuyn tin mt theo chu k NOMINAL t thc t     k h tr khong chu k, s tin tr  sut li tc c nh a mt kho dng t l chiu khu vn tr k hn (tr p (tr  ODDFPRICE (settlement, maturity, issue, first_coupon, rate, yld, redemption, frequency, basis) :  ng ma ch  (ngn h hn) ODDFYIELD (settlement, maturity, issue, first_coupon, rate, pr, redemption, frequency, basis) : Tr v li nhun ca mt ch  (ngn hn)   ng ma ch u cul (ngn hn) i nhun ca ch cu (ngn hn) n phi tr i vi kho tr n n vt k hi vi mt khoc chi tr c thc hinh k vi mt i PRICE (se ch ng mi tc theo chu k  ng m $100 ca mt cht khu  ng m ca mt chn  hin ti ca mt kho RATE t mi k trong m  tin nh ht ch ng thng) ca m sn trong mt k  i cnh k nh i nhung v phiu kho bc  ng mu kho bc i nhuu kho bc VDB (cost, salvage, life, start_period, end_period, n s dng trong nhiu k i sut nt long tin mnh k  ng tin mnh k YIi nhui vi ch nh k i nhun hng t khu YIELDMAT (settlemeni nhun ha chng  n e. Danh mục các Các Hàm Quản lý Cơ sở dữ liệu và Danh sách  trong mt ct ch  ca m d liu, theo mu kic ch nh. a s liu trong mt ct c tr ca m d liu, theo mu kic ch nh. DCOUNTA (database, field, crng" trong mt ct c  ca m d liu, theo mu kic ch nh.  t mt ct ca m d liu, khp vu kic ch nh. DMAX (database, field, criteria) : Tr v tr ln nht trong mt ct ca ma m d liu, theo mu kic ch nh. DMIN (database, field, criteria) : Tr v tr nh nht trong mt ct ca ma mt  d liu, theo mu kic ch nh.  trong mt ct ca ma m d liu, theo mu kic ch nh.  lch chun ca mt tp hp theo mu, bng  d liu trong mt ct ca ma m d liu, theo mt u kic ch nh.  lch chun ca mt tp h p hp, bng  d liu trong mt ct ca ma m d liu, theo mu kic ch nh.

Ngày đăng: 02/07/2014, 20:21

TỪ KHÓA LIÊN QUAN