Handbook of mathematics for engineers and scienteists part 140 ppsx

7 67 0
Handbook of mathematics for engineers and scienteists part 140 ppsx

Đang tải... (xem toàn văn)

Thông tin tài liệu

18.3. SINE INTEGRAL AND COSINE INTEGRAL.FRESNEL INTEGRALS 941 18.2.3. Logarithmic Integral 18.2.3-1. Integral representations. Definition: li(x)= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩  x 0 dt ln t if 0 < x < 1, lim ε→+0   1–ε 0 dt ln t +  x 1+ε dt ln t  if x > 1. 18.2.3-2. Limiting properties. Relation to the exponential integral. For small x, li(x) ≈ x ln(1/x) . For large x, li(x) ≈ x ln x . Asymptotic expansion as x → 1: li(x)=C +ln|ln x| + ∞  k=1 ln k x k! k . Relation to the exponential integral: li x = Ei(ln x), x < 1; li(e x )=Ei(x), x < 0. 18.3. Sine Integral and Cosine Integral. Fresnel Integrals 18.3.1. Sine Integral 18.3.1-1. Integral representations. Properties. Definition: Si(x)=  x 0 sin t t dt,si(x)=–  ∞ x sin t t dt =Si(x)– π 2 . Specificvalues: Si(0)=0,Si(∞)= π 2 ,si(∞)=0. Properties: Si(–x)=–Si(x), si(x)+si(–x)=–π, lim x→–∞ si(x)=–π. 942 SPECIAL FUNCTIONS AND THEIR PROPERTIES 18.3.1-2. Expansions as x → 0 and x →∞. Expansion into series in powers of x as x → 0: Si(x)= ∞  k=1 (–1) k+1 x 2k–1 (2k – 1)(2k – 1)! . Asymptotic expansion as x →∞: si(x)=–cosx  M–1  m=0 (–1) m (2m)! x 2m+1 + O  |x| –2M–1   +sinx  N–1  m=1 (–1) m (2m – 1)! x 2m + O  |x| –2N   , where M, N = 1, 2, 18.3.2. Cosine Integral 18.3.2-1. Integral representations. Definition: Ci(x)=–  ∞ x cos t t dt = C +lnx +  x 0 cos t – 1 t dt, where C = 0.5772 is the Euler constant. 18.3.2-2. Expansions as x → 0 and x →∞. Expansion into series in powers of x as x → 0: Ci(x)=C +lnx + ∞  k=1 (–1) k x 2k 2k (2k)! . Asymptotic expansion as x →∞: Ci(x)=cosx  M–1  m=1 (–1) m (2m – 1)! x 2m +O  |x| –2M   +sinx  N–1  m=0 (–1) m (2m)! x 2m+1 +O  |x| –2N–1   , where M, N = 1, 2, 18.3.3. Fresnel Integrals 18.3.3-1. Integral representations. Definitions: S(x)= 1 √ 2π  x 0 sin t √ t dt =  2 π  √ x 0 sin t 2 dt, C(x)= 1 √ 2π  x 0 cos t √ t dt =  2 π  √ x 0 cos t 2 dt. 18.4. GAMMA FUNCTION,PSI FUNCTION, AND BETA FUNCTION 943 18.3.3-2. Expansions as x → 0 and x →∞. Expansion into series in powers of x as x → 0: S(x)=  2 π x ∞  k=0 (–1) k x 2k+1 (4k + 3)(2k + 1)! , C(x)=  2 π x ∞  k=0 (–1) k x 2k (4k + 1)(2k)! . Asymptotic expansion as x →∞: S(x)= 1 2 – cos x √ 2πx P (x)– sin x √ 2πx Q(x), C(x)= 1 2 + sin x √ 2πx P (x)– cos x √ 2πx Q(x), P (x)=1 – 1×3 (2x) 2 + 1×3×5×7 (2x) 4 – ···, Q(x)= 1 2x – 1×3×5 (2x) 3 + ··· . 18.4. Gamma Function, Psi Function, and Beta Function 18.4.1. Gamma Function 18.4.1-1. Integral representations. Simplest properties. The gamma function, Γ(z), is an analytic function of the complex argument z everywhere except for the points z = 0,–1,–2, For Re z > 0, Γ(z)=  ∞ 0 t z–1 e –t dt. For –(n + 1)<Rez <–n,wheren = 0,1,2, , Γ(z)=  ∞ 0  e –t – n  m=0 (–1) m m!  t z–1 dt. Simplest properties: Γ(z + 1)=zΓ(z), Γ(n + 1)=n!, Γ(1)=Γ(2)=1. Fractional values of the argument: Γ  1 2  = √ π, Γ  – 1 2  =–2 √ π, Γ  n + 1 2  = √ π 2 n (2n – 1)!!, Γ  1 2 – n  =(–1) n 2 n √ π (2n – 1)!! . 944 SPECIAL FUNCTIONS AND THEIR PROPERTIES 18.4.1-2. Euler, Stirling, and other formulas. Euler formula Γ(z) = lim n→∞ n! n z z(z + 1) (z + n) (z ≠ 0,–1,–2, ). Symmetry formulas: Γ(z)Γ(–z)=– π z sin(πz) , Γ(z)Γ(1 – z)= π sin(πz) , Γ  1 2 + z  Γ  1 2 – z  = π cos(πz) . Multiple argument formulas: Γ(2z)= 2 2z–1 √ π Γ(z)Γ  z + 1 2  , Γ(3z)= 3 3z–1/2 2π Γ(z)Γ  z + 1 3  Γ  z + 2 3  , Γ(nz)=(2π) (1–n)/2 n nz–1/2 n–1  k=0 Γ  z + k n  . Asymptotic expansion (Stirling formula): Γ(z)= √ 2πe –z z z–1/2  1 + 1 12 z –1 + 1 288 z –2 + O(z –3 )  (|arg z| < π). 18.4.2. Psi Function (Digamma Function) 18.4.2-1. Definition. Integral representations. Definition: ψ(z)= d ln Γ(z) dz = Γ  z (z) Γ(z) . The psi function is the logarithmic derivative of the gamma function and is also called the digamma function. Integral representations (Re z > 0): ψ(z)=  ∞ 0  e –t –(1 + t) –z  t –1 dt, ψ(z)=lnz +  ∞ 0  t –1 –(1 – e –t ) –1  e –tz dt, ψ(z)=–C +  1 0 1 – t z–1 1 – t dt, where C =–ψ(1)=0.5772 is the Euler constant. Values for integer argument: ψ(1)=–C, ψ(n)=–C + n–1  k=1 k –1 (n = 2, 3, ). 18.4. GAMMA FUNCTION,PSI FUNCTION, AND BETA FUNCTION 945 18.4.2-2. Properties. Asymptotic expansion as z →∞. Functional relations: ψ(z)–ψ(1 + z)=– 1 z , ψ(z)–ψ(1 – z)=–π cot(πz), ψ(z)–ψ(–z)=–π cot(πz)– 1 z , ψ  1 2 + z  – ψ  1 2 – z  = π tan(πz), ψ(mz)=lnm + 1 m m–1  k=0 ψ  z + k m  . Asymptotic expansion as z →∞(|arg z| < π): ψ(z)=lnz – 1 2z – 1 12z 2 + 1 120z 4 – 1 252z 6 + ···=lnz – 1 2z – ∞  n=1 B 2n 2nz 2n , where the B 2n are Bernoulli numbers. 18.4.3. Beta Function 18.4.3-1. Integral representation. Relationship with the gamma function. Definition: B(x, y)=  1 0 t x–1 (1 – t) y–1 dt, where Re x > 0 and Re y > 0. Relationship with the gamma function: B(x, y)= Γ(x)Γ(y) Γ(x + y) . 18.4.3-2. Some properties. B(x, y)=B(y, x); B(x, y + 1)= y x B(x + 1, y)= y x + y B(x, y); B(x, 1 – x)= π sin(πx) , 0 < x < 1; 1 B(n, m) = mC n–1 n+m–1 = nC m–1 n+m–1 , where n and m are positive integers. 946 SPECIAL FUNCTIONS AND THEIR PROPERTIES 18.5. Incomplete Gamma and Beta Functions 18.5.1. Incomplete Gamma Function 18.5.1-1. Integral representations. Recurrence formulas. Definitions: γ(α, x)=  x 0 e –t t α–1 dt,Reα > 0, Γ(α, x)=  ∞ x e –t t α–1 dt = Γ(α)–γ(α, x). Recurrence formulas: γ(α + 1, x)=αγ(α, x)–x α e –x , γ(α + 1, x)=(x + α)γ(α, x)+(1 – α)xγ(α – 1, x), Γ(α + 1, x)=αΓ(α, x)+x α e –x . Special cases: γ(n + 1, x)=n!  1 – e –x  n  k=0 x k k!  , n = 0, 1, ; Γ(n + 1, x)=n! e –x n  k=0 x k k! , n = 0, 1, ; Γ(–n, x)= (–1) n n!  Γ(0, x)–e –x n–1  k=0 (–1) k k! x k+1  , n = 1, 2, 18.5.1-2. Expansions as x → 0 and x →∞. Relation to other functions. Asymptotic expansions as x → 0: γ(α, x)= ∞  n=0 (–1) n x α+n n!(α + n) , Γ(α, x)=Γ(α)– ∞  n=0 (–1) n x α+n n!(α + n) . Asymptotic expansions as x →∞: γ(α, x)=Γ(α)–x α–1 e –x  M–1  m=0 (1 – α) m (–x) m + O  |x| –M   , Γ(α, x)=x α–1 e –x  M–1  m=0 (1 – α) m (–x) m + O  |x| –M    – 3 2 π <argx < 3 2 π  . 18.6. BESSEL FUNCTIONS (CYLINDRICAL FUNCTIONS) 947 Asymptotic formulas as α →∞: γ(x, α)=Γ(α)  Φ  2 √ x – √ α – 1  + O  1 √ α  , Φ(x)= 1 √ 2π  x –∞ exp  – 1 2 t 2  dt; γ(x, α)=Γ(α)  Φ  3 √ αz  + O  1 α  , z =  x α  1/3 – 1 + 1 9α . Representation of the error function, complementary error function, and exponential integral in terms of the gamma functions: erf x = 1 √ π γ  1 2 , x 2  , erfc x = 1 √ π Γ  1 2 , x 2  ,Ei(–x)=–Γ(0, x). 18.5.2. Incomplete Beta Function 18.5.2-1. Integral representation. Definitions: B x (a, b)=  x 0 t a–1 (1 – t) b–1 dt, I x (a, b)= B x (a, b) B(a, b) , where Re a > 0 and Re b > 0,andB(a, b)=B 1 (a, b) is the beta function. 18.5.2-2. Some properties. Symmetry: I x (a, b)+I 1–x (b, a)=1. recurrence formulas: I x (a, b)=xI x (a – 1, b)+(1 – x)I x (a, b – 1), (a + b)I x (a, b)=aI x (a + 1, b)+bI x (a, b + 1), (a + b – ax)I x (a, b)=a(1 – x)I x (a + 1, b – 1)+bI x (a, b + 1). 18.6. Bessel Functions (Cylindrical Functions) 18.6.1. Definitions and Basic Formulas 18.6.1-1. Bessel functions of the first and the second kind. The Bessel function of the first kind, J ν (x), and the Bessel function of the second kind, Y ν (x) (also called the Neumann function), are solutions of the Bessel equation x 2 y  xx + xy  x +(x 2 – ν 2 )y = 0 and are defined by the formulas J ν (x)= ∞  k=0 (–1) k (x/2) ν+2k k! Γ(ν + k + 1) , Y ν (x)= J ν (x)cosπν – J –ν (x) sin πν .(18.6.1.1) The formula for Y ν (x) is valid for ν ≠ 0, 1, 2, (the cases ν ≠ 0, 1, 2, are discussed in what follows). The general solution of the Bessel equation has the form Z ν (x)=C 1 J ν (x)+C 2 Y ν (x) and is called the cylinder function. . Functions) 18.6.1. Definitions and Basic Formulas 18.6.1-1. Bessel functions of the first and the second kind. The Bessel function of the first kind, J ν (x), and the Bessel function of the second kind, Y ν (x). πν .(18.6.1.1) The formula for Y ν (x) is valid for ν ≠ 0, 1, 2, (the cases ν ≠ 0, 1, 2, are discussed in what follows). The general solution of the Bessel equation has the form Z ν (x)=C 1 J ν (x)+C 2 Y ν (x) and. AND THEIR PROPERTIES 18.4.1-2. Euler, Stirling, and other formulas. Euler formula Γ(z) = lim n→∞ n! n z z(z + 1) (z + n) (z ≠ 0,–1,–2, ). Symmetry formulas: Γ(z)Γ(–z)=– π z sin(πz) , Γ(z)Γ(1 –

Ngày đăng: 02/07/2014, 13:20

Tài liệu cùng người dùng

Tài liệu liên quan