1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Optical Networks: A Practical Perspective - Part 83 ppt

10 391 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 423,27 KB

Nội dung

790 BIBLIOGRAPHY [ST84] J.W. Suurballe and R. E. Tarjan. A quick method for finding shortest pairs of disjoint paths. Networks, 14:325-336, 1984. [ST91] B.E.A. Saleh and M. C. Teich. Fundamentals of Photonics. Wiley, New York, 1991. [Sta83] J.R. Stauffer. FT3Cma lightwave system for metropolitan and intercity applications. IEEE JSAC, 1:413-419, 1983. [Sta99] J.B. Stark. Fundamental limits of information capacity for optical communications channels. In Proceedings of European Conference on Optical Communication, pages 1-28, Nice, France, Sept. 1999. [Ste87] J. Stern et al. Passive optical local networks for telephony applications. Electronics Letters, 23:1255-1257, 1987. [Ste90] T.E. Stern. Linear lightwave networks: How far can they go? In Proceedings of IEEE Globecom, pages 1866-1872, 1990. [Ste94] W.R. Stevens. TCP/IP Illustrated, Volume 1. Addison-Wesley, Reading, MA, 1994. [Stu00] K.E. Stubkjaer. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal of Selected Topics in Quantum Electronics, 6(6):1428-1435, Nov./Dec. 2000. [Sub00] M. Subramanian. Network Management: Principles and Practice. Addison-Wesley, Reading, MA, 2000. [SV96] M.W. Sachs and A. Varma. Fibre channel and related standards. IEEE Communications Magazine, 34(8):40-49, Aug. 1996. [TCF+95] R.W. Tkach, A. R. Chraplyvy, E Forghieri, A. H. Gnauck, and R. M. Derosier. Four-photon mixing and high-speed WDM systems. IEEE/OSA Journal on Lightwave Technology, 13(5):841-849, May 1995. [Te198] Telcordia Technologies. Common Generic Requirements for Optical Add-Drop Multiplexers (OADMs) and Optical Terminal Multiplexers (OTMs), Dec. 1998. GR-2979-CORE, Issue 2. [Tel99] Telcordia Technologies. SONET Transport Systems: Common Generic Criteria, 1999. GR-253-CORE Issue 2, Revision 2. [Tie95] L. E Tiemeijer et al. Reduced intermodulation distortion in 1300 nm gain-clamped MQW laser amplifiers. IEEE Photonics Technology Letters, 7(3):284-286, Mar. 1995. [Toh93] Y. Tohmori et al. Over 100 nm wavelength tuning in superstructure grating (SSG) DBR lasers. Electronics Letters, 29:352-354, 1993. BIBLIOGRAPHY 791 [To198] P. Toliver et al. Routing of 100 Gb/s words in a packet-switched optical networking demonstration (POND) node. IEEE/OSA Journal on Lightwave Technology, 16(12):2169-2180, Dec. 1998. [TOT96] H. Takahashi, K. Oda, and H. Toba. Impact of crosstalk in an arrayed-waveguide multiplexer on n • n optical interconnection. IEEE/OSA JLT/JSA C Special Issue on Multiwavelength Optical Technology and Networks, 14(6):1097-1105, June 1996. [TOTI95] H. Takahashi, K. Oda, H. Toba, and Y. Inoue. Transmission characteristics of arrayed n • n wavelength multiplexer. IEEE/OSA Journal on Lightwave Technology, 13(3):447-455, March 1995. ITS00] R.H. Thornburg and B. J. Schoenborn. Storage Area Networks: Designing and Implementing a Mass Storage System. Prentice Hall, Englewood Cliffs, NJ, 2000. [TSN94] H. Takahashi, S. Suzuki, and I. Nishi. Wavelength multiplexer based on SiO2-Ta205 arrayed-waveguide grating. IEEE/OSA Journal on Lightwave Technology, 12(6):989-995, June 1994. [Tuc75] A. Tucker. Coloring a family of circular arcs. SIAM Journal on Applied Mathematics, 29(3):493-502, 1975. [Tur99] J.S. Turner. Terabit burst switching. Journal of High Speed Networks, 8(1):3-16, 1999. [Udu99] D.K. Udupa. TMN Telecommunications Management Network. McGraw-Hill, New York, 1999. [US86] U.S. Food and Drug Administration, Department of Radiological Health. Requirements of 21 CFR Chapter J for Class i Laser Products, Jan. 1986. [Vak99] D. Vakhshoori et al. 2 mW CW singlemode operation of a tunable 1550 nm vertical cavity surface emitting laser. Electronics Letters, 35(11):900-901, May 1999. [Ven96a] A.M. Vengsarkar et al. Long-period fiber-grating-based gain equalizers. Optics Letters, 21(5):336-338, 1996. [Ven96b] A.M. Vengsarkar et al. Long-period gratings as band-rejection filters. IEEE/OSA Journal on Lightwave Technology, 14(1):58-64, Jan. 1996. [VMVQ00] I. Van de Voorde, C. M. Martin, J. Vandewege, and X. Z. Qiu. The superPON demonstrator: An exploration of possible evolution paths for optical access networks. IEEE Communications Magazine, 38(2):74-82, Feb. 2000. [VPM01] G. Vareille, F. Pitel, and J. F. Marcerou. 3 Tb/s (300 • 11.6 Gbit/s) transmission over 7380 km using 28 nm C+L-band with 25 GHz channel spacing and NRZ format. In OFC 2001 Technical Digest, pages PD22/1-3, 2001. 792 BIBLIOGRAPHY [VS91] A.R. Vellekoop and M. K. Smit. Four-channel integrated-optic wavelength demultiplexer with weak polarization dependence. IEEE/OSA Journal on Lightwave Technology, 9:310-314, 1991. [vT68] H.L. van Trees. Detection, Estimation, and Modulation Theory, Part I. John Wiley, New York, 1968. [WASG96] R.E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman. MONET: Multiwavelength optical networking. IEEE/OSA JLT/JSA C Special Issue on Multiwavelength Optical Technology and Networks, 14(6):1349-1355, June 1996. [WD96] N. Wauters and P. Demeester. Design of the optical path layer in multiwavelength cross-connected networks. IEEE JSA C/JLT Special Issue on Optical Networks, 14(6):881-892, June 1996. [Wei98] Y. Wei et al. Connection management for multiwavelength optical networking. IEEE Journal of Selected Areas in Communications, 16(6):1097-1108, Sept. 1998. [WF83] A.X. Widmer and P. A. Franaszek. A DC-balanced, partitioned-block, 8B-10B transmission code. IBM Journal of Research and Development, 27(5):440-451, Sept. 1983. [Wi196] G. Wilfong. Minimizing wavelengths in an all-optical ring network. In 7th International Symposium on Algorithms and Computation, pages 346-355, 1996. [Wil00a] A.E. Willner, editor. IEEE Journal of Selected Topics in Quantum Electronics: Millennium Issue, volume 6, Nov./Dec. 2000. [Wil00b] B.J. Wilson et al. Multiwavelength optical networking management and control. IEEE/OSA Journal on Lightwave Technology, 18(12):2038-2057, 2000. [WJ90] J.M. Wozencraft and I. M. Jacobs. Principles of Communication Engineering. Waveland Press, Prospect Heights, IL, 1990. Reprint of the originial 1965 edition. [WK92] J.H. Winters and S. Kasturia. Adaptive nonlinear cancellation for high-speed fiber-optic systems. IEEE/OSA Journal on Lightwave Technology, 10:971-977, 1992. [WKR+88] S.S. Wagner, H. Kobrinski, T. J. Robe, H. L. Lemberg, and L. S. Smoot. Experimental demonstration of a passive optical subscriber loop architecture. Electronics Letters, 24:344-346, 1988. [WL88] S.S. Wagner and H. L. Lemberg. Technology and system issues for the WDM-based fiber loop architecture. IEEE/OSA Journal on Lightwave Technology, 7(11):1759-1768, 1988. [WL96] K Y. Wu and J Y. Liu. Liquid-crystal space and wavelength routing switches. In Proceedings of Lasers and Electro-Optics Society Annual Meeting, pages 28-29, 1996. BIBLIOGRAPHY 793 [WMB92] J. Willems, G. Morthier, and R. Baets. Novel widely tunable integrated optical filter with high spectral selectivity. In Proceedings of European Conference on Optical Communication, pages 413-416, 1992. [WO95] L. Wuttisittikulkij and M. J. O'Mahony. Multiwavelength self-healing ring transparent networks. In Proceedings of IEEE Globecom, pages 45-49, 1995. [Woo00] E.L. Wooten et al. A review of lithium niobate modulators for fiber-optic communication systems. IEEE Journal of Selected Topics in Quantum Electronics, 6(1):69-82, Jan./Feb. 2000. [WOS90] W.I. Way, R. Olshansky, and K. Sato, editors. Special issue on applications of RF and microwave subcarriers to optical fiber transmission in present and future broadband networks. IEEE Journal of Selected Areas in Communications, 8(7), Sept. 1990. [Wu92] T.H. Wu. Fiber Network Service Survivability. Artech House, Boston, 1992. [Wu95] T.H. Wu. Emerging techniques for fiber network survivability. IEEE Communications Magazine, 33(2):58-74, Feb. 1995. [WV00] J. Walrand and P. Varaiya. High-Performance Communication Networks. Morgan Kaufmann, San Francisco, 2000. [WW98] G. Wilfong and P. Winkler. Ring routing and wavelength translation. In Proceedings of the Symposium on Discrete Algorithms (SODA), pages 334-341, 1998. [Yam80] Y. Yamamoto. Noise and error-rate performance of semiconductor laser amplifiers in PCM-IM transmission systems. IEEE Journal of Quantum Electronics, 16:1073-1081, 1980. [Yam98] Y. Yamada et al. Optical output buffered ATM switch prototype based on FRONTIERNET architecture. IEEE JSA C" Special Issue on High-Capacity Optical Transport Networks, 16(7):2117-2134, Sept. 1998. [Yan96] Y. Yano et al. 2.6 Tb/s WDM transmission experiment using optical duobinary coding. In Proceedings of European Conference on Optical Communication, 1996. Postdeadline paper Th.B.3.1. [Yar65] A. Yariv. Internal modulation in multimode laser oscillators. Journal of Applied Physics, 36:388, 1965. [Yar89] A. Yariv. Quantum Electronics, 3rd edition. John Wiley, New York, 1989. [Yar97] A. Yariv. Optical Electronics in Modern Communications. Oxford University Press, 1997. 794 BIBLIOGRAPHY [YLES96] J. Yates, J. Lacey, D. Everitt, and M. Summerfield. Limited-range wavelength translation in all-optical networks. In Proceedings of IEEE Infocom, pages 954-961, 1996. [Yoo96] S.J.B. Yoo. Wavelength conversion techniques for WDM network applications. IEEE/OSA JLT/JSA C Special Issue on Multiwavelength Optical Technology and Networks, 14(6):955-966, June 1996. [You95] M.G. Young et al. Six-channel WDM transmitter module with ultra-low chirp and stable )~ selection. In Proceedings of European Conference on Optical Communication, pages 1019-1022, 1995. [YQD01] M. Yoo, C. Qiao, and S. Dixit. Optical burst switching for service differentiation in the next-generation optical Internet. IEEE Communications Magazine, 39(2):98-104, Feb. 2001. [ZA95] Z. Zhang and A. S. Acampora. A heuristic wavelength assignment algorithm for multihop WDM networks with wavelength routing and wavelength reuse. IEEE/ACM Transactions on Networking, 3(3):281-288, June 1995. [Zah92] C.E. Zah et al. Monolithic integration of multiwavelength compressive strained multiquantum-well distributed-feedback laser array with star coupler and optical amplifiers. Electronics Letters, 28:2361-2362, 1992. [ZCC+96] J. Zhou, R. Cadeddu, E. Casaccia, C. Cavazzoni, and M. J. O'Mahony. Crosstalk in multiwavelength optical cross-connect networks. IEEE/OSA JLT/JSA C Special Issue on Multiwavelength Optical Technology and Networks, 14(6):1423-1435, June 1996. [Zhu01] B. Zhu et al. 3.08 Tb/s (77 x 42.7 Gb/s) transmission over 1200 km of non-zero dispersion-shifted fiber with 100-km spans using C- L-band distributed Raman amplification. In OFC 2001 Technical Digest, pages PD23/1-3, 2001. [Zir91] M. Zirngibl. Gain control in erbium-doped fiber amplifiers by an all-optical feedback loop. Electronics Letters, 27:560, 1991. [Zir96] M. Zirngibl et al. An 18-channel multifrequency laser. IEEE Photonics Technology Letters, 8:870-872, 1996. [Zir98] M. Zirngibl. Analytical model of Raman gain effects in massive wavelength division multiplexed transmission systems. Electronics Letters, 34:789, 1998. [ZJ94] M. Zirngibl and C. H. Joyner. A 12-frequency WDM laser source based on a transmissive waveguide grating router. Electronics Letters, 30:700-701, 1994. [ZJS+95] M. Zirngibl, C. H. Joyner, L. W. Stulz, C. Dragone, H. M. Presby, and I. P. Kaminow. LARnet, a local access router network. IEEE Photonics Technology Letters, 7(2):1041-1135, Feb. 1995. BIBLIOGRAPHY 795 [ZO94] J. Zhou and M. J. O'Mahony. Optical transmission system penalties due to fiber polarization mode dispersion. IEEE Photonics Technology Letters, 6(10):1265-1267, Oct. 1994. [ZT98] W.D. Zhong and R. S. Tucker. Wavelength routing-based photonic packet buffers and their applications in photonic switching systems. IEEE/OSA Journal on Lightwave Technology, 16(10):1737-1745, Oct. 1998. [Zys96] J.L. Zyskind et al. Fast power transients in optically amplified multiwavelength optical networks. In 0FC'96 Technical Digest, 1996. Postdeadline paper PD31. This Page Intentionally Left Blank Index Bold page numbers indicate definition. 1+10Ch protection, 569, 570, 574-575 bandwidth and, 574 illustrated, 575 lightpaths in, 574 See also optical layer protection 1§ protection, 569, 570 1§ protection comparison, 570 illustrated, 570 1§ protection, 544-546, 586 cut fiber and, 544 dedicated, 580 illustrated, 545 shared, distinction, 580 1:10MS protection, 571 1:1 protection, 546 advantages, 546 illustrated, 545 I:N transponder protection, 573 10-Gigabit Ethernet, 389, 398 absorption coefficient, 193 acceptance angle, 52 access networks, 4-5, 591-612 architecture illustration, 594 architecture overview, 593-598 cable, 595 classifications, 595 enhanced HFC, 598-599 fiber to the curb (FTTC), 599-609 high-capacity, 591 summary, 610-611 telephone, 595 types of, 595, 600 accounting management, 497 acousto-optic tunable filters (AOTFs), 143-147, 230 channel attenuation, 292 illustrated, 143 polarization-independent integrated-optics, 144 power transfer function illustration, 146 power transmitted by, 145 principle of operation, 144-145 RF drive power, 292 transfer function, 145-146 as wavelength crossconnect, 146-147 acronyms, this book, 711-716 active region, 163 adaptation management, 496, 524-526 adaptation interfaces, 525-526 functions, 524-525 See also connection management; network management 797 798 INDEX add/drop multiplexers (ADMs), 22, 378, 547 architectures, 230-231 connection of dropsides of, 555 linear, 379 OC-48, 378 ring, 379 use of, 378 agile opaque networks, 704 alarm indication signal (AIS), 510 alarm management, 510-512 alarm indication signal (AIS), 510 backward defect indicator (BDI) signal, 510 defect condition, 510 defect indicators, 510-511 forward defect indicator (FDI) signal, 510-512 See also fault management All-Optical Network (AON) testbed, 655 all-optical networks, 24-26, 345,704-705 agile, 704-705 crosstalk susceptibility, 345 design considerations, 345-346 reach requirement, 345 all-optical OXC configurations, 422, 424, 425-428 comparison, 423 cost effectiveness, 425 electrical core crossconnect, 425, 426 illustrated, 422 physical layer design, 424 See also optical crossconnects (OXCs) all-optical topology, 442 example, 445-446 four-node configuration, 446 illustrated, 442 number of wavelengths, 448 AllWave fiber, 66 American National Standards Institute (ANSI), 724-725 ESCON and Fibre Channel standards, 724-725 SONET standards, 724 See also standards amplified spontaneous emission (ASE), 153 implications, 153 noise effects, 337 amplifier cascades, 293-294 gain, 294 illustrated, 295 power transients, 296 amplifier spacing, 294-296, 325 design and, 342-343 in existing systems, 343 APD receivers gain, 260 noise variance, 286 sensitivity, 261,277 shot noise, 285 apodized grating, 124 ARPANET, 466 arrayed waveguide grating (AWG), 137, 139-143, 228,229, 606, 641 couplers used in, 142 as demultiplexer, 140 free spectral range (FSR), 141 illustrated, 140 loss, 140 operating wavelengths, 141 principle of operation, 141-143 sizes, 140 as static wavelength crossconnect, 140 arrayed waveguides, 141 assured forwarding (AF) packets, 392 asymmetric services, 592 asynchronous transfer mode (ATM), 19, 363, 381-388 AAL-1,385-386 AAL-5, 386 adaptation layers (AAL), 385-386 admission control, 382, 387 advantages, 381-382 cell forwarding, 383-384 connections, 383-384, 388 data transmission, 382 flow control, 387 functions, 382-385 header, 382, 383 MPLS and, 394-395 networks, 9, 381 network-to-network interface (NNI), 382, 385 physical layer interfaces, 382 physical layer standards, 382 PNNI (private network-to-network interface) routing, 387-388 private user-network interfaces, 382 public user-network interfaces, 382 quality-of-service (QoS), 386-387 signaling and routing, 387-388 INDEX 799 switches, 384, 388, 615 switching, 382 traffic shaping, 386 user-to-network interface (UNI), 382, 385 VCIs, 383-384, 387 virtual channels, 383 VPIs, 384-385, 387 See also ATM layer; client layers ATM layer as common service layer, 674 direct virtual connections, 676 maturity, 675 use reasons, 675-676 attenuation coefficient measurement, 349 augmented model, 523,524 autocorrelation photocurrent, 758 random process, 754 automatic gain control (AGC), 296-298 circuit illustration, 298 couplers, 297 system types, 297 automatic protection-switching (APS) protocol, 541-542 automatic repeat request (ARQ), 268 availability, 537 avalanche breakdown, 197 avalanche multiplication, 197 avalanche photodetectors (APDs) excess noise factor, 255,275 noise, 255 See also APD receivers avalanche photodiodes, 197 back-to-back interconnection, 557 backward defect indicator (BDI) signal, 510 band drop OADM architecture, 413, 416 banding drawback, 149 multistage, 148-149 bandwidth, 29 average, 7 bit rate ratio, 30 Bragg gratings, 126 dedicated, 594 dial up, 521 EDFA gain, 289 enhanced HFC, 598 erbium-doped fiber amplifiers (EDFAs), 66 growth in different types of networks, 11 lightpath, 502 loss and, 65-68 optical layer protection, 563 optical networks, 10 peak, 7 photodetectors, 194 photodiodes, 198 semiconductor optical amplifiers (SOAs), 163 shared, 594, 595 specification, 29 statistical multiplexing and, 8 trading, 521 wasted, 671 bandwidth-on-demand service, 655 baseband modulated fiber coax bus (BMFCB), 600 Bayes' theorem, 752 beat noise signal-spontaneous, 256 spontaneous-spontaneous, 256 See also noise bending loss, 67-68 bend radius, 68 Bene~ architecture, 206-207 best-effort service, 8 bidirectional line switched rings (BLSRs), 380, 454, 544, 550-555 BLSR/2, 551,552, 554, 584-585, 586 BLSR/4, 549, 551,552, 585, 586 complexity, 553 deployment, 552 efficiency, 552 equivalent, 550 low-priority traffic in, 554-555 maximum ring length limitation, 551 node failures, 553-554 node support, 551 SONET, 564-566 span switching in, 552 spatial reuse capabilities, 551 spatial reuse illustration, 555 See also unidirectional path-switched rings (UPSRs) bidirectional protection switching, 540, 541,542 APS protocol, 542 fiber cut detection, 542 . 592 asynchronous transfer mode (ATM), 19, 363, 38 1-3 88 AAL-1,38 5-3 86 AAL-5, 386 adaptation layers (AAL), 38 5-3 86 admission control, 382, 387 advantages, 38 1-3 82 cell forwarding, 38 3-3 84. types, 297 automatic protection-switching (APS) protocol, 54 1-5 42 automatic repeat request (ARQ), 268 availability, 537 avalanche breakdown, 197 avalanche multiplication, 197 avalanche photodetectors. 555 linear, 379 OC-48, 378 ring, 379 use of, 378 agile opaque networks, 704 alarm indication signal (AIS), 510 alarm management, 51 0-5 12 alarm indication signal (AIS), 510 backward defect

Ngày đăng: 02/07/2014, 13:20

TỪ KHÓA LIÊN QUAN