%rQFҥQKÿyҧQKKѭӣQJKLӋXӭQJJyFFӫDWѭӡQJYk\FNJQJOjPJLҧPÿiQJNӇÿӃQJLiWUӏFKX\ӇQYӏKӕÿjRbài OXұQYăQ VӁSKkQWtFKYҩQÿӅQj\GӵDWUrQNӃWTXҧ mô hình 'KӕÿjRÿӗWKӏ[iFÿӏQKKӋVӕELӃQGҥQJSKҷQJ 365 GӵDWUrQ QJKLrQFӭX
Trang 2&iQEӝKѭӟQJGүQNKRDKӑF3*676Lê Bá Vinh
CáQEӝFKҩPQKұQ[pW3*6763KҥP9ăQ+QJ
&iQEӝFKҩPQKұQ[pW 767UҫQ9ăQ7XҭQ
/XұQYăQWKҥFVƭÿѭӧFEҧRYӋWҥL7UѭӡQJĈҥLKӑF%iFK.KRDĈ+4*7S+&0QJj\08 tháng 08 QăPWUӵFWX\ӃQ
&+Ӫ7ӎ&++Ӝ,ĈӖ1*
75ѬӢ1*.+2$
.Ӻ7+8Ұ7;Æ<'Ӵ1*
PGS.TS Võ Phán
Trang 4ĈҫX WLrQ W{L [LQ Ej\ Wӓ OzQJ ELӃW ѫQ FKkQ WKjQK ÿӃQ 3*676 /r %i 9LQK ÿm WұQ WuQKKѭӟQJGүQWUX\ӅQÿҥWNLӃQWKӭFNLQKQJKLӋPFKRW{LWURQJVXӕWWKӡLJLDQWKӵFKLӋQOXұQYăQ
;LQ FKkQ WKjQK FҧP ѫQ TXê WKҫ\ F{ KRD ӻ WKXұW ;k\ GӵQJ ÿһF ELӋW Oj FiF WKҫ\ F{WKXӝF%ӝ0{QĈӏD&ѫ1ӅQ0yQJÿmWұQWuQKKӛWUӧ YjWUX\ӅQÿҥWNLӃQWKӭFFKRW{LWURQJVXӕWTXiWUuQKKӑFWұSWҥLWUѭӡQJ
;LQ FҧP ѫQ FiF EҥQ Eq ÿӗQJ QJKLӋS WҥL Fѫ TXDQ QѫL W{L F{QJ WiF ÿm WUX\ӅQ ÿҥW NLQKQJKLӋPWKӵFWӃYjWҥRÿLӅXNLӋQWӕWQKҩWFKRW{LWURQJTXiWUuQKWKӵFKLӋQOXұQYăQ
TP HCM, ngày 08 tháng 08 QăP
/r9ăQ7Ut
Trang 57Ï07Ҳ7/8Ұ19Ă1
7KLӃWNӃYjWKLF{QJKӕÿjRVkXSKҧLÿҧPEҧRDQWRjQFKRFRQQJѭӡLFNJQJQKѭWUiQKҧQKKѭӣQJÿӃQFiFNKXYӵFOkQFұQ[XQJTXDQKKӕÿjRĈLVkXQJKLrQFӭXFiFK[iFÿӏQKP{KuQKWtQKWRiQYjWK{QJVӕÿҫXYjRFӫDP{KuQKOjYҩQÿӅTXDQWUӑQJWURQJWKLӃWNӃKӕÿjRVkX
+LӋQQD\ÿDVӕFiFÿѫQYӏWKLӃWNӃKӕÿjRFKӍWKӵFKLӋQEѭӟFWKLӃWNӃPjFKѭDFyqui WUuQK NLӇP WUD OҥL FiF Vӕ OLӋX FKX\ӇQ Yӏ WtQK WRiQ OLӋX Fy JLӕQJ YӟL WKӵF WӃ NK{QJĈLӅXQj\GүQÿӃQYLӋFOmQJSKtOӟQ FKRFKLSKtELӋQSKiSWKLF{QJFөWKӇOjJLiWUӏFKX\ӇQYӏWtQKWRiQWKѭӡQJ OӟQKѫQQKLӅXVRYӟLJLiWUӏFKX\ӇQYӏWKӵFWKӃ9uYұ\ÿӇEjLWRiQKӕÿjRӭQJ[ӱJҫQÿ~QJYӟLWKӵFWӃQKҩW³SKkQWtFKQJѭӧF´ EjLWRiQKӕÿjRVDXNKLWKLF{QJOjYLӋFOjPFҫQWKLӃWWӯÿycó FѫVӣÿӇKRjQWKLӋQOêWKX\ӃWWtQKWRiQSKөFYөFKRFiFKӕÿjRFyÿӏDFKҩWWѭѫQJWӵ
3KkQWtFKQJѭӧFEjLWRiQKӕÿjR là pKѭѫQJSKiSWLӃQKjQKWtQKWRiQFKҥ\OһSFiFWK{QJVӕÿҫXYjRFӫDP{KuQKÿӇFyÿѭӧFJLiWUӏWtQKWRiQJҫQÿ~QJYӟLJLiWUӏFKX\ӇQYӏWKӵFWӃQKҩW7KrPYjRÿyQKLӅXQJKLrQFӭXFKӍUDUҵQJJLiWUӏFKX\ӇQYӏFӫDP{KuQKKҫXQKѭSKөWKXӝFYjRP{KuQKSKkQWtFKYjKӋVӕP{ÿXQFӫDÿҩWQӅQ 9uYұ\OXұQYăQFKӫ\ӃX WұSWUXQJYjRYҩQÿӅQj\ÿӇ[iFÿӏQKWK{QJVӕÿҫXYjRKӧSOêWӯÿy KҥQFKӃYLӋF lãng phí
%rQFҥQKÿyҧQKKѭӣQJKLӋXӭQJJyFFӫDWѭӡQJYk\FNJQJOjPJLҧPÿiQJNӇÿӃQJLiWUӏFKX\ӇQYӏKӕÿjRbài OXұQYăQ VӁSKkQWtFKYҩQÿӅQj\GӵDWUrQNӃWTXҧ mô hình
'KӕÿjRÿӗWKӏ[iFÿӏQKKӋVӕELӃQGҥQJSKҷQJ365 GӵDWUrQ QJKLrQFӭXFӫD2XYjFӝQJVӵ[1] 7ӯÿyFyWKӇWtQKWRiQFKtQK[iFFKX\ӇQYӏFiFÿLӇPJyFKӕÿjREҵQJSKҫQPӅP'WURQJÿLӅXNLӋQÿӏD FKҩWӣTXұQ7S+ӗ&Kt0LQKPjNK{QJFҫQWӕQTXiQKLӅXWKӡLJLDQÿӇP{KuQKKӕÿjREҵQJSKҫQPӅP'
Trang 6well as avoid affecting the surrounding areas Deeply studying how to determine the calculation model and its input parameters is an important issue and determines the stability of the excavation
At present, the majority of excavation design units only carry out the design step without the process of checking the calculated displacement data to see if it is similar to reality This leads to a lot of waste in the cost of construction methods, in particular, the calculated displacement value is much larger than the actual displacement value Therefore, in order for the excavation problem to behave as closely as possible to reality, it is necessary to back analysis the calculation model after construction, thereby creating a theory to calculating excavations of similar geology
Back analysis the excavation model is a method to calculate and iteratively run the input parameters of the model to get the calculated value that approximates the actual displacement value In addition, many studies show that the displacement value of the model almost depends
on the analytical model and the soil's modulus coefficient, so the thesis will focus on this issue to determine the properly input parameters to avoid waste for construction method
Besides that, the corner effect of the diaphragm wall also significantly reduces the displacement of the diaphgram, this thesis will analyze this problem based on the calculation results of the 3D excavation model, the graph to calculate Plain Strain Ratio (PSR) base on the research of Ou et al [1] From there, it is possible to accurately calculate the displacement of the corner points of the excavation with 2D software in geological conditions in District 1, Ho Chi Minh City without taking too much time to model the excavation with 3D software
Trang 7/Ӡ,&$0Ĉ2$1
/XұQ YăQÿѭӧFKRjQWKjQKGѭӟLVӵKѭӟQJGүQYjSKrGX\ӋWFӫD3*676/r%i9LQK
&iFNӃWTXҧWURQJ/XұQYăQOjÿ~QJVӵWKұWYjFKѭDÿѭӧFF{QJEӕӣFiFQJKLrQFӭXNKiF 7{LKRjQWRjQFKӏXWUiFKQKLӋPYӅÿӅWjLPuQKWKӵFKLӋQ
73+&0QJj\WKiQJQăP
/r9ăQ7Ut
Trang 80Ө&/Ө&
1+,ӊ09Ө/8Ұ19Ă17+Ҥ&6Ƭ i
/Ӡ,&Ҧ0Ѫ1 ii
TÓ07Ҳ7/8Ұ19Ă1 iii
SUMMARY iv
/Ӡ,&$0Ĉ2$1 v
0Ө&/Ө& +Î1+Ҧ1+ viii
0Ө& /Ө&%Ҧ1*%,ӆ8 xi
0ӢĈҪ8 1
7Ë1+&Ҩ37+,ӂ7&Ӫ$Ĉӄ7¬, 1
0Ө&7,Ç81*+,Ç1&Ӭ8&Ӫ$Ĉӄ7¬, 1
1Ӝ,'81*1*+,Ç1&Ӭ8 1
3+ѬѪ1*3+È31*+,Ç1&Ӭ8 2
3+Ҥ09,1*+,Ç1&Ӭ8&Ӫ$Ĉӄ7¬, 2
é1*+Ƭ$.+2$+Ӑ&9¬*,È75ӎ7+Ӵ&7,ӈ1&Ӫ$Ĉӄ7¬, 2
&+ѬѪ1*7Ә1*48$19ӄĈӄ7¬, 3
&KX\ӇQYӏNKLWKLF{QJKӕÿjRVkX 3
3KkQWtFKQJѭӧFEjLWRiQKӕÿjR 4
+LӋXӭQJJyFFӫDKӕÿjR 6
1KұQ[pWFKѭѫQJ 11
&+ѬѪ1*&È&3+ѬѪ1*3+È37+,&Ð1*9¬3+Æ17Ë&+Ӭ1*;Ӱ+ӔĈ¬26Æ8 12
&iFSKѭѫQJSKiSWKLF{QJKӕÿjRVkX 12
ĈLӅXNLӋQOӵDFKӑQELӋQSKiSWKLF{QJ6HPL-7RSGRZQWKLF{QJKӕÿjRVkX 16
&iFKSKѭѫQJSKiSSKkQWtFKKӕÿjRVkX 17
&ѫVӣOêWKX\ӃWSKѭѫQJSKiSSKҫQWӱKӳXKҥQWURQJSKkQWtFKKӕÿjRVkXEҵQJSKҫQPӅP3OD[LV 21
&+ѬѪ1*3+Æ17Ë&+1*ѬӦ&&È&7+Ð1*6ӔĈҪ89¬2&+2&Ð1*75Î1+.+È&+ 6Ҥ1+,/7216¬,*Ñ1%Ҵ1*3+Ҫ10ӄ03/$;,6' 39
*LӟLWKLӋXF{QJWUuQK 39
+ӗVѫÿӏDFKҩWF{QJWUuQK 40
*LӟLWKLӋXELӋQSKiSWKLF{QJSKҫQKҫP 41
+ӗVѫTXDQWUҳFKӕÿjR 48
;iFÿӏQKWK{QJVӕÿҫXYjRFӫDP{KuQK 50
*LiWUӏFKX\ӇQYӏWKӵFWӃ 53
&iFKWLӃQKjQKEjLWRiQSKkQWtFKQJѭӧF 55
3KkQWtFKQJѭӧFEjLWRiQ'KӕÿjREҵQJFiFP{KuQK+DUGHQLQJ6RLOYj+DUGHQLQJ6RLO SmallStrain 56
&+ѬѪ1*3+Æ17Ë&+Ҧ1++ѬӢ1*+,ӊ8Ӭ1**Ï&7ѬӠ1*9Æ<Ĉӂ1Ӭ1*;Ӱ&Ӫ$ +ӔĈ¬2 69
7KLӃWOұSÿӗWKӏTXDQKӋJLӳDWӹVӕELӃQGҥQJSKҷQJYӟLNtFK WKѭӟFKӕÿjRGӵDWUrQQJKLrQFӭX FӫD2XYjFӝQJVӵ>@EҵQJSKҫQPӅP3OD[LV 69
7ѭѫQJTXDQKLӋXӭQJJyFJLӳDP{KuQKKӕÿjREҵQJSKҫQPӅP3OD[LV'YjNӃWTXҧWKӵFWӃ 79
Trang 9
GVHD: PGS.TS LÊ BÁ VINH +97+/Ç9Ă175Ë .ӂ7/8Ұ19¬.,ӂ11*+ӎ 89
.ӃWOXұQ 89
.LӃQQJKӏ 89
'$1+0Ө&1*+,Ç1&Ӭ8.+2$+Ӑ&Ĉ&Ð1*%Ӕ 90
'$1+0Ө&7¬,/,ӊ87+$0.+Ҧ2 91
3+Ө/Ө& 93
/é/ӎ&+75Ë&+1*$1* 117
Trang 10'$1+0Ө&+Î1+Ҧ1+
Hình 1.1 ± 6RViQKNӃWTXҧFKX\ӇQYӏWKӵFWӃYjWtQKWRiQEҵQJP{KuQK''WKHRQJKLrQFӭXFӫD
2XYjFӝQJVӵ>@ 7
Hình 1.2 ± ҦQKKѭӣQJKLӋXӭQJYzPNKLWKLF{QJWѭӡQJYk\ 8
Hình 1.3 ± 9QJӭQJ[ӱ ELӃQGҥQJSKҷQJYjELӃQGҥQJNK{QJJLDQWURQJKӕÿjR 8
Hình 1.4 ± 0{KuQKFiFWUѭӡQJKӧSWtQKWRiQNKLFKRFKLӅXUӝQJYjFKLӅXGjLWѭӡQJWKD\ÿәLÿӇ[iF ÿӏQKFiFWѭѫQJTXDQ 9
Hình 1.5 ± 7ѭѫQJTXDQJLӳDFKX\ӇQYӏQJDQJWѭӡQJYk\YjNKRҧQJFiFKWӯÿLӇPNKҧRViWÿӃQJyFKӕ ÿjRWKHRFiFWUѭӡQJKӧSWKD\ÿәLNtFKWKѭӟFKӕÿjRWKHRQJKLrQFӭXFӫD2XYjFӝQJVӵ>@ 9
Hình 1.6 ± 7ѭѫQJKӋVӕ365YjNKRҧQJFiFKFiFÿLӇPNKҧRViWÿӃQKӕÿjRWKHRFiFWUѭӡQJKӧSWKD\ ÿәLNtFKWKѭӟFKӕÿjR 10
Hình 1.7 ± 4XDQKӋJLӳDKӋVӕELӃQGҥQJSKҷQJ365 YӟLNtFKWKѭӟFKӕÿjR 10
Hình 1.8 ± ĈӗWKӏ[iFÿӏQKKӋVӕ365WKHRNӃWTXҧQJKLrQFӭX%LQ- &KHQ%HQVRQ+VLXQJYjFӝQJVӵ >@VRViQKYӟLNӃWTXҧQJKLrQFӭX2XYjFӝQJVӵ>@ 11
Hình 2.1 ± ĈjRÿҩWNK{QJFyFKҳQJLӳ 13
Hình 2.2 ± 7KLF{QJÿjRPӣFyGQJWѭӡQJFKҳQ 14
Hình 2.3 - 7KLF{QJÿjRPӣNӃWKӧSKӋWѭӡQJFKҳQYjJLҵQJFKӕQJQJDQJ 14
Hình 2.4 - 7KLF{QJKӋQHRÿҩW 15
Hình 2.5 - Thi công TopdoZQKRһF6HPL- Topdown 16
Hình 2.6 ± 0ӕLWѭѫQJTXDQJLӳDKӋVӕDQWRjQFKӕQJWUӗLÿi\ÿӝFӭQJFӫDWѭӡQJYk\YjKӋWKDQK FKӕQJÿӥYӟLFKX\ӇQYӏQJDQJOӟQQKҩWFӫDWѭӡQJYk\&ORXJKYj2¶5RXUNH>@) 17
Hình 2.7 ± 0ӕLWѭѫQJTXDQJLӳDFKX\ӇQYӏQJDQJOӟQQKҩWFӫDWѭӡQJYk\YӟLFKLӅXVkXKӕÿjR2XYj FiFÿӗQJVӵ>@ 18
Hình 2.8 ± TѭѫQJTXDQJLӳDFKLӅXVkXQJjPWѭӡQJYjFKX\ӇQYӏQJDQJFӫDWѭӡQJ&KDQJ<X2X>@ 18
Hình 2.9 ± &KX\ӇQYӏQJDQJFӫDWѭӡQJYk\NKLSKkQWtFKEҵQJKDLSKѭѫQJSKiSD WURQJWUѭӡQJKӧS là Diapharm ZDOOE OjWUѭӡQJKӧS6KHHWSLOH$.UDVLQVNL08UEDQ>@ 20
Hình 2.10 ± éWѭӣQJFѫEҧQFӫDP{KuQKÿjQKӗL± GҿROêWѭӣQJ0& 21
Hình 2.11 ± 0һWQJѭӥQJGҿR0&WURQJNK{QJJLDQӭQJVXҩWFKtQK 22
Hình 2.12 ± 4XDQKӋJLӳDӭQJVXҩWYjELӃQGҥQJWKHRKjP+\SHUEROLFWURQJWKtQJKLӋPQpQWUөF 23
Hình 2.13 ± &iFÿѭӡQJFRQJGҿRӭQJYӟLFiFJLiWUӏJp khác nhau 25
Hình 2.14 ± 0{ÿXQ(ref oed WURQJWKtQJKLӋPQpQFӕNӃW 25
Hình 2.15 ± +uQKGҥQJPһWGҿRWәQJTXiWWURQJNK{QJJLDQӭQJVXҩWFKtQKFӫDP{KuQK+6 26
Hình 2.16 ± 4XDQKӋJLӳDӭQJVXҩWYjELӃQGҥQJWKHRKjP+\SHUEROLFWURQJWKtQJKLӋPQpQWUөFÿӕL YӟLÿҩWFӕWKѭӡQJYjÿҩWFӕNӃWPҥQK 27
Hình 2.17 ± *LiWUӏP{ÿXQNKiQJFҳWFӫDÿҩWWURQJJLDLÿRҥQELӃQGҥQJQKӓ 27
Hình 2.18 ± *LiWUӏWKDPNKҧR9s WѭѫQJӭQJWӯQJORҥLÿҩWWKHR/DYHUJQH >@ 28
Hình 2.19 ± *LiWUӏWKDPNKҧR9s WѭѫQJӭQJWӯQJORҥLÿҩWWKHR)2:*