1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn thạc sĩ Kỹ thuật xây dựng: Nghiên cứu ảnh hưởng hình dạng khối rỗng đến ứng xử của phần cầu nối dạng bản rỗng (của cầu kết nối khu dân cư Him Lam)

100 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Nghiên cứu ảnh hưởng hình dạng khối rỗng đến ứng xử của phần cầu nối dạng bản rỗng (của cầu kết nối khu dân cư Him Lam)
Tác giả Phan Lê Thanh
Người hướng dẫn TS. Lê Bá Khánh
Trường học Trường Đại học Bách Khoa, Đại học Quốc gia Tp. HCM
Chuyên ngành Kỹ thuật xây dựng
Thể loại Luận văn thạc sĩ
Năm xuất bản 2020
Thành phố Thành phố Hồ Chí Minh
Định dạng
Số trang 100
Dung lượng 3,38 MB

Nội dung

Phương pháp sử dụng bản trực hướng giảm chiều cao kết hợp với hệ số nhân ứng suất được coi là phù hợp nhất để lý tưởng hóa việc tính toán đặc điểm trực hướng cũng như biến dạng mặt cắt n

Trang 1

TRƯỜNG ĐẠI HỌC BÁCH KHOA

PHAN LÊ THANH

NGHIÊN CỨU ẢNH HƯỞNG HÌNH DẠNG KHỐI RỖNG ĐẾN ỨNG XỬ CỦA PHẦN CẦU NỐI DẠNG BẢN RỖNG

(của cầu kết nối khu dân cư Him Lam)

Chuyên ngành: Kỹ thuật xây dựng Công trình giao thông

Mã ngành: 60 58 02 05

LUẬN VĂN THẠC SĨ

Thành phố Hồ Chí Minh, tháng 01 năm 2020

Trang 2

TRƯỜNG ĐẠI HỌC BÁCH KHOA ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH

***

Cán bộ hướng dẫn khoa học: TS LÊ BÁ KHÁNH

Cán bộ chấm nhận xét 1: TS NGUYỄN DUY LIÊM

Cán bộ chấm nhận xét 2: TS MAI LỰU

Luận văn thạc sĩ được bảo vệ tại Trường Đại học Bách Khoa, ĐHQG Tp HCM ngày 11 tháng 01 năm 2020

Thành phần Hội đồng đánh giá luận văn thạc sĩ gồm:

1 Chủ tịch hội đồng: PGS.TS LÊ THỊ BÍCH THỦY

2 Thư ký hội đồng: TS NGUYỄN DANH THẮNG

3 CB Phản biện 1: TS NGUYỄN DUY LIÊM

4 CB Phản biện 2: TS MAI LỰU

5 Uỷ viên hội đồng: TS LÊ BÁ KHÁNH

Xác nhận của Chủ tịch Hội đồng đánh giá LV và Trưởng Khoa quản lý chuyên ngành sau khi luận văn đã được sửa chữa (nếu có)

Chủ tịch Hội đồng đánh giá LV Trưởng Khoa Kỹ thuật Xây dựng

PGS.TS Lê Thị Bích Thủy PGS.TS Lê Anh Tuấn

Trang 3

HV: Phan Lê Thanh MSHV: 1770096

ĐẠI HỌC QUỐC GIA TP.HCM

TRƯỜNG ĐẠI HỌC BÁCH KHOA

CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM

Độc lập - Tự do - Hạnh phúc

NHIỆM VỤ LUẬN VĂN THẠC SĨ

Họ tên học viên: PHAN LÊ THANH MSHV: 1770096 Ngày, tháng, năm sinh: 26/8/1984 Nơi sinh: Ninh Thuận Chuyên ngành: Kỹ thuật xây dựng Công trình giao thông Mã số : 60 58 02 05

2 Tổng quan các nghiên cứu về cầu bản rỗng

3 Tổng quan lý thuyết tính toán về cầu bản rỗng

4 Phân tích ứng xử của phần cầu nối dạng bản rỗng của cầu kết nối khu dân cư Him Lam

III NGÀY GIAO NHIỆM VỤ: 19/08/2019

IV NGÀY HOÀN THÀNH NHIỆM VỤ: 08/12/2019

V CÁN BỘ HƯỚNG DẪN: TS LÊ BÁ KHÁNH

Tp HCM, ngày 03 tháng 12 năm 2019

TRƯỞNG KHOA KỸ THUẬT XÂY DỰNG

PGS.TS Lê Anh Tuấn

Trang 4

HV: Phan Lê Thanh MSHV: 1770096

LỜI CẢM ƠN

Trước tiên tôi xin gửi lời cảm ơn đến toàn thể quý thầy cô khoa Kỹ thuật Xây dựng trường đại học Bách Khoa đã tận tình giảng dạy giúp tôi hiểu biết sâu rộng hơn

về kiến thức chuyên môn trong suốt thời gian tham dự khóa cao học

Và đặc biệt tôi xin chân thành cảm ơn giáo viên hướng dẫn của tôi là thầy TS

Lê Bá Khánh vì đã dành nhiều thời gian, công sức để định hướng, hỗ trợ và đồng

hành cùng tôi trong suốt thời gian thực hiện luận văn thạc sỹ

Sau cùng tôi muốn cảm ơn gia đình, bạn bè đã luôn ủng hộ, động viên, giúp đỡ tôi hoàn thành khóa học này

Trang 5

HV: Phan Lê Thanh MSHV: 1770096

TÓM TẮT LUẬN VĂN

Cầu bản dạng khối rỗng ngày nay đang được sử dụng rộng rãi Chúng có ưu điểm là tiết kiệm vật liệu, giảm tĩnh tải nhưng vẫn đảm bảo khả năng chịu lực Các khối rỗng được đưa vào sử dụng có nhiều loại khác nhau như hình tròn, hình chữ nhật, hình elip, hình capsule… và việc tìm hiểu xem hình dạng nào tạo ra kết cấu tốt hơn là điều cần thiết

Đề tài này tập trung nghiên cứu ứng xử của bản dạng khối rỗng khi thay đổi hình dạng và kích thước khối rỗng Phương pháp nghiên cứu là phương pháp phần tử hữu hạn với mô hình bản 3D được lấy từ một công trình cầu thực tế Việc mô phỏng được tiến hành trên phần mềm PTHH Abaqus CAE Các kết quả được phần mềm tính toán theo phân tích tuyến tính và được đưa ra nghiên cứu bao gồm sự phân bố ứng suất theo phương ngang, phương dọc, sự tập trung ứng suất Von – Mises và chuyển

vị thẳng đứng của bản tại một số vị trí nguy hiểm Qua đó hiểu thêm được về cách làm việc của bản dạng khối rỗng và xác định được hình dạng khối rỗng tốt nhất để từ

đó có thể vận dụng cho các công trình có kết cấu tương tự sau này

Trang 6

HV: Phan Lê Thanh MSHV: 1770096

ABSTRACT

Voided slab bridge decks are now widely used They have many advantages such as saving materials, reducing dead load of slabs but still ensuring bearing capacity The voids within the slab are many different in shapes such as circular, rectangular, elliptical, capsular shape and it is necessary to find out an optimal void shape

This study focuses on surveying the structural behavior of voided slab bridge decks when changing the shape and size of voids The analysis method is a finite element method with a 3D voided slab model which taken from an actual bridge construction The simulation was conducted on the Abaqus/CAE software The results are calculated by the software in a linear material and are analyzed, including the transverse, longitudinal stress distribution, the Von - Mises stress concentration and the deflection of the voided slab at critical locations Thereby, we can gain a better understanding of the structural behavior of voided slab bridge decks and determine the optimal void shape so that it can be applied to similar structural construction later

Trang 7

HV: Phan Lê Thanh MSHV: 1770096

LỜI CAM ĐOAN

Tôi xin cam đoan đây là công trình nghiên cứu khoa học độc lập của tôi Các số liệu trong luận án là trung thực và có nguồn gốc rõ ràng Các kết quả của luận án chưa từng được công bố trong bất cứ công trình khoa học nào Tác giả hoàn toàn chịu trách nhiệm về tính xác thực và nguyên bản của luận án

Tác giả

Phan Lê Thanh

Trang 8

HV: Phan Lê Thanh MSHV: 1770096

MỤC LỤC

NHIỆM VỤ LUẬN VĂN THẠC SĨ ii

LỜI CẢM ƠN v

TÓM TẮT LUẬN VĂN vi

ABSTRACT vii

LỜI CAM ĐOAN viii

MỤC LỤC ix

DANH MỤC CÁC BẢNG xii

DANH MỤC CÁC HÌNH xii

MỞ ĐẦU 1

1 Lý do chọn đề tài 1

2 Mục đích nghiên cứu 1

3 Đối tượng và phạm vi nghiên cứu 1

a Đối tượng nghiên cứu 1

b Phạm vi nghiên cứu 1

4 Phương pháp nghiên cứu 2

5 Ý nghĩa khoa học và tính thực tiễn của đề tài 2

6 Nội dung đề tài 2

CHƯƠNG 1: TỔNG QUAN VỀ LĨNH VỰC NGHIÊN CỨU 3

1.1 Giới thiệu chung về cầu bản có khối rỗng 3

1.2 Các hình thức của bản khối rỗng 4

1.2.1 Cầu bản có khối rỗng (voided slab bridge decks) 4

1.2.2 Cầu bản dạng sàn bong bóng (Bubble Deck slabs) 5

1.2.3 Tấm bê tông lõi rỗng (Hollow-core slabs) 6

1.3 Tình hình nghiên cứu trên thế giới 6

1.3.1 Áp dụng lý thuyết tấm trực hướng 6

1.3.2 Ứng xử và phân tích bản sàn bê tông dạng bản rỗng 11

1.3.3 Tính toán độ cứng của bản sàn dạng bản rỗng 14

Trang 9

HV: Phan Lê Thanh MSHV: 1770096

1.3.4 Diện tích tương đương của các bản sàn khối rỗng 17

1.4 Tình hình nghiên cứu trong nước 20

1.4.1 Phân tích thực nghiệm của sàn BubbleDeck dùng khối rỗng hình elip 20

1.4.2 Nghiên cứu quy trình quản lý chất lượng thi công sàn BubbleDeck 21

1.5 Nhận xét của chương 22

CHƯƠNG 2: CƠ SỞ LÝ THUYẾT 23

2.1 Ứng xử kết cấu của bản sàn dạng khối rỗng 23

2.1.1 Lý thuyết tấm trực hướng 23

2.1.2 Ảnh hưởng của khối rỗng đến ứng xử kết cấu 26

2.1.2.1 Ứng xử uốn 26

2.1.2.2 Ứng xử cắt 28

2.1.2.3 Biến dạng của mặt cắt ngang dạng hộp 28

2.1.3 Phân tích kết cấu của bản sàn khối rỗng 30

2.2 Phương pháp Grillage 31

2.3 Ví dụ về mô hình Grillage cho cầu bản dạng khối rỗng 34

2.4 Mô hình phần tử hữu hạn của bản sàn cầu dạng khối rỗng 37

2.5 Nhận xét của chương 38

CHƯƠNG 3: PHÂN TÍCH ẢNH HƯỞNG HÌNH DẠNG KHỐI RỖNG 39

3.1 Giới thiệu 39

3.1.1 Mục đích: 39

3.1.2 Phạm vi và phương án khảo sát: 39

3.1.2.1 Phạm vi khảo sát: 39

3.1.2.2 Phương án khảo sát: 39

3.2 Đối tượng nghiên cứu 40

3.2.1 Giới thiệu về cầu kết nối khu dân cư HimLam: 40

3.2.2 Tải trọng tác dụng trên nhịp chính 44

3.2.3 Bố trí gối cầu nhịp chính 45

3.3 Thiết lập mô hình trên phần mềm PTHH Abaqus CAE 46

Trang 10

HV: Phan Lê Thanh MSHV: 1770096

3.3.1 Các thông số cơ bản của mô hình 46

3.3.1.1 Thông số về vật liệu 46

3.3.1.2 Loại phần tử và kích thước lưới chia 47

3.3.1.3 Thông số về hoạt tải 48

3.3.2 Các bước mô hình hóa trên phần mềm Abaqus CAE 48

3.3.2.1 Xây dựng cấu kiện 48

3.3.2.2 Định nghĩa vật liệu và thuộc tính mặt cắt 50

3.3.2.3 Tạo mô hình hoàn chỉnh 50

3.3.2.4 Điều kiện biên và tải trọng 51

3.3.3 Phân tích các kết quả thu được từ phần mềm Abaqus CAE 51

3.3.3.1 Lựa chọn kích thước lưới chia (Mesh size) 51

3.3.3.2 Lựa chọn hướng hoạt tải 53

3.3.3.3 Phân bố ứng suất theo phương dọc và ngang tại những vị trí nguy hiểm 55

3.3.3.4 So sánh sự tập trung ứng suất giữa khối rỗng hình chữ nhật vát góc và bo tròn góc 68

3.3.3.5 Ảnh hưởng của chiều cao khối rỗng có dạng hình chữ nhật đến sự phân bố ứng suất dọc và ngang 72

3.3.3.6 Ảnh hưởng của chiều rộng khối rỗng có dạng hình chữ nhật đến sự phân bố ứng suất dọc và ngang 77

KẾT LUẬN VÀ KIẾN NGHỊ 81

1 Kết luận 81

2 Kiến nghị 81

Trang 11

HV: Phan Lê Thanh MSHV: 1770096

DANH MỤC CÁC BẢNG

Bảng 1.1 Độ cứng của bản sàn dạng khối rỗng (Gee-Cheol Kim, Joo-Won Kang) 15

Bảng 1.2 So sánh tải trọng và chuyển vị cuối cùng giữa thực nghiệm và ANSYS 21

Bảng 2.1 Hệ số độ cứng uốn (Kim và Kang, 2012) 25

Bảng 2.2 Các hệ số độ cứng xoắn cho bản sàn khối rỗng (Ward & Cassell, 1974)26 Bảng 2.3 Tỉ số độ cứng chống xoắn giữa bản khối rỗng, j v-slab , và bản đặc, j slab 34

Bảng 3.1 Bảng U 3-max theo mesh size đối với lưới chia không đều 52

Bảng 3.2 Bảng U 3-max theo các trường hợp xếp tải 54

Bảng 3.3 Bảng các thông số hình dạng khối rỗng 55

Bảng 3.4 Tổng hợp S 22 và U 3-max tại mặt cắt 2-2 60

Bảng 3.5 Bảng khối lượng và mô men quán tính bản theo chiều cao khối rỗng 72

Bảng 3.6 Ứng suất S 22 tại ba vị trí cần xem xét 76

Bảng 3.7.Bảng so sánh ứng suất S 22 77

Bảng 3.8 Bảng khối lượng và mô men quán tính bản theo chiều rộng khối rỗng 77

DANH MỤC CÁC HÌNH Hình 1.1 Cấu tạo của một cầu bản rỗng (Scollard & Bartlett, 2003) 3

Hình 1.2 Một dạng cầu với hai cầu bản có khối rỗng ghép với nhau 4

Hình 1.3 Ứng dụng kỹ thuật bản sàn bong bóng trong cầu cong 5

Hình 1.4 Mặt cắt ngang tính toán đại diện cho tấm bê tông lõi rỗng 6

Hình 1.5 Cấu tạo của cầu bản dạng bản rỗng (Warrick de Kock) 7

Hình 1.6 Sự phân bố ứng suất dọc theo mặt cắt ngang tại giữa bản 8

Hình 1.7 Sự phân bố ứng suất ngang 8

Hình 1.8 Phân bố ứng suất trên mặt cắt ngang tại giữa nhịp 9

Hình 1.9 Phân bố chuyển vị theo mặt cắt ngang giữa nhịp cho tấm S1/6 với P=15KN 12

Hình 1.10 Phân bố hệ số biến dạng theo mặt cắt ngang giữa nhịp cho tấm S1/6 với P=15KN 12

Trang 12

HV: Phan Lê Thanh MSHV: 1770096

Hình 1.11 Phân bố chuyển vị theo mặt cắt ngang giữa nhịp cho tấm S1/6 với các

cấp tải khác nhau 12

Hình 1.12 Phân bố hệ số biến dạng theo mặt cắt ngang giữa nhịp cho tấm S1/6 với P=30KN 12

Hình 1.13 Đường cong tải trọng – chuyển vị của điểm bên dưới tải trọng 13

Hình 1.14 Hệ số phân bố biến dạng theo tải trọng cho tấm S1/6 13

Hình 1.15 Biến dạng trong cốt thép ngang của tấm S1/6 14

Hình 1.16 Các thông số của mô hình bản rỗng (Gee-Cheol Kim, Joo-Won Kang) 15 Hình 1.17 Chuyển vị tĩnh do trọng lượng bản thân theo chiều dọc (Gee-Cheol Kim, Joo-Won Kang) 16

Hình 1.18 Chuyển vị tĩnh do trọng lượng bản thân theo chiều ngang (Gee-Cheol Kim, Joo-Won Kang) 16

Hình 1.19 Mặt cắt ngang của bản: (a) bản khối rỗng thực tế; (b) bản lý tưởng hóa không có khối rỗng (Leslie G Jaeger, Baidar Bakht, và Gamil Tadros) 18

Hình 1.20 Một ô đơn trong bản được cắt ra: (a) ô với lỗ rỗng tròn; (b) ô không có lỗ rỗng (Leslie G Jaeger, Baidar Bakht, và Gamil Tadros) 19

Hình 1.21 Toàn đồ để tra t e (Leslie G Jaeger, Baidar Bakht, và Gamil Tadros) 20

Hình 1.22 Mặt cắt chữ T của sàn BubbleDeck dùng những quả bóng hình cầu và hình elip rỗng 21

Hình 2.1 Độ cong của một tấm trong các mặt phẳng song song với các mặt phẳng xz và yz 23

Hình 2.2 Vị trí của khối rỗng trong phần tử bê tông cốt thép chịu uốn (Bokil, 2010) 27

Hình 2.3 Quan hệ giữa mô men quán tính và tỉ số đường kính khối rỗng với bề dày bản sàn 28

Hình 2.4 Ảnh hưởng biến dạng riêng của khối rỗng 29

Hình 2.5 Mặt cắt ngang điển hình của cầu dạng bản rỗng 31

Hình 2.6 Ứng xử của cầu bản dạng hộp: 32

Hình 2.7 Một đoạn mặt cắt ngang cầu bản dạng khối rỗng 33

Trang 13

HV: Phan Lê Thanh MSHV: 1770096

Hình 2.8 Mặt cắt dọc cầu bản dạng khối rỗng 34

Hình 2.9 Mặt cắt ngang cầu bản dạng khối rỗng 35

Hình 2.10 Chia lưới cho mô hình Grillage 35

Hình 2.11 Thành phần phương dọc bản dạng khối rỗng 36

Hình 2.12 Ví dụ về phần tử solid với các vị trí nút khác nhau 38

Hình 3.1 Các loại hình dạng khối rỗng 40

Hình 3.2 Mặt bằng cầu kết nối khu dân cư Him Lam 42

Hình 3.3 Mặt bằng nhịp chính cầu kết nối khu dân cư Him Lam 43

Hình 3.4 Mặt cắt ngang nhịp chính cầu kết nối khu dân cư Him Lam 44

Hình 3.5 Các trường hợp bố trí hoạt tải 45

Hình 3.6 Sơ đồ bố trí gối cầu nhịp chính cầu kết nối khu dân cư Him Lam 46

Hình 3.7 Loại phần tử tứ diện bậc 2 với 10 nút C3D10 47

Hình 3.8 Biểu đồ thể hiện kết quả hội tụ tại vô cùng 48

Hình 3.9 Kích thước mặt bằng bản sàn cầu (chiều cao 1,45m) 49

Hình 3.10 Hình dáng các loại khối rỗng 49

Hình 3.11 Hình dáng và kích thước thân trụ 49

Hình 3.12 Hình dáng và kích thước bản thép đệm gối 50

Hình 3.13 Hệ trục tọa độ của bài toán 50

Hình 3.14 Mô phỏng điều kiện biên và tải trọng 51

Hình 3.15 Biểu đồ U 3-max theo tổng số phần tử đối với lưới chia không đều 52

Hình 3.16 Chuyển vị U 3 đối với trường hợp xếp tải 1 (4 làn HL-93 nhánh a) 53

Hình 3.17 Chuyển vị U 3 đối với trường hợp xếp tải 2 (4 làn HL-93 nhánh b) 53

Hình 3.18 Chuyển vị U 3 đối với trường hợp xếp tải 3 (4 làn HL-93 nhánh c) 54

Hình 3.19 Chuyển vị U 3 đối với trường hợp xếp tải 4 (6 làn HL-93 toàn cầu) 54

Hình 3.20 Các vị trí nguy hiểm dùng để phân tích sự phân bố ứng suất 55

Hình 3.21 Phân bố ƯS S 11 của bản rỗng 56

Hình 3.22 Phân bố ƯS S 11 tại mặt cắt 2-2 của bản rỗng 57

Hình 3.23 Phân bố ƯS S 22 của bản rỗng 57

Hình 3.24 Mô hình Submodel cho vị trí mặt cắt 2-2 của bản khối rỗng 58

Trang 14

HV: Phan Lê Thanh MSHV: 1770096

Hình 3.25 Chia lưới cho mô hình Submodel 58

Hình 3.26 Ứng suất S 22 tại mặt cắt 2-2 cho khối rỗng hình tròn 59

Hình 3.27 Ứng suất S 22 tại mặt cắt 2-2 cho khối rỗng hình chữ nhật 59

Hình 3.28 Ứng suất S 22 tại mặt cắt 2-2 cho khối rỗng hình elip 59

Hình 3.29 Ứng suất S 22 tại mặt cắt 2-2 cho khối rỗng hình capsule 59

Hình 3.30 Phân bố ƯS S 22 cho thớ biên trên tại mặt cắt 2-2 61

Hình 3.31 Phân bố ƯS S 22 cho thớ biên dưới mặt cắt 2-2 theo hình dạng khối rỗng 61

Hình 3.32 Vị trí ba mặt cắt để xét phân bố ứng suất tại vùng chuyển tiếp 62

Hình 3.33 Phân bố ƯS S 22 tại vùng chuyển tiếp của bản với khối rỗng hình tròn 63

Hình 3.34 Phân bố ƯS S 22 tại vùng chuyển tiếp của bản với khối rỗng hình chữ nhật 63

Hình 3.35 Phân bố ƯS S 22 tại vùng chuyển tiếp của bản với khối rỗng hình elip 64

Hình 3.36 Phân bố ƯS S 22 tại vùng chuyển tiếp của bản với khối rỗng hình capsule 64

Hình 3.37 Phân bố ƯS S 22 cho thớ biên trên tại mặt cắt 1-1 theo các loại hình dạng khối rỗng 65

Hình 3.38 Phân bố ƯS S 22 cho thớ biên dưới tại mặt cắt 1-1 theo các loại hình dạng khối rỗng 66

Hình 3.39 Phân bố ƯS S 11 cho thớ biên trên tại mặt cắt 4-4 theo các loại hình dạng khối rỗng 67

Hình 3.40 Phân bố ƯS S 11 cho thớ biên dưới tại mặt cắt 4-4 theo các loại hình dạng khối rỗng 67

Hình 3.41 Phân bố ƯS S Mises của bản khối rỗng 69

Hình 3.42 Mô hình Submodel cho bản khối rỗng hình chữ nhật 69

Hình 3.43 Vị trí thớ biên dưới bản nắp và thớ biên trên bản đáy dùng để khảo sát sự phân bố ứng suất S Mises 70

Hình 3.44 Chuyển vị U 3 cho trường hợp khối rỗng hình chữ nhật vát góc 70

Hình 3.45 Chuyển vị U 3 cho trường hợp khối rỗng hình chữ nhật bo tròn góc 70

Trang 15

HV: Phan Lê Thanh MSHV: 1770096

Trang 16

HV: Phan Lê Thanh MSHV: 1770096

MỞ ĐẦU

1 Lý do chọn đề tài

Việc kết hợp các khối rỗng vào trong cầu bản tạo nhiều ưu thế hơn so với cầu bản bê tông đặc như là giảm khối lượng bê tông từ đó giảm chi phí xây dựng, giảm trọng lượng bản thân tức là giảm tĩnh tải từ đó có thể vượt được nhịp dài hơn, giảm tải trọng lên mố trụ, mà không làm giảm đáng kể sức chịu tải của nó Tuy nhiên các khối rỗng nằm trong cầu bản đã làm phức tạp hóa việc phân tích kết cấu cho loại cầu này Theo nghiên cứu tổng quan, chưa có nghiên cứu về ứng xử của cầu bản khác nhau như thế nào khi thay đổi hình dạng khối rỗng Vì vậy cần nghiên cứu xem các hình dạng khối rỗng này có ảnh hưởng đến ứng xử của cầu bản ra sao và giữa chúng

có mối liên hệ như thế nào là việc làm cần thiết

2 Mục đích nghiên cứu

Đề tài tập trung nghiên cứu vào sự khác nhau trong ứng xử cầu bản rỗng (voided slab bridge) khi thay đổi hình dạng và kích thước khối rỗng, đánh giá ưu nhược điểm của mỗi loại khối rỗng, tìm ra hình dạng & kích thước khối rỗng hợp lý cho một công trình cụ thể Các số liệu nghiên cứu được thực hiện trên phần cầu kết nối Khu dân cư Him Lam qua rạch Bàng và có thể tham khảo để thiết kế cho các cầu có kết cấu tương

tự sau này

3 Đối tượng và phạm vi nghiên cứu

a Đối tượng nghiên cứu

Đối tượng nghiên cứu của đề tài này là cầu bản dạng bản rỗng với các loại hình dạng và kích thước khối rỗng khác nhau, áp dụng cho phần cầu kết nối Khu dân cư Him Lam qua rạch Bàng, phường Tân Phong, quận 7, tp Hồ Chí Minh

b Phạm vi nghiên cứu

+ Nghiên cứu tổng quan về lý thuyết tính toán kết cấu đối với cầu bản dạng bản rỗng

Trang 17

HV: Phan Lê Thanh MSHV: 1770096

+ Xác định sự khác nhau trong ứng xử cầu bản dạng bản rỗng khi thay đổi hình dạng và kích thước khối rỗng

+ Phân tích tổng thể toàn bộ kết cấu và cục bộ các vị trí dự đoán ứng suất và chuyển vị lớn nhằm chọn ra hình dạng và kích thước khối rỗng hợp lý

4 Phương pháp nghiên cứu

Phương pháp nghiên cứu của đề tài là kết hợp giữa nghiên cứu tổng quan về lý thuyết, nghiên cứu mô phỏng bằng phần mềm để giải quyết các nội dung của đề tài

5 Ý nghĩa khoa học và tính thực tiễn của đề tài

Góp phần nghiên cứu thêm các dạng mặt cắt khác nhau cho loại cầu dạng bản rỗng cũng như làm rõ thêm ảnh hưởng của khối rỗng đến ứng xử của cầu bản rỗng nhằm cải tiến thiết kế cho dạng cầu này trong tương lai, đồng thời tiếp bước hoàn thiện các thí nghiệm mà các nghiên cứu trước chưa đề cập đến

6 Nội dung đề tài

Nội dung đề tài gồm: phần mở đầu, 3 chương, phần kết luận và kiến nghị, tài liệu tham khảo và phần phụ lục

+ PHẦN MỞ ĐẦU: Nêu lý do chọn đề tài, mục đích nghiên cứu, đối tượng và phạm vi nghiên cứu, phương pháp nghiên cứu, ý nghĩa đề tài

+ Chương 1: Giới thiệu đối tượng nghiên cứu, tổng quan về tình hình nghiên cứu trong nước và trên thế giới về vấn đề nghiên cứu, kết luận lý do thực hiện + Chương 2: Cơ sở lý thuyết phục vụ cho việc phân tích kết cấu của cầu bản dạng khối rỗng

+ Chương 3: Mô phỏng kết cấu cầu kết nối Khu dân cư Him Lam qua rạch Bàng bằng phần mềm PTHH ABAQUS Phân tích kết quả và so sánh

+ PHẦN KẾT LUẬN VÀ KIẾN NGHỊ: Nhận xét, đánh giá và rút ra kết luận

về sự khác nhau trong ứng xử của cầu bản dạng bản rỗng đối với các hình dạng khối rỗng khác nhau Đồng thời đề nghị định hướng nghiên cứu tiếp sau nghiên cứu này

Trang 18

HV: Phan Lê Thanh MSHV: 1770096

CHƯƠNG 1: TỔNG QUAN VỀ LĨNH VỰC NGHIÊN CỨU

1.1 Giới thiệu chung về cầu bản có khối rỗng

Cầu bê tông cốt thép có thể có nhiều hình thức khác nhau ví dụ như dạng bản đặc, dầm liên hợp bản, bản mỏng kết hợp sườn và bản rỗng Dạng bản đặc thường hay được sử dụng do tính đơn giản, dễ đúc tại chỗ và có khả năng phân bố tải trọng tập trung theo hai phương Nó mang lại hiệu quả đối với cầu có chiều dài nhịp dưới 12m Tuy nhiên đối với nhịp dài hơn, dạng bản đặc này cho tĩnh tải khá lớn và nó không mang lại hiệu quả kinh tế Để khắc phục vấn đề này, người ta chuyển sang sử dụng cầu dạng bản rỗng

Trong cầu bản rỗng, phần khối rỗng được thay thế cho phần bê tông chịu kéo nằm ở trọng tâm của bản, do đó làm giảm tĩnh tải và tăng hiệu quả làm việc của bản khi chịu uốn Các khối rỗng trong cầu bản thường có dạng hình tròn hoặc vuông và được bố trí theo hướng dọc cầu Khối rỗng hình tròn thường được sử dụng nhiều hơn

vì nó dễ thi công và phần bê tông bên dưới hình tròn dễ đầm chặt hơn khi đúc bản cầu

Hình 1.1 Cấu tạo của một cầu bản rỗng (Scollard & Bartlett, 2003)

Trang 19

HV: Phan Lê Thanh MSHV: 1770096

Một bản rỗng thường nhẹ hơn từ 30% đến 50% so với bản đặc có cùng chiều cao Việc giảm tĩnh tải cho phép các cầu bản rỗng có thể đạt chiều dài nhịp 15m trong khi các cầu bản đặc chỉ đạt chiều dài nhịp là 10m Cầu bản rỗng dự ứng lực có thể

đạt chiều dài nhịp lên đến 25m (theo Biswas, 1986)

Các mô hình lý thuyết cho thấy độ bền cắt của bản rỗng nằm trong khoảng 60% đến 80% so với bản đặc cùng chiều cao, còn sức kháng uốn giảm không nhiều (theo

Lai, 2010) Điều này có thể được khắc phục bằng cách không tạo khối rỗng tại các vị

trí có lực cắt lớn như tại gối cầu nhằm tạo thành dầm ngang tại vị trí đó

1.2 Các hình thức của bản khối rỗng

Với nguyên tắc chung là giảm tĩnh tải của bản (nhưng sức kháng giảm càng ít càng tốt), nhiều hình dạng khác nhau của bản rỗng đã được nghiên cứu Những hình thức phổ biến của bản rỗng là cầu bản có khối rỗng (voided slab bridge decks), sàn bong bóng (Bubble Deck slabs) và tấm bê tông lõi rỗng (Hollow-core slabs)

1.2.1 Cầu bản có khối rỗng (voided slab bridge decks)

Cầu bản có khối rỗng bao gồm các hình trụ rỗng đặt dọc theo chiều dài cầu bản Chiều cao khối rỗng tùy thuộc vào chiều cao của cầu bản và có thể đạt 80% chiều cao cầu bản Khoảng cách ngang giữa các khối rỗng thông thường từ 750mm đến 3000mm

Hình 1.2 Một dạng cầu với hai cầu bản có khối rỗng ghép với nhau

Trang 20

HV: Phan Lê Thanh MSHV: 1770096

Cầu bản có khối rỗng thường hay gặp phải vấn đề trong quá trình đổ bê tông do lực đẩy nổi gây ra Khối rỗng phải có đủ độ cứng, độ kín và được neo chặt trước khi

đổ bê tông Một khó khăn nữa khi đổ bê tông cầu bản có khối rỗng là việc làm đầy

và đầm chặt bê tông bên dưới khối rỗng

Loại vật liệu thường hay được sử dụng làm công cụ tạo khối rỗng là polystyrene, polypropylene tái chế, giấy tái chế kết hợp chất kết dính…

1.2.2 Cầu bản dạng sàn bong bóng (Bubble Deck slabs)

Bản sàn bong bóng bao gồm các khối bong bóng tròn hoặc elip rỗng bằng nhựa

bố trí trong bê tông tạo thành mạng lưới các khối rỗng bên trong bản sàn Chúng là những khối rời rạc trong một mảng hai phương vì vậy chúng làm giảm không nhiều

về cường độ cũng như độ cứng của bản sàn Các khối bong bóng này có thể dễ dàng

bố trí phù hợp với bố cục không đều hoặc cong từ đó cho phép linh hoạt hơn trong việc thiết kế kiểu dáng bản sàn

Hình 1.3 Ứng dụng kỹ thuật bản sàn bong bóng trong cầu cong

Trang 21

HV: Phan Lê Thanh MSHV: 1770096

Các nghiên cứu gần đây đã chỉ ra, bản sàn bong bóng cho sức kháng uốn bằng 87% trong khi lại chỉ sử dụng 66% khối lượng bê tông so với bản sàn đặc tương ứng

(theo Bokil, 2010)

1.2.3 Tấm bê tông lõi rỗng (Hollow-core slabs)

Tấm bê tông lõi rỗng là các tấm bê tông dự ứng lực được chế tạo sẵn có chứa các khối rỗng hình trụ kéo dài suốt chiều dài tấm Tấm bê tông lõi rỗng đầu tiên được

đề xuất từ những năm 1950 Mỗi tấm thường được đúc sẵn với bề rộng 1.2m Chiều cao tấm thông thường khoảng 150mm đến 400mm tùy thuộc vào chiều dài nhịp, có thể đạt nhịp lên tới 16m

Hình 1.4 Mặt cắt ngang tính toán đại diện cho tấm bê tông lõi rỗng

1.3 Tình hình nghiên cứu trên thế giới

1.3.1 Áp dụng lý thuyết tấm trực hướng

Để xác minh sự phù hợp của việc sử dụng tấm trực hướng cho việc lý tưởng

hóa, Warrick de Kock đã thực hiện mô phỏng cầu bản trên Hình 1.5 bằng phần mềm

Trang 22

HV: Phan Lê Thanh MSHV: 1770096

Hình 1.5 Cấu tạo của cầu bản dạng bản rỗng (Warrick de Kock)

Warrick de Kock đã thực hiện các mô hình theo ba giai đoạn với cùng chiều dài

nhịp, chiều rộng và chiều cao cầu bản, chỉ thay đổi tỉ lệ đường kính khối rỗng và chiều cao bản Giai đoạn 1 thay đổi đường kính khối rỗng từ 0.5m đến 0.9m trong khi vẫn giữ nguyên khoảng cách giữa hai khối rỗng là 1.2m Giai đoạn 2 thay đổi khoảng cách giữa hai khối rỗng từ 900mm đến 2700mm trong khi vẫn giữ nguyên đường kính khối rỗng Ở hai giai đoạn này đều so sánh với mô hình bản đặc tương đương trên nguyên tắc giảm chiều cao bản đặc để có cùng mô men quán tính với bản rỗng Giai đoạn 3 là giai đoạn dùng các mô hình bản đặc tương đương ở hai giai đoạn trước để

so sánh các tham số tấm trực hướng mà các tác giả trước đây đã nêu ra để tính toán bản rỗng theo lý thuyết tấm trực hướng Sau đây là một số kết quả đạt được:

Trang 23

HV: Phan Lê Thanh MSHV: 1770096

Hình 1.6 Sự phân bố ứng suất dọc theo mặt cắt ngang tại giữa bản

cho (a) thớ chịu nén ngoài cùng và (b) thớ chịu kéo ngoài cùng

Hình 1.7 Sự phân bố ứng suất ngang cho (a) thớ chịu nén ngoài cùng và (b) thớ chịu kéo ngoài cùng của bản

Trang 24

HV: Phan Lê Thanh MSHV: 1770096

Hình 1.8 Phân bố ứng suất trên mặt cắt ngang tại giữa nhịp

cho (a) thớ chịu nén ngoài cùng và (b) thớ chịu kéo ngoài cùng

Tác giả đã đưa ra một số kết luận như sau:

Trang 25

HV: Phan Lê Thanh MSHV: 1770096

+ Việc thêm vào các khối rỗng gây ra các biến đổi lớn đối với phân bố ứng suất ngang so với hình dạng parabol điển hình, dẫn đến ứng suất ngang cực đại lớn ở các tấm đặc trên và dưới các khoảng trống (bản nắp và bản đáy) Những biến đổi này là

do tính chất biến dạng của mặt cắt Các khối rỗng cũng dẫn đến một hiệu ứng tăng đối với các ứng suất dọc

+ Sự kết hợp của các khối rỗng bắt đầu ảnh hưởng đến khả năng làm việc của bản sàn một khi tỷ lệ đường kính khối rỗng vượt quá 0.6 và tính trực hướng trở nên đáng kể Hiệu ứng tăng ứng suất của các khối rỗng cần được tính đến trong phân tích bản sàn khối rỗng khi tỷ lệ đường kính khối rỗng vượt quá 0.6

+ Sự gia tăng tỷ lệ đường kính khối rỗng dẫn đến sự gia tăng nhanh chóng trong

cả ứng suất dọc và ứng suất ngang Sự gia tăng ứng suất này vượt quá mức tăng ứng suất được dự đoán từ sự giảm mô men quán tính, điều này cho thấy có sự gia tăng biến dạng của mặt cắt ngang với sự gia tăng tỷ lệ đường kính khối rỗng

+ Có thể kết luận rằng tỷ lệ đường kính khối rỗng tối ưu là giữa 0.6 và 0.8 Phạm

vi tỷ lệ đường kính khối rỗng này cho phép đạt hiệu quả cao hơn do giảm tĩnh tải và

sử dụng vật liệu, không tạo ra ứng suất quá mức do biến dạng tại bản nắp và bản đáy của bản cầu khối rỗng

+ Khoảng cách khối rỗng tối ưu có thể được chọn để cho phép các bản sườn có kích thước vừa đủ giữa các khối rỗng Khoảng cách giữa các khối rỗng từ 1.2m đến 1.8m được khuyến nghị, tùy thuộc vào đường kính khối rỗng, để cho phép độ dày của bản sườn trong khoảng từ 250mm đến 500mm

+ Các mô hình tấm trực hướng được chứng minh là phù hợp tốt hơn các mô hình đẳng hướng khi dự đoán đúng ứng suất ngang vì đã xem xét đến sự hiện diện của các khối rỗng Khi tỉ lệ đường kính khối rỗng càng tăng thì mô hình tấm trực hướng càng tỏ ra ưu thế hơn

+ Các ứng suất ngang được dự đoán bới mô hình tấm trực hướng chỉ cho kết quả là các giá trị trung bình do khối rỗng gây ra vì không thể hiện được hình học tại

Trang 26

HV: Phan Lê Thanh MSHV: 1770096

các điểm cụ thể Do đó mô hình tấm trực hướng không thể dự đoán được ứng suất cực đại như các mô hình 3D

+ Phương pháp của Pama et al (1975) cho kết quả gần nhất với kết quả ứng suất ngang trung bình của mô hình 3D trong khi phương pháp của Sen et al (1994)

lại cho kết quả gần nhất với ứng suất ngang cực đại của mô hình 3D

+ Mô hình bản trực hướng giảm chiều cao cho kết quả ứng suất dọc thấp vì đã thay đổi vị trí trục trung hòa so với bản sàn rỗng Phương pháp sử dụng bản trực hướng giảm chiều cao kết hợp với hệ số nhân ứng suất được coi là phù hợp nhất để

lý tưởng hóa việc tính toán đặc điểm trực hướng cũng như biến dạng mặt cắt ngang của bản sàn rỗng

1.3.2 Ứng xử và phân tích bản sàn bê tông dạng bản rỗng

Nghiên cứu thực nghiệm do S.A.El-Behairy, M.I.Soliman và N.A.Fouad thực

hiện trên sáu tấm bê tông cốt thép dạng bản rỗng Mỗi tấm bê tông gồm 10 khối rỗng

và có kích thước là 1.04 x 1.80m, dày 12cm Các tấm này được đặt thành nhịp giản đơn với chiều dài nhịp 1.6m và mỗi tấm được kiểm tra hai lần, lần đầu đặt tải đơn tập trung tại giữa tấm sao cho tấm vẫn nằm trong miền đàn hồi, lần thứ hai tải được đặt lệch 0.3m so với điểm giữa của tấm Sáu tấm được chia thành hai nhóm với mỗi nhóm

ba tấm:

Nhóm 1: ba tấm có cốt thép phía dưới theo phương dọc là 10ɸ6mm/m và theo phương ngang là 10ɸ6mm/1.5m Ba tấm được ký hiệu là S1/6, S2/6, S3/6 và có đường kính khối rỗng lần lượt là 63mm, 50mm, 40mm Khoảng cách giữa tâm các khối rỗng

Trang 27

HV: Phan Lê Thanh MSHV: 1770096

Hình 1.9 Phân bố chuyển vị theo mặt

cắt ngang giữa nhịp cho tấm S1/6 với

P=15KN

Hình 1.10 Phân bố hệ số biến dạng theo mặt cắt ngang giữa nhịp cho tấm S1/6 với P=15KN

Hình 1.11 Phân bố chuyển vị theo mặt

cắt ngang giữa nhịp cho tấm S1/6 với các

cấp tải khác nhau

Hình 1.12 Phân bố hệ số biến dạng theo mặt cắt ngang giữa nhịp cho tấm S1/6 với P=30KN

Trang 28

HV: Phan Lê Thanh MSHV: 1770096

Hình 1.13 Đường cong tải trọng – chuyển vị của điểm bên dưới tải trọng

Hình 1.14 Hệ số phân bố biến dạng theo tải trọng cho tấm S1/6

Trang 29

HV: Phan Lê Thanh MSHV: 1770096

Hình 1.15 Biến dạng trong cốt thép ngang của tấm S1/6

Lý thuyết tấm trực hướng có thể được sử dụng để phân tích các tấm bê tông có khối rỗng hình tròn với điều kiện độ cứng của tấm được xác định

Giảm tỉ lệ đường kính khối rỗng – chiều dày tấm giúp cải thiện phân bố tải trọng trên các tấm dạng khối rỗng

Vết nứt bê tông do mô men dọc làm giảm sự tập trung ứng suất lên sườn chịu tải bên dưới, và do đó làm tăng tải trọng phân bố lên các sườn khác của tấm khối rỗng

Tỉ số giữa mô men ngang và mô men dọc sẽ tăng khi tỉ số giữa đường kính khối rỗng và chiều dày tấm tăng

1.3.3 Tính toán độ cứng của bản sàn dạng bản rỗng

Nghiên cứu do Gee-Cheol Kim, Joo-Won Kang tổng hợp và thực hiện Các tác

giả đã sử dụng những công thức tính toán theo lý thuyết tấm trực hướng của các nhà nghiên cứu khác để tính toán và so sánh các tham số độ cứng uốn và độ cứng xoắn

Sau đó Gee-Cheol Kim, Joo-Won Kang đã so sánh về độ võng tĩnh giữa phương pháp

Trang 30

HV: Phan Lê Thanh MSHV: 1770096

phần tử solid 3D và các phương pháp đơn giản hóa khác theo lý tuyết tấm trực hướng

Mô hình dùng để tính toán có dạng như Hình 1.16

Hình 1.16 Các thông số của mô hình bản rỗng (Gee-Cheol Kim, Joo-Won Kang)

Trong đó bản sàn khối rỗng được ngàm tại bốn cạnh, tải trọng tập trung được

áp dụng tại điểm trung tâm của bản Sau đây là một số kết quả đạt được:

Giá trị độ cứng của bản sàn khối rỗng theo các phương pháp khác nhau thể hiện

trong Bảng 1.1

Bảng 1.1 Độ cứng của bản sàn dạng khối rỗng (Gee-Cheol Kim, Joo-Won Kang)

Trang 31

HV: Phan Lê Thanh MSHV: 1770096

Độ võng tĩnh do trọng lượng bản thân theo chiều dọc và ngang thể hiện trong

các Hình 1.17 và Hình 1.18

Hình 1.17 Chuyển vị tĩnh do trọng lượng bản thân theo chiều dọc (Gee-Cheol Kim,

Joo-Won Kang)

Hình 1.18 Chuyển vị tĩnh do trọng lượng bản thân theo chiều ngang (Gee-Cheol

Kim, Joo-Won Kang)

Trang 32

HV: Phan Lê Thanh MSHV: 1770096

Độ võng theo các phân tích sử dụng phương pháp đơn giản hóa tạo ra kết quả tương tự với kết quả thu được bằng cách sử dụng phần tử solid 3D

Vì có vô số hình dạng và kích thước khối rỗng có thể có, nên việc lập Bảng tổng hợp các độ cứng là không thể Để xác định các tham số độ cứng của mặt cắt chung, phương pháp đơn giản hóa có thể được sử dụng Các phương pháp khác nhau đã được

sử dụng trong nhiều năm để phân tích các bản sàn khối rỗng Các tham số tấm tương

đương (D x , D y và D xy) có thể có ảnh hưởng đáng kể đến độ chính xác của phân tích

Do đó, các tham số này nên mô hình hóa các cấu trúc thực tế càng chặt chẽ càng tốt

mà không cần các phép tính phức tạp Các phương pháp dường như là thích hợp nhất

để tính toán các tham số tấm tương đương khác nhau Từ nghiên cứu này, mở ra các kết luận sau này có thể được rút ra liên quan đến việc lựa chọn độ cứng đàn hồi của các bản sàn khối rỗng hình tròn để sử dụng trong lý thuyết tấm trực hướng Với biểu thức đề nghị về độ uốn, khớp nối và độ cứng xoắn, độ võng và kết quả ứng suất trong các bản sàn khối rỗng hình tròn được dự đoán bởi lý thuyết tấm trực hướng cho thấy kết quả tốt với kết quả thu được bằng cách sử dụng phần tử solid 3D

1.3.4 Diện tích tương đương của các bản sàn khối rỗng

Nghiên cứu do Leslie G Jaeger, Baidar Bakht, và Gamil Tadros thực hiện Các

tác giả cho rằng để thuận tiện trong tính toán mất mát dự ứng lực ngang của bản sàn

bê tông dạng khối rỗng, cần ước tính độ dày của bản sàn bê tông đặc tương đương

Nghiên cứu căn cứ vào công thức tính bề dày bản sàn đặc tương đương t e được ban

hành trong ba phiên bản (1979, 1983 và 1992) của Tiêu chuẩn thiết kế cầu đường cao

tốc Ontario (OHBDC):

Các tham số trong công thức trên được diễn giải theo Hình 1.19:

Trang 33

HV: Phan Lê Thanh MSHV: 1770096

Hình 1.19 Mặt cắt ngang của bản: (a) bản khối rỗng thực tế; (b) bản lý tưởng hóa không có khối rỗng (Leslie G Jaeger, Baidar Bakht, và Gamil Tadros)

Giải pháp phân tích: Một ô đơn của bản sàn khối rỗng, có chiều dài đơn vị được

đo dọc theo hướng của nhịp bản sàn, được xem xét dưới tác động của lực nén đồng

tâm F; kết quả biến dạng trục là ∆ Bản sàn đặc tương đương có độ dày t e, cũng có

chiều dài đơn vị, chịu tác động tương tự của lực nén F Mục tiêu của giải pháp là tìm giá trị của t e để biến dạng dọc trục của bản sàn tương đương cũng là ∆

Trang 34

HV: Phan Lê Thanh MSHV: 1770096

Hình 1.20 Một ô đơn trong bản được cắt ra: (a) ô với lỗ rỗng tròn; (b) ô không có

lỗ rỗng (Leslie G Jaeger, Baidar Bakht, và Gamil Tadros)

Sau đây là kết quả đạt được:

Công thức xác định t e của OHBDC ở trên cho bản sàn khối rỗng hình tròn có

thể được thay thế bằng công thức tương đương đơn giản và chính xác hơn như sau:

Trong đó: a = tv / t ;  = t / Px

Còn đối với bản sàn khối rỗng hình chữ nhật thì công thức tính t e như sau:

Trong đó điều kiện áp dụng công thức là khối rỗng chữ nhật có chiều cao là t v

và chiều rộng là 0.785t v để khối chữ nhật có cùng diện tích với khối tròn đường kính

Trang 35

HV: Phan Lê Thanh MSHV: 1770096

Ngoài ra tỉ số t e /t có thể tra trực tiếp từ toán đồ trong Hình 1.21

1.4 Tình hình nghiên cứu trong nước

Theo kết quả tìm kiếm chưa tìm thấy tài liệu trong nước nghiên cứu về dạng bản rỗng cho công trình cầu Tuy nhiên trong lĩnh vực dân dụng thì có vài tài liệu nghiên cứu về sàn BubbleDeck cũng là một hình thức của sàn bản rỗng, có thể kể đến như:

1.4.1 Phân tích thực nghiệm của sàn BubbleDeck dùng khối rỗng hình elip

Nghiên cứu do các tác giả L.V Hai, V.D Hung, T.M Thi, T Nguyen-Thoi, N.T

Phuoc thực hiện Các tác giả đã tiến hành tính toán và thí nghiệm trên sàn BubbleDeck

chịu tải trọng tĩnh, xem xét các yếu tố ảnh hưởng đến ứng xử của sàn BubbleDeck như cường độ bê tông, hình dạng và kích thước của quả bóng nhựa, kích thước của lưới gia cố ở trên và dưới

Bằng cách thay đổi kích thước khối rỗng từ hình cầu thành hình elip, phân tích

lý thuyết, tiến hành thí nghiệm và mô hình hóa trên phần mềm PTHH ANSYS Các

Trang 36

HV: Phan Lê Thanh MSHV: 1770096

tác giả đã kết luận rằng việc sử dụng các quả bóng hình elip để tạo khối rỗng cho sàn BubbleDeck mang lại khả năng chịu tải tốt hơn so với khối hình cầu Và với ưu điểm của sàn BubbleDeck, trong tương lai nó có thể được sử dụng một cách hiệu quả cho các công trình xây dựng ở Việt Nam cũng như nhiều nước khác

Hình 1.22 Mặt cắt chữ T của sàn BubbleDeck dùng những quả bóng hình cầu và

hình elip rỗng

Bảng 1.2 So sánh tải trọng và chuyển vị cuối cùng giữa thực nghiệm và ANSYS

1.4.2 Nghiên cứu quy trình quản lý chất lượng thi công sàn BubbleDeck

Phan Văn Chưởng đã tìm hiểu công nghệ sàn BubbleDeck, công tác quản lý

chất lượng sàn BubbleDeck, cơ sở khoa học và cơ sở pháp lý quản lý chất lượng thi công sàn BubbleDeck để từ đó đề xuất quy trình quản lý chất lượng thi công sàn BubbleDeck phù hợp với điều kiện Việt Nam

Trang 37

HV: Phan Lê Thanh MSHV: 1770096

1.5 Nhận xét của chương

Tuy có nhiều nghiên cứu về bản sàn khối rỗng nhưng vẫn chưa có nghiên cứu nào thật sự nói về ảnh hưởng của hình dạng khối rỗng đến bản sàn khối rỗng, hình dạng khối rỗng nào hợp lý nhất xét về mặt giảm sự tập trung ứng suất của bản sàn nhưng vẫn đảm bảo tiết kiệm vật liệu

Các mô hình PTHH với sự trợ giúp từ các phần mềm như ABAQUS hay ANSYS tỏ ra khá hữu hiệu và giúp ích rất nhiều cho các nghiên cứu về bản sàn khối rỗng trong những năm gần đây Gần như đây là giải pháp tốt nhất trong thời điểm hiện tại

Trang 38

HV: Phan Lê Thanh MSHV: 1770096

CHƯƠNG 2: CƠ SỞ LÝ THUYẾT

2.1 Ứng xử kết cấu của bản sàn dạng khối rỗng

2.1.1 Lý thuyết tấm trực hướng

Lý thuyết tấm có thể được sử dụng để mô tả ứng xử kết cấu của các bản sàn dạng khối rỗng bằng cách tạo ra một sự thừa nhận cho ảnh hưởng của các khối rỗng Bằng cách xem xét một tấm đặc làm bằng vật liệu dị hướng có thể giải thích cho tác động của các khối rỗng theo từng hướng một cách độc lập, lý thuyết tấm có thể được

sử dụng để mô tả ứng xử kết cấu của các tấm trực hướng như các bản sàn dạng khối rỗng

Một tấm được định nghĩa là một thành phần cấu trúc có hai kích thước của nó lớn hơn đáng kể so với thứ ba, cụ thể là độ dày của nó Phân tích cấu trúc đàn hồi của một tấm được thực hiện bằng cách xem xét trạng thái ứng suất tại mặt phẳng giữa của

một tấm Tất cả các thành phần ứng suất được biểu thị theo chuyển vị w của tấm theo hướng độ dày z là hàm của hai tọa độ x và y trong mặt phẳng của tấm Các ứng suất

và biến dạng trong tấm có thể được tính bằng cách xem xét độ cong của tấm trong

các mặt phẳng song song với các mặt phẳng xz và yz, như trong hình bên dưới Bằng

cách xem xét độ cong của tấm, có thể thu được phương trình vi phân liên quan đến ứng suất và biến dạng trong tấm cho việc áp dụng mômen uốn và độ cứng uốn

Hình 2.1 Độ cong của một tấm trong các mặt phẳng song song với các mặt phẳng

xz và yz

Trang 39

HV: Phan Lê Thanh MSHV: 1770096

Độ cứng dọc của bản sàn khối rỗng có thể được tính theo cách thông thường vì mặt cắt ngang không đổi dọc theo chiều dài của cầu, và có thể được tính bằng cách trừ mô men quán tính của phần bị rỗng khỏi phần đặc trên cơ sở trục trung hòa ở giữa

bề dày bản Theo chiều ngang, cấu trúc hoạt động khá khác nhau do mặt cắt khác nhau dọc theo chiều rộng của cây cầu Tính chất khác nhau của mặt cắt ngang làm cho việc tính toán độ cứng ngang của bản sàn khối rỗng rất khó khăn

Theo Hambly (1991), các bản sàn có đường kính khối rỗng dưới 60% độ sâu

của bản sàn có thể được mô hình hóa thành đẳng hướng, trong đó độ cứng ngang được coi là bằng với độ cứng dọc Đối với các khối rỗng có đường kính lớn hơn, tính chất trực hướng của bản sàn nên được kết hợp trong phân tích, và độ cứng dọc và độ cứng ngang phải được tính toán độc lập bằng cách sử dụng độ cứng uốn được điều chỉnh theo hướng trực giao Các hình thức phân tích điển hình có liên quan đến các tấm trực hướng như các bản sàn khối rỗng bao gồm phân tích Grillage và phân tích phần tử hữu hạn bằng lý thuyết tấm trực hướng

Bản chất trực hướng của các bản sàn khối rỗng có thể được tính bằng cách xem xét một mô đun đàn hồi theo hướng trực giao vì sự hiện diện của các khối rỗng Do

đó, một tấm đặc có thể được sử dụng để mô hình một bản sàn khối rỗng với hiệu ứng của các khối rỗng được đưa vào mô hình thông qua các mô đun đàn hồi theo cả hai hướng Điều này dẫn đến một tấm đặc làm bằng vật liệu dị hướng Bề dày của tấm sau đó có thể được xác định và độ cứng uốn theo những hướng trực giao có thể được tính bằng cách tính các mô đun đàn hồi theo những hướng trực giao dựa trên bề dày

của tấm Do đó, một tấm đặc có độ dày t có thể được sử dụng để lý tưởng hóa phản

ứng uốn của bản sàn khối rỗng trực hướng bằng cách sử dụng vật liệu dị hướng với các mô đun đàn hồi khác nhau theo hướng dọc và ngang

Để xác định ứng xử của tấm trực hướng, cần xác định độ cứng uốn theo hướng

hiện bằng cách sử dụng các hệ số độ cứng theo các hướng liên quan Nếu một kết cấu được phân tích thông qua lý tưởng hóa tấm hai chiều, các hệ số độ cứng này có thể

Trang 40

HV: Phan Lê Thanh MSHV: 1770096

có ảnh hưởng đáng kể đến độ chính xác của phân tích Do đó, các hệ số độ cứng nên

mô hình hóa kết cấu thực tế càng chặt chẽ càng tốt mà không yêu cầu tính toán phức tạp Nhiều hệ số độ cứng uốn cong và độ cứng xoắn đã được đề xuất bởi các tác giả

khác nhau, được tóm tắt trong Bảng 2.1 Các hệ số này dựa trên các nghiên cứu sử

dụng các khối rỗng có kích thước và khoảng cách khác nhau, và do đó dựa trên các thuộc tính của bản sàn khối rỗng như đường kính khối rỗng, khoảng cách khối rỗng

và độ dày của bản sàn Các hệ số này có thể được sử dụng để xác định vật liệu dị hướng được sử dụng để phân tích các bản sàn khối rỗng có thể giải thích cho tính chất trực hướng của chúng

Bảng 2.1 Hệ số độ cứng uốn (Kim và Kang, 2012)

Where D x, D and D xy are the flexural rigiditie s per unit width (N l m 2), E i s the modulus of elasticity (GPa) ,

v is Poision s ratio , t is the thickne ss of th e voided slab (m) , t web is the width of the web s between the voids , D is the void diameter (m) , s is the distance between void centre s (m) , and n i s the number of voids

Các hệ số độ cứng xoắn được đề xuất bởi Bakht et al (1981b) và O'Brien &

Keogh (1999) có thể thu được bằng cách tính độ cứng xoắn của bản sàn đặc tương

Ngày đăng: 05/08/2024, 00:17

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN