Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
1,2 MB
Nội dung
220 Chương 9: Mạch tạo xung tam giác dùng tranzito Hình 3.27 đưa ra các sơ đồ dùng tranzito thông dụng để tạo xung tam giác trong đó (a) là dạng đơn giản, (b) là mạch dùng phần tử ổn dòng (phương pháp Miller) và (c) là mạch bù có khuếch đại bám kiểu Bootstrap. Hình 3.27: Các mạch tạo xung tam giác dùng tranzito thông dụng nh ấ t a. Với mạch (a): Ban đầu khi U v = 0 (chưa có xung điều khiển) T mở bão hòa nhờ R B , điện áp ra U ra = U c = U CEbh ≈ 0V. Trong thời gian có xung vuông, cực tính âm đ i ề u khiển đưa tới cực bazơ, T khóa, tụ C được nạp từ nguồn +E qua R làm điện áp trên t ụ tăng dần theo quy luật U c (t) = E (1 - e -t/RC ) (3-39) Điện áp này U c (t) = U ra (t) ở gần đúng bậc nhất tăng đường thẳng theo t với h ệ 221 số phi t uy ế n 222 C C i − i(t ) U ε = 0 q = m với i(0) = E/R (3-40) và i(t q i 0 ) = E - U m R E là các dòng nạp lúc đầu và cu ố i Khi hết xung điểu khiển T mở lại, C phóng điện nhanh qua T; U ra = U c ≈ 0 m ạ ch về lại trạng thái ban đầ u. Từ biểu thức sai số ε (3-40) thấy rõ muốn sai số bé cần chọn nguồn E lớn và biên độ ra của xung tam giác U m nhỏ. Đây là nhược điểm căn bản của sơ đồ đơn gi ả n hình 3.27a. b. Với mạch (b) tranzito T 2 mắc kiểu bazơ chung có tác dụng như một nguồn ổn dòng (có bù nhiệt nhờ dòng ngược qua D Z là điôt ổn áp (xem 2.6) cung cấp dòng I E2 ổn đ ị nh nạp cho tụ trong thời gian có xung vuông cực tính âm điều khiển làm khóa T 1 . V ớ i điều kiện gần đúng dòng cực colectơ T 1 không đổi thì: U (t) = 1 t q I I dt = c2 t là quan hệ bậc nhất (3-41) c ∫ c2 0 Mạch (b) cho phép tận dụng toàn bộ E tạo xung tam giác với biên độ nhận đ ượ c là U m ≈ E. Tuy vậy, khi có tải R t nối song song trực tiếp với C thì có phân dòng qua R t và U m giảm và do đó sai số ε tăng. Để sử dụng tốt cần có biện pháp nâng cao R t hay giảm ảnh hưởng của R t đối với mạch ra của sơ đồ . c. Với mạch (c) T 1 là phần tử khóa thường mở nhờ R B và ch ỉ khóa khi có xung vuông cực tính dương điều khiển. T 2 là phần tử khuếch đại đệm chế độ đóng mở (k < 1). Ban đầu (U v = 0) T 1 mở nhờ R b , điôt D thông qua R có dòng I o ≈ E/(R + R d ) với U c = U CE1bh ≈ 0. Qua T 2 ta nhận được U ra ≈ 0. Tụ C o được nạp tới điện áp U N - U E2 ≈ E v ớ i cực tính như hình 3.27. Trong thời gian có xung vào T 1 b ị khóa, C được nạp qua D và R làm điện thế tại M (cũng là điện thế cực bazơ T 2 ) âm dần T 2 mở mạnh, gia số ∆ U c qua T 2 và qua C o (có điện dung lớn) gần như 223 được đưa toàn bộ về điểm N bù thêm với giá tr ị sẵn có tại N (đang giảm theo quy luật dòng nạp) giữ ổn đ ị nh dòng trên R nạp cho C. Chú ý khi dòng hồi tiếp qua C o về N có tr ị số bằng E/R thì không còn dòng qua D dẫn tới cân bằng động, nguồn E dường như cắt khỏi mạch và C được nạp nh ờ điện thế E đã được nạp trước trên C o . Sơ đồ (c) có ưu điểm là biên độ U m đạt xấp x ỉ giá tr ị nguồn E trong khi sai s ố giảm đi (1 - k) lần (với k là hệ số truyền đạt của T 2 mắc chung emitơ) và ảnh h ưở ng của R t mắc tại cực emitơ của T 2 thông qua tầng đệm phân cách T 2 tới U c (t) rất y ế u . Các sơ đồ 3.27 a b c có thể sử dụng với xung điều khiển cực tính ngược lại khi chuyển mạch T 1 được thiết kế ở dạng thường khóa (không có R B ) 3.6.3. Mạch tạo xung tam giác dùng vi mạch thuật toán Hình 3.28 a và b đưa ra hai sơ đồ tạo xung tam giác dùng IC thuật toán. 224 t 0 Hình 3.28: Các mạch tạo xung tam giác dùng IC tuyền ttnh a) Dạng mạch tích phân đơn gi ả n b) Dùng mạch phức tạp có điều ch ỉ nh hướng quét và cực tính a - Mạch 3.28 a xây dựng trên cơ sở khuếch đại có đảo trong đó thay điện trở R ht bằng tụ C, khi đó điện áp ra được mô tả bởi (giả thiết U o = 0) U ( t ) = Q ( t ) = 1 t I ( t ) dt + Q (3-42) ra ∫ c 0 C C 0 với Q o là điện tích có trên tụ tại lúc t = 0 với I ( t ) = U vào ( t ) ta cóU ( t ) = 1 U ( t ) dt + U (3-43) c R ra RC ∫ vào ra Thành phần U rao xác đ ị nh từ điền kiện ban đầu của tích phân U rao = U ra (t = 0) = Q 0 / C 225 Nếu U vào (t) là một xung vuông có giá tr ị không đổi trong khoảng 0 ÷ t thì U ra (t) là một điện áp đường t h ẳ ng U ra (t) = ( - U vào /RC). t + U rao (3-44) Độ chính xác của (3.44) là tùy thuộc vào giả thiết gần đúng U o ≈ 0 hay dòng điện đầu vào IC gần bằng 0, các vi mạch chất lượng cao đảm bảo điều kiện này khá t ố t. 226 R 0 R b – Phân tích hoạt động của mạch 3.28b. Khi có xung điều khiển cực tính dương, T mở bão hòa, thông mạch phóng điện cho tụ C trong khoảng thời gian t o (t o < t ngh ỉ v ớ i t ngh ỉ = t vào là thời gian có xung điều khi ể n) . Trong khoảng t q (không có xung điều khiển) IC làm việc ở chế độ khuếch đại t uy ế n tính, nếu U o = 0 thì U p = U N = U c (3-45) Ta xác đ ị nh quy luật biến đổi của U c (t), từ đó tìm điều kiện để có quan hệ là t uy ế n tính như sau: Phương trình dòng điện tại nút N với mạch hồi tiếp âm: E 0 U N = U N U ra suy ra R 1 U = U R 2 R 1 + R 2 − E R 2 (3-46) ra c 1 1 Phương trình dòng tại núi P với mạch hồi tiếp d ươ ng : E U c R 3 dU U = C c + c dt U r a R 4 (3-47) Từ hai hệ thức (346) và (3-47) rút ra phương trình của U c (t) dU U 1 R 1 E E R c = c 2 = 0 2 (3-48) dt C R 3 R 1 R 4 C R 3 R 1 R 4 Tính chất biến đổi của U c (t) phụ thuộc vào hệ số của số hạng thứ hai vế trái của (3- 48). Nếu R 3 > R 1 R 4 /R 2 đường U c (t) có dạng đường cong lồi. Nếu R3<R 1 R 4 /R 2 R 2 đường U c (t) có dạng đường cong lõm. Khi R 1 /R 2 =R 3 /R4 (3-49) 227 3 0 0 thì U c phụ thuộc bậc nhất vào t. Khi đó có: 1 E U c = C R E R 2 t R 1 R 4 (3-50) Nếu chọn R 1 = R 3 và R 2 = R 4 ta có biểu thức thu g ọ n Từ đ ó : U c = 1 ( E R 3 C E ) t (3-51) 228 Nếu E > E o có U ra là điện áp tăng đường t h ằ ng . Nếu E < E o có U ra giảm đường t h ẳ ng . Nếu chọn E o = 0 ta nhận được xung tam giác cực tính dương, còn chọn E o là 1 nguồn điều ch ỉ nh được thì U ra có dạng có hai cực tính với biên độ gần bằng 2E c Trên thục tế, thường chọn E = Ec và E o lấy từ E c qua chia áp. Biên độ cực đ ạ i trên tụ C xác đ ị nh b ở i : U cmax = (E - E o )t q / R 3 C (3-52) Người ta có thể tạo ra đồng thời một xung vuông và một xung tam giác nh ờ ghép nối tiếp một bộ tích phân sau một trigơ Smit (h. 3.30). Bộ tích phân IC 2 lấy tích phân điện áp ra ổn đ ị nh trên lối ra (U ra1 ) của trigơ Smit. Khi U ra2 đạt ngưỡng tắt c ủ a trigơ thì điện áp ra của nó đổi dấu đột biến do đó U ra2 đổi hướng quét ngược lại. Quá trình lại tiếp diễn cho tới khi đạt tới ngưỡng lật thứ hai của trigơ Smit và sơ đồ quay v ề trạng thái đầu. Tần số của dao động thay đổi nhờ R hoặc C. Biên độ U ra2 ch ỉ ph ụ thuộc ngưỡng lật của trigơ Smit, được xác đ ị nh b ở i : U ra2 = U max R 1 /R 2 (3- 53) (với U max là giá tr ị điện áp ra bão hòa của IC 1 ). Chu kì dao động xác đ ị nh b ở i T= 4RCR 1 /R 2 (3-54) 229 Hình 3.30: Sơ đồ tạo đồng thời xung vuông (Ura1) và xung tam giác (Ura2) . thời gian có xung vuông, cực tính âm đ i ề u khiển đưa tới cực bazơ, T khóa, tụ C được nạp từ nguồn +E qua R làm điện áp trên t ụ tăng dần theo quy luật U c (t) = E (1 - e -t/RC ) ( 3-3 9) Điện áp. U max R 1 /R 2 ( 3- 53) (với U max là giá tr ị điện áp ra bão hòa của IC 1 ). Chu kì dao động xác đ ị nh b ở i T= 4RCR 1 /R 2 ( 3-5 4) 2 29 Hình 3.30: Sơ đồ tạo đồng thời xung vuông (Ura1) và xung tam giác. độ cực đ ạ i trên tụ C xác đ ị nh b ở i : U cmax = (E - E o )t q / R 3 C ( 3-5 2) Người ta có thể tạo ra đồng thời một xung vuông và một xung tam giác nh ờ ghép nối tiếp một bộ tích phân sau