Handbook of mathematics for engineers and scienteists part 207 pps

7 49 0
Handbook of mathematics for engineers and scienteists part 207 pps

Đang tải... (xem toàn văn)

Thông tin tài liệu

1410 FUNCTIONAL EQUATIONS TABLE T12.1 Particular solutions of the nonhomogeneous functional equation y(x + 1)–y(x)=f(x) No. Right-hand side of equation, f(x) Particular solution, ¯y(x) 1 1 x 2 x 1 2 x(x – 1) 3 x 2 1 6 x(x – 1)(2x – 1) 4 x n , n = 0, 1, 2, 1 n+1 B n (x), where the B n (x) are Bernoulli polynomials. The generating function: te xt e t – 1 = ∞  n=0 B n (x) t n n! 5 1 x ψ(x)=–C +  1 0 1 – t x–1 1 – t dt is the logarithmic derivative of the gamma function, C = 0.5772 is the Euler constant 6 1 x(x + 1) – 1 x 7 a λx , a ≠ 1, λ ≠ 0 1 a λ – 1 a λx 8 sinh(a + 2bx), b > 0 cosh(a – b + 2bx) 2 sinhb 9 cosh(a + 2bx), b > 0 sinh(a – b + 2bx) 2 sinhb 10 xa x , a ≠ 1 1 a – 1 a x  x – a a – 1  11 ln x, x > 0 ln Γ(x), where Γ(x)=  ∞ 0 t x–1 e –t dt is the gamma function 12 sin(2ax), a ≠ πn – cos[a(2x – 1)] 2 sina 13 sin(2πnx) x sin(2πnx) 14 cos(2ax), a ≠ πn sin[a(2x – 1)] 2 sina 15 cos(2πnx) x cos(2πnx) 16 sin 2 (ax), a ≠ πn x 2 – sin[a(2x – 1)] 4 sina 17 sin 2 (πnx) x sin 2 (πnx) 18 cos 2 (ax), a ≠ πn x 2 + sin[a(2x – 1)] 4 sina 19 cos 2 (πnx) x cos 2 (πnx) 20 x sin(2ax), a ≠ πn sin(2ax) 4 sin 2 a – x cos[a(2x – 1)] 2 sina 21 x sin(2πnx) 1 2 x(x – 1)sin(2πnx) 22 x cos(2ax), a ≠ πn cos(2ax) 4 sin 2 a + x sin[a(2x – 1)] 2 sina 23 x cos(2πnx) 1 2 x(x – 1)cos(2πnx) 24 a x sin(bx), a > 0, a ≠ 1 a x a sin[b(x – 1)] – sin(bx) a 2 – 2a cos b + 1 25 a x cos(bx), a > 0, a ≠ 1 a x a cos[b(x – 1)] – cos(bx) a 2 – 2a cos b + 1 T12.1. LINEAR FUNCTIONAL EQUATIONS IN ONE INDEPENDENT VARIABLE 1411 2 ◦ . Solution for a < 0: y(x)=Θ 1 (x)|a| x sin(πx)+Θ 2 (x)|a| x cos(πx), where the Θ k (x)=Θ k (x + 1) are arbitrary periodic functions with period 1 (k = 1, 2). Remark. See also Subsection 17.2.1, Example 1. 4. y(x +1) – ay(x) = f(x). A nonhomogeneous first-order constant-coefficient linear difference equation. 1 ◦ . Solution: y(x)=  Θ(x)a x + ¯y(x)ifa > 0, Θ 1 (x)|a| x sin(πx)+Θ 2 (x)|a| x cos(πx)+¯y(x)ifa < 0, where Θ(x), Θ 1 (x), and Θ 2 (x) are arbitrary periodic functions with period 1, and ¯y(x)is any particular solution of the nonhomogeneous equation. 2 ◦ .Forf(x)= n  k=0 b k x n and a ≠ 1, the nonhomogeneous equation has a particular solution of the form ¯y(x)= n  k=0 A k x n ; the constants B k are found by the method of undetermined coefficients. 3 ◦ .Forf(x)= n  k=1 b k e λ k x , the nonhomogeneous equation has a particular solution of the form ¯y(x)= ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ n  k=1 b k e λ k – a e λ k x if a ≠ e λ m , b m xe λ m (x–1) + n  k=1, k≠m b k e λ k – a e λ k x if a = e λ m , where m = 1, , n. 4 ◦ .Forf(x)= n  k=1 b k cos(β k x), the nonhomogeneous equation has a particular solution of the form ¯y(x)= n  k=1 b k a 2 + 1 – 2a cos β k  (cos β k – a)cos(β k x)+sinβ k sin(β k x)  . 5 ◦ .Forf(x)= n  k=1 b k sin(β k x), the nonhomogeneous equation has a particular solution of the form ¯y(x)= n  k=1 b k a 2 + 1 – 2a cos β k  (cos β k – a)sin(β k x)–sinβ k cos(β k x)  . 1412 FUNCTIONAL EQUATIONS 5. y(x +1) – xy(x) =0. Solution: y(x)=Θ(x)Γ(x), Γ(x)=  ∞ 0 t x–1 e –t dt, where Γ(x) is the gamma function, Θ(x)=Θ(x + 1) is an arbitrary periodic function with period 1. The simplest particular solution corresponds to Θ(x) ≡ 1. 6. y(x +1) – a(x – b)(x – c)y(x) =0. Solution: y(x)=Θ(x)a x Γ(x – b)Γ(x – c), where Γ(x) is the gamma function, Θ(x) is an arbitrary periodic function with period 1. 7. y(x +1) – R(x)y(x) =0, R(x) = a (x – λ 1 )(x – λ 2 ) (x – λ n ) (x – μ 1 )(x – μ 2 ) (x – μ m ) . Solution: y(x)=Θ(x)a x Γ(x – λ 1 )Γ(x – λ 2 ) Γ(x – λ n ) Γ(x – μ 1 )Γ(x – μ 2 ) Γ(x – μ m ) , where Γ(x) is the gamma function, Θ(x) is an arbitrary periodic function with period 1. 8. y(x +1) – ae λx y(x) =0. Solution: y(x)=Θ(x)a x exp  1 2 λx 2 – 1 2 λx  , where Θ(x) is an arbitrary periodic function with period 1. 9. y(x +1) – ae μx 2 +λx y(x) =0. Solution: y(x)=Θ(x)a x exp  1 3 μx 3 + 1 2 (λ – μ)x 2 + 1 6 (μ – 3λ)x  , where Θ(x) is an arbitrary periodic function with period 1. 10. y(x +1) – f(x)y(x) =0. Here, f(x)=f (x + 1) is a given periodic function with period 1. Solution: y(x)=Θ(x)  f(x)  x , where Θ(x)=Θ(x + 1) is an arbitrary periodic function with period 1. For Θ(x) ≡ const, we have a particular solution y(x)=C  f(x)  x ,whereC is an arbitrary constant. 11. y(x + a) – by(x) =0. Solution: y(x)=Θ(x)b x/a , where Θ(x)=Θ(x + a) is an arbitrary periodic function with period a. For Θ(x) ≡ const, we have particular solution y(x)=Cb x/a ,whereC is an arbitrary constant. T12.1. LINEAR FUNCTIONAL EQUATIONS IN ONE INDEPENDENT VARIABLE 1413 12. y(x + a) – by(x) = f (x). 1 ◦ . Solution: y(x)=Θ(x)b x/a + ¯y(x), where Θ(x)=Θ(x + a) is an arbitrary periodic function with period a,and¯y(x)isany particular solution of the nonhomogeneous equation. 2 ◦ .Forf(x)= n  k=0 A k x n and b ≠ 1, the nonhomogeneous equation has a particular solution of the form ¯y(x)= n  k=0 B k x n ; the constants B k are found by the method of undetermined coefficients. 3 ◦ .Forf(x)= n  k=1 A k exp(λ k x), the nonhomogeneous equation has a particular solution of the form ¯y(x)= n  k=1 B k exp(λ k x); the constants B k are found by the method of undetermined coefficients. 4 ◦ .Forf(x)= n  k=1 A k cos(λ k x), the nonhomogeneous equation has a particular solution of the form ¯y(x)= n  k=1 B k cos(λ k x)+ n  k=1 D k sin(λ k x); the constants B k and D k are found by the method of undetermined coefficients. 5 ◦ .Forf(x)= n  k=1 A k sin(λ k x), the nonhomogeneous equation has a particular solution of the form ¯y(x)= n  k=1 B k cos(λ k x)+ n  k=1 D k sin(λ k x); the constants B k and D k are found by the method of undetermined coefficients. 13. y(x + a) – bxy(x) =0, a, b >0. Solution: y(x)=Θ(x)  ∞ 0 t (x/a)–1 e –t/(ab) dt, where Θ(x)=Θ(x + a) is an arbitrary periodic function with period a. 14. y(x + a) – f (x)y(x) =0. Here, f(x)=f (x + a) is a given periodic function with period a. Solution: y(x)=Θ(x)  f(x)  x/a , where Θ(x)=Θ(x + a) is an arbitrary periodic function with period a. For Θ(x) ≡ const, we have a particular solution y(x)=C  f(x)  x/a ,whereC is an arbitrary constant. 1414 FUNCTIONAL EQUATIONS T12.1.1-2. Linear functional equations involving y(x)andy(ax). 15. y(ax) – by(x) =0, a, b >0. Solution for x > 0: y(x)=x λ Θ  ln x ln a  , λ = ln b ln a , where Θ(z)=Θ(z + 1) is an arbitrary periodic function with period 1, a ≠ 1. For Θ(z) ≡ const, we have a particular solution y(x)=Cx λ ,whereC is an arbitrary constant. 16. y(ax) – by(x) = f(x). 1 ◦ . Solution: y(x)=Y (x)+¯y(x), where Y (x) is the general solution of the homogeneous equation Y (ax)–bY (x)=0 (see the previous equation), and ¯y(x) is any particular solution of the nonhomogeneous equation. 2 ◦ .Forf(x)= n  k=0 A k x n , the nonhomogeneous equation has a particular solution of the form ¯y(x)= n  k=0 A k a k – b x k , a k – b ≠ 0. 3 ◦ .Forf(x)=lnx n  k=0 A k x k , the nonhomogeneous equation has a particular solution of the form ¯y(x)= n  k=1 x k  B k ln x + C k  , B k = A k a k – b , C k =– A k a k ln a (a k – b) 2 . 17. y(2x) – a cos xy(x) =0. Solution for a > 0 and x > 0: y(x)=x ln a ln 2 – 1 sin x Θ  ln x ln 2  , where Θ(x)=Θ(x + 1) is an arbitrary periodic function with period 1. T12.1.1-3. Linear functional equations involving y(x)andy(a – x). 18. y(x) = y(–x). This functional equation may be treated as a definition of even functions. Solution: y(x)= ϕ(x)+ϕ(–x) 2 , where ϕ(x) is an arbitrary function. T12.1. LINEAR FUNCTIONAL EQUATIONS IN ONE INDEPENDENT VARIABLE 1415 19. y(x) =–y(–x). This functional equation may be treated as a definition of odd functions. Solution: y(x)= ϕ(x)–ϕ(–x) 2 , where ϕ(x) is an arbitrary function. 20. y(x) – y(a – x) =0. 1 ◦ . Solution: y(x)=Φ(x, a – x), where Φ(x, z)=Φ(z, x) is any symmetric function with two arguments. 2 ◦ . Specific particular solutions may be obtained using the formula y(x)=Ψ  ϕ(x)+ϕ(a – x)  by specifying the functions Ψ(z)andϕ(x). 21. y(x) + y(a – x) =0. 1 ◦ . Solution: y(x)=Φ(x, a – x), where Φ(x, z)=–Φ(z, x) is any antisymmetric function with two arguments. 2 ◦ . Specific particular solutions may be obtained using the formula y(x)=(2x – a)Ψ  ϕ(x)+ϕ(a – x)  by specifying Ψ(z)andϕ(x). 22. y(x) + y(a – x) = b. Solution: y(x)= 1 2 b + Φ(x, a – x), where Φ(x, z)=–Φ(z, x) is any antisymmetric function with two arguments. Particular solutions: y(x)=b sin 2  πx 2a  and y(x)=b cos 2  πx 2a  . 23. y(x) + y(a – x) = f(x). Here, the function f (x) must satisfy the condition f (x)=f(a – x). Solution: y(x)= 1 2 f(x)+Φ(x, a – x), where Φ(x, z)=–Φ(z, x) is any antisymmetric function with two arguments. 24. y(x) – y(a – x) = f(x). Here, the function f (x) must satisfy the condition f (x)=–f(a – x). Solution: y(x)= 1 2 f(x)+Φ(x, a – x), where Φ(x, z)=Φ(z, x) is any symmetric function with two arguments. 25. y(x) + g(x)y(a – x) = f (x). Solution: y(x)= f(x)–g(x)f (a – x) 1 – g(x)g(a – x) [if g(x)g(a – x) 1]. 1416 FUNCTIONAL EQUATIONS T12.1.1-4. Linear functional equations involving y(x)andy(a/x). 26. y(x) – y(a/x) =0. Babbage equation. Solution: y(x)=Φ(x, a/x), where Φ(x, z)=Φ(z, x) is any symmetric function with two arguments. 27. y(x) + y(a/x) =0. Solution: y(x)=Φ(x, a/x), where Φ(x, z)=–Φ(z, x) is any antisymmetric function with two arguments. 28. y(x) + y(a/x) = b. Solution: y(x)= 1 2 b + Φ(x, a/x), where Φ(x, z)=–Φ(z, x) is any antisymmetric function with two arguments. 29. y(x) + y(a/x) = f(x). The right-hand side must satisfy the condition f (x)=f (a/x). Solution: y(x)= 1 2 f(x)+Φ(x, a/x), where Φ(x, z)=–Φ(z, x) is any antisymmetric function with two arguments. 30. y(x) – y(a/x) = f(x). Here, the function f (x) must satisfy the condition f (x)=–f(a/x). Solution: y(x)= 1 2 f(x)+Φ(x, a/x), where Φ(x, z)=Φ(z, x) is any symmetric function with two arguments. 31. y(x) + x a y(1/x) =0. Solution: y(x)=(1 – x a )Φ(x, 1/x), where Φ(x, z)=Φ(z, x) is any symmetric function with two arguments. 32. y(x) – x a y(1/x) =0. Solution: y(x)=(1 + x a )Φ(x, 1/x), where Φ(x, z)=Φ(z, x) is any symmetric function with two arguments. 33. y(x) + g(x)y(a/x) = f(x). Solution: y(x)= f(x)–g(x)f(a/x) 1 – g(x)g(a/x) [if g(x)g(a/x) 1]. . with period a ,and y(x)isany particular solution of the nonhomogeneous equation. 2 ◦ .Forf(x)= n  k=0 A k x n and b ≠ 1, the nonhomogeneous equation has a particular solution of the form ¯y(x)= n  k=0 B k x n ;. equation has a particular solution of the form ¯y(x)= n  k=0 A k a k – b x k , a k – b ≠ 0. 3 ◦ .Forf(x)=lnx n  k=0 A k x k , the nonhomogeneous equation has a particular solution of the form ¯y(x)= n  k=1 x k  B k ln. the constants B k and D k are found by the method of undetermined coefficients. 5 ◦ .Forf(x)= n  k=1 A k sin(λ k x), the nonhomogeneous equation has a particular solution of the form ¯y(x)= n  k=1 B k cos(λ k x)+ n  k=1 D k sin(λ k x);

Ngày đăng: 02/07/2014, 13:20

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan