The vertical bearing structure system plays an important role in multi-storey building structure because Bear the load of floor beams transmitted to the foundation and soil Bear the ho
OVERVIEW OF THE BUILDING
Overview of building
Project name: HĐ TOWER APARTMENT
Construction location: 25 Huynh Van Nghe, Phu Loi Ward, Thu Dau Mot City, Binh Duong Province
Grade of works: Grade II works, fireproof grade II, 50 years design life
Figure 1 1 Location of land - neighboring works
Natural conditions of Binh Duong province
Binh Duong has a hot and humid climate, with a lot of rain and high humidity
It has a tropical monsoon climate, divided into two distinct rainy and dry seasons
The rainy season usually starts from May and lasts until the end of October Binh Duong rarely has storms, only affected by local storms
The average annual temperature in Binh Duong is 26–27 °C (79–81 °F), the highest is 39.3 °C (102.7 °F), but the lowest is 16–17 °C (61–63 °F) )
In the dry season, the annual average humidity is from 76–80%, the highest is 86% in September and the lowest at 66% in February The average annual rainfall is 1,800–2,000 mm, but the rainfall at the intersection of So Sao, Binh Duong regularly measures up to 2,113.3 mm
Relatively stable wind regime Binh Duong has 2 main wind directions: Southwest wind and Northeast wind The southwest wind is the prevailing wind
2 direction in the rainy season and the northeast wind direction is the prevailing wind direction in the dry season
The river flow changes with the seasons: The rainy season lasts from May to November, the dry season from November to May There are 3 large rivers, many canals in the riparian area, and numerous small streams.
Architectural solutions
Construction planning on 1 side, adjacent to the existing residential area, factory (1-3 floors) 1 side is adjacent to an alley of more than 4m wide, the back side is adjacent to empty land to plant trees, the front side is adjacent to street No 1 25
Scale of works according to architectural design includes:
1 basement: parking and water tank
1st floor: parking, mini shop, apartment lobby and community area
2nd floor: Gym, swimming pool, service center (SPA, daycare) and apartment 3rd floor to 16th floor: apartment
17th floor (roof floor): M&E and roof water tank (1 stainless steel water tank with a capacity of 20m3)
Traffic solutions
Horizontal traffic: move along the corridors.
Technical solutions
Electricity is supplied from the city's domestic electricity network with 3-phase
AC voltage of 380v/220v with frequency of 50Hz Ensure a stable power source for the entire project The electrical system is designed strictly according to Vietnamese standards for civil works to manage, repair, exploit, use safely and save energy.
Water system
Water supply for the building is taken from the water supply pipe on Huynh Van Nghe street into 04 30m3 stainless steel tanks containing clean water located at the 1st floor negative tank with a total capacity of about 120m³ The pipe system located in the basement room brings water from the reinforced concrete tank to the dome water tank, including 4 tanks of 20 m3 type (total capacity of 80 m3)
The domestic water supply system and the fire fighting water supply system are designed independently Water from the roof water tank is provided for the daily needs of the building such as domestic water and part of the water used for fire fighting of the building
Floor drainage: wastewater on the ground surface is mainly rain water, this flow is collected into the water collection manhole and then along the sewer line connected to the city drainage system
Rainwater drainage on slopes: The sloped ram area (the project has 1 ramp ram) will be arranged with a ditch to collect rain water, collect water to lead to the drainage ditch in the basement, then lead to manholes in the basement and be pumped up manholes to collect water outside the house, drained out with rainwater
Drainage of rainwater on the roof: rainwater from the roofs, terraces, and loggias is collected by hoppers, garbage bridges and exit through horizontal and vertical pipes to the 1st floor and then exit to the manhole outside the house The discharge water of the fire fighting system is also connected to the rainwater drainage system
Drainage of domestic wastewater: The indoor drainage system is drained by separate routes.
Ventilation system
The building is artificially ventilated in each room such as air conditioners, fans, through central ventilation and cooling systems The problem of ventilation in the basement is very noticeable with a strong suction and blowing system that helps to quickly absorb exhaust gases of cars and motorbikes.
Lighting system
Natural light test is presented in combination with artificial light Stairs and corridors are artificially illuminated by installations along the corridors.
Fire prevention and fighting system
Fire protection system is arranged throughout the building with smoke alarm sensor system and self-propelled fire fighting system throughout the building 120m3 fire extinguisher placed on the roof of the compost pile provides continuous system for 1 hour
STRUCTURAL SOLUTION
Vertical structural options
The vertical bearing structure system plays an important role in multi-storey building structure because
Bear the load of floor beams transmitted to the foundation and soil
Bear the horizontal load of wind and earth pressure acting on the building Linked with floor beams to form a rigid frame system, keeping the overall stability of the building, limiting shaking and displacement of the top of the work
The vertical bearing structure system includes the following types:
Basic structural system: Frame structure, load-bearing wall structure, hard core structure, tube structure
Combined structural system: Bracing frame structure, wall frame structure, core pipe structure and composite pipe structure
Special structural system: Structures with rigid floors, structures with beams for transmission, structures with interfloor bracing systems and structures with composite frames
The frame structure system has the advantage of being able to create large, flexible spaces with a clear working diagram However, this structural system has poor lateral load capacity (when the structure has a high height, or is located in an area with high earthquake intensity) This structural system is well used for buildings up to 15 stories high for buildings located in the zone 7 earthquake resistance calculation
The frame-wall, frame-core structure system dominates in the design of high- rise buildings thanks to its good horizontal bearing capacity However, this structural system requires more materials and construction is more complicated than the frame system
=> In this project, choose the frame - wall, core partition
The selection of a reasonable floor structure solution is a very important job, deciding the economy of the project The higher the building, the greater this load is on the columns of the lower floors and the foundation, which increases the cost of the foundation and columns, and increases the lateral load due to
5 earthquakes Therefore, it is preferable to choose a light floor solution to reduce vertical loads
Types of floor structures being widely used today include:
The structure consists of beams and floor slabs
+ Advantages: Simple calculation, widely used in our country with rich construction technology, so it is convenient for the selection of construction technology
+ Disadvantages: When the large aperture is exceeded, the beam height and the deflection of the floor slab are very large, leading to a large building height Does not save usable space
The structure consists of members directly on the column
+ Advantages: The height of the structure is small, so the height of the building can be reduced Space saving use Easily divide the space Faster than the beam floor plan The installation of formwork, formwork is also simple
+ Disadvantage: The columns are not linked together to form the frame, so the stiffness is smaller than the beam floor plan, so the horizontal bearing capacity of this option is worse than the beam floor plan The floor must have a large thickness to ensure the ability to withstand bending, puncture resistance and increase weight
+ Floor without pre-stressed beams:
The structure consists of members directly on the column The steel reinforcement is prestressed
+ Advantages: Reduces thickness, floor sag Reduce building height Divide the space into functional areas easily Space saving use
+ Disadvantage: Complicated calculation Need specialized equipment for construction
These panels are transported to the site and erected, then reinforced with concrete and then poured with concrete
+ Advantages: The ability to overcome large spans, fast construction time, saving materials
+ Disadvantages: Large component size, complicated calculation process
The Bubble Deck concrete floor slabs are flat, without beams, directly linked to the bearing system of columns and walls, using recycled plastic balls to replace concrete with little or no bearing in the middle grain of the floor
+ Advantages: Creates high flexibility in design, adapts to many types of premises Create a large space for interior design Increase the distance of the column grid and the ability to span span to 15m without prestressing, reducing the system of load-bearing walls and walls Save construction time and associated service costs
+ Disadvantages: New technology in Vietnam, calculation theory has not been popularized Reduced shear and bending resistance compared to conventional reinforced concrete floors of the same thickness
=> To facilitate the calculation of the structure, choose the floor beam system option
Principles of calculation of reinforced concrete structures
Calculation of the structure according to the bearing capacity is carried out based on the following conditions:
+ T – possible dangerous value of each internal force or due to the simultaneous action of several internal forces
+ Ttd – Bearing capacity of the section under consideration of the structure when the load-bearing section reaches the limit state
2.3.2 Principles for calculation of load
When designing, it is necessary to take into account the loads generated during use, construction, manufacturing, preservation and transportation of the work Two basic characteristics of the load when calculating are the standard load and the calculated load The calculated load is the product of the standard load and the load reliability factor
The load confidence factor calculates the probability of a possible adverse deviation of the load from the standard value and is determined depending on the limit states taken into account
+ When calculating strength and stability, the overload factor is taken according to Article 3.2; 4.2.2; 4.3.3; 4.4.2; 5.8; 6.3; 6.17 TCVN 2737 – 1995 “Loads and impacts”
+ When calculating the fatigue strength, take 1
+ When calculating according to deformation and displacement, it is taken as 1 According to the design standard TCVN 2737 - 1995 "Loads and impacts", loads are divided into permanent loads and temporary loads In addition, we need to consider special loads acting on specific high-rise buildings such as earthquakes a) Regular load (static load) b) Temporary load (live load) c) Special loads
Earthquake load Load due to explosion, fire Impact of ground deformation due to soil structure change
– Depending on the composition of the loads considered, the load combination includes the basic combination and a special combination
– The basic load combination includes permanent loads, long-term transient loads and short-term transients
– Special load combinations including permanent loads, long-term transient loads, probable short-term loads and one of the special loads
– Special combination of loads due to earthquakes, regardless of wind loads – Basic load combination is divided into two types: basic combination 1 and 2 – Basic combination 1 has a temporary load, the value of the temporary load is taken in its entirety
– Basic combination 2 with 2 or more temporary loads, the temporary load or internal force must be multiplied by the combination factor as follows:
+ Long-term and short-term temporary loads multiplied by a factor of 1 ÷ 0.9 + When a special load combination has a temporary load, the value of the temporary load is taken as a whole
+ The special load combination with two or more temporary loads, the value of the special load does not decrease Long-term temporary load (1 ÷ 0.95); short- term temporary load (1÷0.8)
+ When calculating the structure or foundation according to strength and stability with basic load combinations and especially in case of simultaneous application
8 of at least two temporary loads, the internal force calculation is allowed to take according to the instructions in Appendix A (TCVN 2737 - 1995)
2.3.4 Method of determine internal force
Currently, there are 3 methods of calculating the bearing system of multi-storey buildings, which are shown through the following 3 models:
Pure Continuity Model: Directly solve higher order differential equations Discrete Model: (Finite Element Method)
Discrete – Continuity Model: (Superblock method)
In this project, use the following software to analyze internal forces:
+ SAP2000 finite element software for general components analysis
+ ETABS V9.7.1 finite element software to analyze the working of the whole project
+ SAFE software V12.3.0: finite element software specializing in the analyzing plate members (floor slabs, rafters, )
LOADED
Preliminary selection
3.1.1 Preliminary selection of slab-beam
Calculated according to the largest slab tile size:
=> The floor slab is a 4-sided
The preliminary thickness of the slab according (TCVN 2737-1995):
+ D: coefficient depending on the load D = (0.8 – 1.4)
+ m: coefficient depending on the type of 4-sided manifest m = (40 – 45) + L: length of beam
The height is selected according to the formula: d d h = 1 l m The width is selected according to the formula: b= 0,3 ÷0,5 h
+ ld: span of the beam under consideration
It is necessary to design beam columns to ensure seismic resistance requirements:
The largest girder span is: l = 9.5m d
The swimming pool is located on the 2nd floor, choose the beam area around the pool is 300x1600mm
Preliminary selection of basement floor and basement wall
Basement floor thickness choose 300mm
Basement wall thickness choose 250mm
3.1.2 Preliminary selection of column sections
The column cross section is preliminarily selected according to the formula:
B40: Rb = 22(MPa) k: factor including horizontal load
+ qi: Load distribution on 1m 2 of floor i
+ Si: transmission area to the i-th floor
The q value is taken according to design experience The thickness of slab 20cm, take q = 15(kN)
Table 3 1: Preliminary selection of border column (C3)
Grade: B40 Rb " MPa Lx = 9.5 m Si = 30.875m 2 k =1.3
Rbt =1.4 MPa Ly = 7 m qi = 15 kN/m 2
Calculation results of the column
Table 3 2: Preliminary selection of the middle column (C4) (C5)
Grade: B40 Rb " MPa Lx1 = 9.5 m Lx2 = 9.5 m Si = 66.5 m 2 k =1.2
Rbt =1.4 MPa Ly1 = 7 m Ly2 = 7 m qi = 15 kN/m 2
Calculation results of the middle column
Table 3 3: Preliminary selection of the middle column (C6)
Grade: B40 Rb " MPa Lx1 = Lx2 = 7 m Si = 49m 2 k =1.2
Rbt =1.4 MPa Ly1 = Ly2 = 7 m qi = 15 kN/m 2
Calculation results of the middle column
3.1.3 Preliminary selection of wall section
Preliminary selection of the wall thickness of the hard core based on the height of the building, the number of floors and ensuring the provisions of Article 3.4.1 – TCXD 198:1997
Elevator walls must ensure seismic resistance
The elevator core thickness is calculated by formula: t
Do not change the section on the entire floor height because the building uses columns combined with load-bearing walls.
Loaded
Loads include 2 types: standard load and calculated load The calculated load is the product of the standard load and the load reliability factor This factor takes into account the possibility of an adverse deviation from the standard value and is subject to the limit states taken into account
The overload factor is taken according to Article 3.2; 4.2.2; 4.3.3; 4.4.2; 5.8; 6.3; 6.17 TCVN 2737 – 1995 when calculating durability and stability
When calculating the fatigue strength, take 1
When calculating according to deformation and displacement, take 1
According to the design standard TCVN 2737 – 1995 “Weight and impact”, the load is divided into penetrating load and temporary load
We need to consider special loads acting on high-rise buildings such as wind, earthquakes
Long term Load (Dead Load)
Static loads are loads that do not change during construction and use of the work
Temporary loads are loads that may not appear during some phases of construction and use There are two types: long-term transients and short-term transitions
Load due to explosion, fire
Wind load and earthquake load are calculated according to the Standard of Load and Impact TCVN 2737-1995
According to the standard, we have to calculate the dynamic component of the wind load for this project Because the building height is 58.1m > 40m
Active Load
3.3.1 Load acting on the floor
Table 3 4: Weight table of structural layers
Table 3 5: Load acting on the basement floor
(daN/m 3 ) n t (m) Load (daN/m 2 ) g tc g tt
Table 3 6: Load acting on the 1st floor parking
Load Layers Density daN/m 3 n t (m) Load (daN/m 2 ) g tc g tt
Table 3 7: Floor load of internal road yard 1st floor
Load Layers Density daN/m 3 n t (m) Load (daN/m 2 ) g tc g tt
Table 3 8: Floor load of shop house, community activities on the 1 st and 2 nd
Load Layers Density daN/m 3 n t (m) Load (daN/m 2 ) g tc g tt
Load Layers Density daN/m 3 n t (m) Load (daN/m 2 ) g tc g tt
Load Layers Density daN/m 3 n t (m) Load (daN/m 2 ) g tc g tt
Table 3 11: Floor load of lobby, corridor, restaurant
(daN/m3) n t (m) Load (daN/m 2 ) g tc g tt
Table 3 12: Load of toilet floor, kitchen
(daN/m3) n t (m) Load (daN/m 2 ) g tc g tt
(daN/m3) n t (m) Load (daN/m 2 ) g tc g tt
Table 3 14: Yard slab of pool load
Table 3 15: Floor load of apartment, penthouse
(daN/m3) n t (m) Load (daN/m 2 ) g tc g tt
Table 3 1: Floor load of loyard, drying yard
(daN/m3) n t (m) Load (daN/m 2 ) g tc g tt
Principle of calculation of wind load components (according to section 2 TCXD 2737:1995)
Based on the terms stated in the load and impact standard TCVN 2737:1995 to get the value and calculation method of static wind
According to section 1.2 TC 229:1999, building height > 40m must take into account the dynamic component of wind load a Static wind
The static wind load is calculated according to TCVN 2737:1995 as follows: Features of the project
+ Construction site: Province/city: Binh Duong
+ Base elevation above the ground (m): 0.20
+ Peak height from the ground (m): 58.10
+ Wind pressure value W0 = 55 daN/m2 (See table 4 and section 6.4.1)
+ The floor plan of the base block is rectangular with dimensions of 44.5x100.6, the floor plan of the tower block is U-shaped, with short sides protruding about 12.9m, the total size is 34x90.1m
+ Rate Lt/B = 12.9/34 ~ 0.38 should refer to specialized wind documents for wind load plan with suitable aerodynamic coefficient (cannot use TCVN 2737:1995 on aerodynamic coefficient C for windward sides)
+ Refer to specialized China standard with the aerodynamic coefficients for U- shaped diagrams as follows:
Figure 3 2: The aerodynamic coeficient of the U-shaped block C Table 3 3: Table of static wind results in 2 directions
+ TCXDVN 229:1999 - Instructions for calculating the dynamic component of wind loads according to TCVN 2737:1995
Assign standard loads of dead and live loads to models with mass structures:
Table 3 4: Modal Periods And Frequencies
Case Mode Period Frequency CircFreq Eigenvalue sec cyc/sec rad/sec rad²/sec²
Table 3 5: Statistical table of oscillations
Frequency (fi) UX UY RZ SumUX SumUY SumRZ Check (s) (Hz)
Table 3 6: Calculation parameters base on TCVN 2737:1995
Parameter Symbol Value Unit Note
Wind pressure value Wo 55 kG/m 2 Table 4
The logarithmic decrement value δ 0.30 - Table 9
Vibration limit value of natural frequency fL 1.1 Hz Table 9
Table of dynamic wind load X
The mode of oscillation is of the form: 3 γ H χ(m) εi ξ i ѱ i
Table of dynamic wind load Y
The mode of oscillation is of the form: 1 γ H χ(m) εi ξ i ѱ i
1.20 3.3 58.1 0.06 1.6632 0.0008 Table 3 7: Spreadsheet of wind results in the X-direction
(kN) y ji y ji W Fj y ji 2 M j
Table 3 8:Spreadsheet of wind results in the Y-direction
(kN) y ji y ji W Fj y ji 2 M j W pjiY
Table 3 9: Wind load summary table
W Xj (kN) W Yj (kN) Mode 3 Mode 1
According to Article 3.2.2 and Article 4.3.3.3 of TCVN 9386: 2012
Table 3 10: Design earthquake spectrum worksheet
District: Thị xã Thủ Dầu Một
Reference base acceleration peak agR = 0.0813
Texture Type Frame system, composite system, double wall system
Plastic grade Plastic Grade Medium
The coefficient q of the vertical behavior qv = 1.50
Figure 3 4: Seismic load assignment in the X - direction
Figure 3 5: Seismic load assignment in the Y - direction
Load combination
Basic load combination: permanent loads, long-term transient loads and short- term transients
Special load combination: regular load, long-term transient load, probable short-term transient load and one of the special loads
Special load combinations that do not take into account wind loads
The basic load combination is divided into two types:
Basic combination 1 has a temporary load, the value of the temporary load is taken in its entirety
Basic combination 2 is a combination with 2 or more temporary loads, which must be multiplied by the combination factor as follows:
+ Long-term and short-term temporary loads multiplied by the factor 1 = 0.9 + For a special load combination with two or more temporary loads, the load is multiplied by the combination factor as follows: long-term temporary load multiplied by ѱ1 = 0.9; short-term temporary load: ѱ1 = 0.8;
Follow the instructions in Appendix A (TCVN 2737 – 1995) when calculating the structure or foundation for strength and stability with basic load combinations and especially in case of simultaneously bearing at least two temporary loads
FL SUPER DEAD 0 Complete static load
WALL SUPER DEAD 0 Wall Load
LL1 LIVE 0 Live Load ( LL < 2 kN/m 2 )
LL2 LIVE 0 Live Load ( LL ≥ 2 kN/m 2 )
WSX WIND 0 Static wind X-direction
WSY WIND 0 Static wind Y-direction
WDX WIND 0 Dynamic wind X-direction
WDY WIND 0 Dynamic wind Y-direction
DL 1(SWL)+1(FL)+1(WL) Dead load
LL 1(HT1)+1(HT2) Live Load
WINDX 1(WSX)+1(WDX) Standard Wind load X-direction
WINDY 1(WSY)+1(WDY) Standard Wind load Y-direction
WDX 1(WDX) Standard dynamic wind load X-direction WDY 1(WDY) Standard Wind load X-direction
DX 1(DX) Earthquake in the X-direction
DY 1(DY) Earthquake in the X-direction
Table 3 13: Table of load combinations THGH I
Combo DL LL WINDX WINDY EQX EQY Note
Table 3 14 Table of load combinations TTGH II
Combo DL LL WINDX WINDY EX EY Note
Combination of vertex displacement test
Table 3 29 Table of load combinations TTGH II
Combo DL LL WINDX WINDY EX EY Note
Test combination for dislocation displacement, P- Delta effect
Check lateral buckling
Hardness chek: The horizontal displacement at the top of the structure of a high-rise building calculated by the elastic method must satisfy the following conditions: f ≤ [fu]
Where: • f: Horizontal displacement at the top of the structure
• fu: Horizontal limit displacement at the top of the structure
Based on table M.4 Appendix M TCVN 5574-2018:
Test only effective combinations of wind loads with peak displacement testing Exporting the displacement results from the standard combination of Etab models:
Figure 3 6: Displacement of the top in the X direction
Figure 3 7: Displacement of the top in the Y direction
Table 3 15:Check the top displacement of the building
Story Combo Direction f (mm) [fu] (mm) Check
3.5.5 Check the relative horizontal displacement between floors
According to section 4.4.3.2 restricting relative horizontal displacement between floors, TCVN 9386:2012 stipulates: Except as otherwise specified in chapters 5 to
9 of this standard, the following restrictions should be observed:
For buildings with non-structural members of brittle material attached to the structure: drV ≤ 0.005h
+ dr: Relative design horizontal displacement between floors, determined as the difference of mean horizontal displacements ds at ceiling and floor of the floor under consideration calculated according to section 4.3.4 of this standard
+ v: Reduction factor taking into account the lower repetition period of the seismic action related to the damage limitation requirement
Note: Different values of v depending on seismic hazards and building importance are recommended as follows: v = 0.5 for levels of importance I and II and v = 0.4 for levels of importance important III and IV
Exporting the displacement results from the standard combination of Etab models, we get:
Figure 3 8: Relative horizontal displacement in the X direction
Figure 3 9: Relative horizontal displacement in the Y direction
Relative horizontal displacement test results
With grade II apartment buildings => Discount coefficient: v = 0.5
Check anti-subversion
According to TCVN 198 - 1997, reinforced concrete high-rise buildings with a ratio of height to width greater than 5 must check the anti-overturning ability of the building When calculating the anti-roll moment, the live load on the floors is taken into account 50%, and the dead load is taken 90%
The ratio of the moment causing overturning due to the horizontal load must satisfy the following conditions: MCL ≥ 1.5MGL
The building has a height H = 58.1 (m), Width B = 34(m)
No need to check the stability anti-subversion condition for the building
Check oscillation (peak acceleration)
For approximation (neglecting drag), the calculated value of the maximum peak acceleration will be calculated as follows: α = ω y = 2 2 2 y α
+ [α]: Allowed value of acceleration is equal to 150mm/s2
+ y: maximum movement in the direction (due to dynamic wind)
+ R: distance from center of mass to edge of building, R = 17m
Export period of oscillation from Etab:
STAIR CASE STRUCTURE
Geometric features
Figure 4 1: Stair case layout According to the architectural drawings, we have the size of the stairs:
+ Ladder length: L3 = 2.60 m + Height of floor: ht = 3.30 m
Preliminary determination of ladder thickness
– Basis for choosing beam size choose the stair beam size according to the formula:
Beam DCN size: bdxhd = (20x30)cm
Determine ladder load
Dead Load: including the weight of stair, the layer structure
The equivalent thickness of grade i in the direction of ladder slope
Table 4 2: Ladder Step Stair Load Result
According to the standard TCVN 2737-95 with stairs case taking P tc 00 daN/m 2 , overload coefficient n=1.2 tc 2 p = p n = 300 1.2 60 (daN/m )p
+ Weight of railings: g tc = 30 daN/m
+ Load railings on unit m 2 deck ladder: g tc = 25 daN/m 2
Calculation diagram
Ladder reinforcement design
Figure 4 5: Shear force diagram + Reinforcement calculations
We have: hb = 0.15m, cover concrete: a mm
Table 4 3: Results of reinforcement on part 1 of ladder
Calculation of reinforcement is the same as silde 1
Table 4 4: Results of reinforcement on part 2 of ladder
The specified deflection from the SAP2000 software in the inclined Span is : f = 0.003(m)
Figure 4 6: Displacement diagram Limit the permissible deflection: u
Calculation of rebar of the landing beam
Load including The weight of the beams gd = bd (hd - hs)n𝛾b = 0.2 × (0.3 - 0.15) × 1.1 × 2500 = 82.5 daN/m
Due to the transmission ladder, internal forces of supported at B and D distribute: q = gd + RB = 82.5 + 21.77 = 104.3 daN/m
Figure 4 7: Calculation diagram of resting landing beam
Table 4 5:Material parameter table of stairs case
Rb = 17 MPa Rs = 260 MPa 210 MPa
Rbt = 1.15 MPa Rsc = 210 MPa 170 MPa ξR 0.583 αR = 0.413
Maximun shear force:Q max 25.88 (kN)
Chose stirrup: ỉ8, asw = 50.27 mm 2 , n = 2 ssw = 150 mm b bt 0
2 2 4 bt 0 sw sw 3 db 3 sw
Vì 0.5γ R bh b bt 0 Q b 2.5γ R bh b bt
=> Do not calculate the stirrup for the beams
Figure 4 10: Deflection diagram The specified deflection from the SAP2000 software in the middle span is: f = 0.001(m)
FRAME STRUCTURE
Overview
Structural diagram: Beam and elevator core wall system bear horizontal force, column system bear vertical load The horizontal load will be transmitted to the frame in both directions, the simplicity of the frame diagram is unreasonable and does not reflect the work of the building
Use the software etabs 20 to analyze and calculate the structure for the project
Main Beam Design
5.2.1 Calculation model and beam internal force
Take the internal force of the beam through the typical floor force calculation model due to the load transmitted from the floor to the beam
Figure 5 3: Diagram of beam shear force
Table 5 1:Calculation material parameter table
Working condition coefficient of concrete γb 0.85 -
Compressive strength TTGH I Rb 17 Mpa
Tensile strength TTGH I Rbt 1.15 Mpa
Compressive strength TTGH II Rb,n,Rb,ser 22 Mpa Tensile strength TTGH II Rbt,n,Rbt,ser 1.75 Mpa
Rebar Steel CB400-V Value Unit
Tensile strength TTGH I Rs 350 Mpa
Compressive strength TTGH I Rsc 350 Mpa
Tensile strength TTGH II Rsw 310 Mpa
Content of structural steel μmin 0.1 %
The largest steel content μmax 2.15 %
Content of economic steel μkinh tế 0.6÷1.5 %
Consider at the position of beam with moment M = 183.11 (kN.m)
Calculating steel according to internal force results according to Etabs 20
Table 5 2: Spreadsheet of beam reinforcement in the X direction
Beam Label M 3 kN.m α m ξ m As mm2 μ
B1 Min -53.4627 0.023 0.024 230.712 0.115 2ỉ20 + 2ỉ25 1610.066 0.80 B2 Min -319.9753 0.140 0.151 1476.088 0.734 2ỉ20 + 2ỉ25 1610.066 0.80 B2 Max 183.110 0.114 0.122 1012.398 0.805 2ỉ20 + 2ỉ25 1610.066 0.80 B2 Min -365.1821 0.160 0.175 1706.408 0.849 4ỉ20 + 2ỉ25 2238.385 1.11 B4 Min -288.2464 0.126 0.135 1318.187 0.656 4ỉ20 + 2ỉ25 2238.385 1.11 B4 Max 142.8332 0.062 0.064 629.384 0.313 2ỉ20 + 2ỉ25 1610.066 0.80 B4 Min -341.9507 0.149 0.163 1587.238 0.790 4ỉ20 + 2ỉ25 2238.385 1.11
B42 Min -84.727 0.037 0.038 368.254 0.183 2ỉ20 + 2ỉ25 1610.066 0.80 B44 Min -441.2393 0.193 0.216 2109.528 1.050 4ỉ20 + 2ỉ25 2238.385 1.11 B44 Max 268.7475 0.117 0.125 1222.597 0.608 2ỉ20 + 2ỉ25 1610.066 0.80 B44 Min -458.6632 0.200 0.226 2204.905 1.097 4ỉ20 + 2ỉ25 2238.385 1.11 B46 Min -193.9645 0.085 0.089 865.506 0.431 2ỉ20 + 2ỉ25 1610.066 0.80 B46 Max 167.2287 0.073 0.076 741.270 0.369 2ỉ20 + 2ỉ25 1610.066 0.80 B46 Min -264.7238 0.116 0.123 1203.005 0.599 4ỉ20 + 2ỉ25 1610.066 0.80
B75 Min -82.1244 0.036 0.037 356.728 0.177 2ỉ20 + 2ỉ25 1610.066 0.80 B76 Min -412.3048 0.180 0.200 1953.715 0.972 4ỉ20 + 2ỉ25 2238.385 1.11 B76 Max 261.734 0.114 0.122 1188.476 0.591 4ỉ20 + 2ỉ25 2238.385 0.80 B76 Min -465.802 0.203 0.230 2244.331 1.117 4ỉ20 + 2ỉ25 2238.385 1.11 B77 Min -200.1061 0.087 0.092 894.290 0.445 4ỉ20+ 2ỉ25 2238.385 1.11 B77 Max 86.8726 0.038 0.039 377.768 0.188 2ỉ20 + 2ỉ25 1610.066 0.80 B77 Min -257.1381 0.112 0.119 1166.189 0.580 4ỉ20 + 2ỉ25 2238.385 1.11 B78 Min -313.0463 0.137 0.148 1441.350 0.717 4ỉ20 + 2ỉ25 2238.385 1.11 B78 Max 76.415 0.033 0.034 331.491 0.165 2ỉ20 + 2ỉ25 1610.066 0.80 B78 Min -131.2492 0.057 0.059 576.733 0.287 2ỉ20 + 2ỉ25 1610.066 0.80 B79 Min -193.6707 0.085 0.089 864.131 0.430 2ỉ20 + 2ỉ25 1610.066 0.80 B79 Max 91.0353 0.040 0.041 396.252 0.197 2ỉ20 + 2ỉ25 1610.066 0.80 B79 Min -160.1489 0.070 0.073 708.657 0.353 2ỉ20 + 2ỉ25 1610.066 0.80 B80 Min -166.1922 0.073 0.075 736.488 0.366 2ỉ20 + 2ỉ25 1610.066 0.80 B80 Max 78.167 0.034 0.035 339.228 0.169 2ỉ20 + 2ỉ25 1610.066 0.80 B80 Min -188.1292 0.082 0.086 838.243 0.417 2ỉ20 + 2ỉ25 1610.066 0.80 B81 Min -185.8933 0.081 0.085 827.818 0.412 2ỉ20 + 2ỉ25 1610.066 0.80 B81 Max 80.2953 0.035 0.036 348.636 0.173 2ỉ20 + 2ỉ25 1610.066 0.80 B81 Min -172.6157 0.075 0.078 766.164 0.381 2ỉ20 + 2ỉ25 1610.066 0.80
B116 Min -87.2041 0.038 0.039 379.238 0.189 2ỉ20 + 2ỉ25 1610.066 0.80 B117 Min -424.3891 0.185 0.207 2018.408 1.004 2ỉ20 + 2ỉ25 2238.385 1.11 B117 Max 309.7386 0.135 0.146 1424.818 0.709 4ỉ20 + 2ỉ25 2238.385 0.80 B117 Min -532.3241 0.233 0.269 2622.181 1.305 4ỉ20 + 4ỉ25 3220.132 1.60 B118 Min -396.968 0.173 0.192 1872.374 0.932 4ỉ20 + 2ỉ25 2238.385 1.11 DX4’
Table 5 2: Spreadsheet of beam reinforcement in the X direction
Beam Label M 3 kN.m α m ξ m As mm2 μ
B120 Min -231.2577 0.101 0.107 1041.754 0.518 4ỉ20 + 2ỉ25 2238.385 1.11 B120 Max 146.1126 0.064 0.066 644.345 0.321 2ỉ20 + 2ỉ25 1610.066 0.63 B120 Min -207.7578 0.091 0.095 930.283 0.463 2ỉ20 + 2ỉ25 1610.066 0.80 B121 Min -207.0462 0.090 0.095 926.930 0.461 2ỉ20 + 2ỉ25 1610.066 0.80 B121 Max 127.8097 0.056 0.057 561.158 0.279 2ỉ20 + 2ỉ25 1610.066 0.80 B121 Min -254.3886 0.111 0.118 1152.884 0.574 2ỉ20 + 2ỉ25 1610.066 0.80 B122 Min -236.2745 0.103 0.109 1065.736 0.530 2ỉ20 + 2ỉ25 1610.066 0.80 B122 Max 112.2642 0.049 0.050 491.090 0.244 2ỉ20 + 2ỉ25 1610.066 0.80 B122 Min -217.1431 0.095 0.100 974.632 0.485 2ỉ20 + 2ỉ25 1610.066 0.80
B160 Min -82.493 0.036 0.037 358.360 0.178 2ỉ20 + 2ỉ25 1610.066 0.80 B161 Min -407.2278 0.178 0.197 1926.695 0.959 4ỉ20 + 2ỉ25 2238.385 1.11 B161 Max 238.8245 0.104 0.110 1077.952 0.536 2ỉ20 + 2ỉ25 1610.066 0.80 B161 Min -457.8274 0.200 0.225 2200.302 1.095 4ỉ20 + 2ỉ25 2238.385 1.11 B162 Min -350.0533 0.153 0.167 1628.603 0.810 4ỉ20 + 2ỉ25 2238.385 1.11 B162 Max 191.4258 0.084 0.087 853.634 0.425 2ỉ20 + 2ỉ25 1610.066 0.80 B162 Min -356.7696 0.156 0.170 1663.052 0.827 4ỉ20 + 2ỉ25 2238.385 1.11 B163 Min -312.1206 0.136 0.147 1436.720 0.715 4ỉ20 + 2ỉ25 2238.385 1.11 B163 Max 101.1229 0.044 0.045 441.197 0.220 2ỉ20 + 2ỉ25 1610.066 0.80 B163 Min -158.3236 0.069 0.072 700.268 0.348 2ỉ20 + 2ỉ25 1610.066 0.80 B164 Min -221.0015 0.097 0.102 992.930 0.494 2ỉ20 + 2ỉ25 1610.066 0.80 B164 Max 126.1228 0.055 0.057 553.529 0.275 2ỉ20 + 2ỉ25 1610.066 0.80 B164 Min -231.2512 0.101 0.107 1041.723 0.518 2ỉ20 + 2ỉ25 1610.066 0.80 B165 Min -204.0755 0.089 0.094 912.944 0.454 2ỉ20 + 2ỉ25 1610.066 0.80 B165 Max 125.9204 0.055 0.057 552.614 0.275 2ỉ20 + 2ỉ25 1610.066 0.80 B165 Min -251.0885 0.110 0.116 1136.942 0.566 2ỉ20 + 2ỉ25 1610.066 0.80 B166 Min -168.5038 0.074 0.077 747.156 0.372 2ỉ20 + 2ỉ25 1610.066 0.63 B166 Max 42.3994 0.019 0.019 182.514 0.091 2ỉ20 + 2ỉ25 1610.066 0.80 B166 Min -154.9201 0.068 0.070 684.646 0.341 2ỉ20 + 2ỉ25 1610.066 0.80
B197 Min -46.762 0.020 0.021 201.491 0.100 2ỉ20 + 2ỉ25 1610.066 0.80 B198 Min -338.8216 0.148 0.161 1571.319 0.782 4ỉ20+ 2ỉ25 1610.066 0.80 B198 Max 178.6742 0.078 0.081 794.244 0.395 2ỉ20 + 2ỉ25 1610.066 0.80 B198 Min -315.3648 0.138 0.149 1452.957 0.723 4ỉ20 + 2ỉ25 1610.066 0.80 B199 Min -308.4559 0.135 0.145 1418.416 0.706 4ỉ20 + 2ỉ25 1610.066 0.80 B199 Max 177.9921 0.078 0.081 791.078 0.394 2ỉ20 + 2ỉ25 1610.066 0.80 B199 Min -316.2502 0.138 0.149 1457.394 0.725 4ỉ20 + 2ỉ25 1610.066 0.80 B200 Min -201.165 0.088 0.092 899.262 0.447 4ỉ20 + 2ỉ25 1610.066 0.80 B200 Max 65.3758 0.029 0.029 282.886 0.141 2ỉ20 + 2ỉ25 1610.066 0.80 B200 Min -166.3714 0.073 0.076 737.315 0.367 2ỉ20 + 2ỉ25 1610.066 0.80 B201 Min -170.233 0.074 0.077 755.145 0.376 2ỉ20 + 2ỉ25 1610.066 0.80 B201 Max 79.2496 0.035 0.035 344.012 0.171 2ỉ20 + 2ỉ25 1610.066 0.80 B201 Min -172.8864 0.076 0.079 767.417 0.382 2ỉ20 + 2ỉ25 1610.066 0.80
Table 5 2: Spreadsheet of beam reinforcement in the X direction
Beam Label M 3 kN.m α m ξ m As mm2 μ
B202 Min -131.2472 0.057 0.059 576.724 0.287 2ỉ20 + 2ỉ25 1610.066 0.80 B202 Max 103.9557 0.045 0.046 453.857 0.226 2ỉ20 + 2ỉ25 1610.066 0.80 B202 Min -230.194 0.101 0.106 1036.678 0.516 2ỉ20 + 2ỉ25 1610.066 0.80 B203 Min -10.2378 0.004 0.004 43.756 0.022 2ỉ20 + 2ỉ25 1610.066 0.80 B203 Max 30.0635 0.013 0.013 129.056 0.064 2ỉ20 + 2ỉ25 1610.066 0.80 B203 Min -7.013 0.003 0.003 29.952 0.015 2ỉ20 + 2ỉ25 1610.066 0.80
Table 5 3: Spreadsheet of beam reinforcement in the Y direction
B179 Min -158.231 0.069 0.072 699.843 0.348 4ỉ20 1256.64 0.63 B179 Max 125.2603 0.055 0.056 549.631 0.273 4ỉ20 1256.64 0.63 B179 Min -233.1247 0.102 0.108 1050.671 0.523 4ỉ20 1256.64 0.63 B138 Min -224.8981 0.098 0.104 1011.448 0.503 4ỉ20 1256.64 0.63 B138 Max 120.0275 0.052 0.054 526.015 0.262 4ỉ20 1256.64 0.63 B138 Min -248.2902 0.108 0.115 1123.446 0.559 4ỉ20 1256.64 0.63 B98 Min -250.8922 0.110 0.116 1135.994 0.565 4ỉ20 1256.64 0.63 B98 Max 112.7664 0.049 0.051 493.345 0.245 4ỉ20 1256.64 0.63 B98 Min -277.3584 0.121 0.130 1264.678 0.629 4ỉ20 1256.64 0.63 B59 Min -225.0353 0.098 0.104 1012.100 0.504 4ỉ20 1256.64 0.63 B59 Max 119.1025 0.052 0.053 521.847 0.260 4ỉ20 1256.64 0.63 B59 Min -250.0227 0.109 0.116 1131.799 0.563 4ỉ20 1256.64 0.63 B21 Min -229.2693 0.100 0.106 1032.267 0.514 4ỉ20 1256.64 0.63 B21 Max 113.1443 0.049 0.051 495.043 0.246 4ỉ20 1256.64 0.63 B21 Min -148.4128 0.065 0.067 654.853 0.326 4ỉ20 1256.64 0.63
B180 Min -226.0478 0.099 0.104 1016.919 0.506 4ỉ20 1256.64 0.63 B180 Max 153.1317 0.067 0.069 676.449 0.337 4ỉ20 1256.64 0.63 B180 Min -279.5492 0.122 0.131 1275.418 0.635 8ỉ20 2513.27 1.25 B139 Min -494.8856 0.216 0.247 2407.140 1.198 8ỉ20 2513.27 1.25 B139 Max 171.2047 0.075 0.078 759.637 0.378 4ỉ20 1256.64 0.63 B139 Min -110.7466 0.048 0.050 484.278 0.241 4ỉ20 1256.64 0.63 B99 Min -31.5462 0.014 0.014 135.465 0.067 4ỉ20 1256.64 0.63 B99 Max 105.3781 0.046 0.047 460.221 0.229 4ỉ20 1256.64 0.63 B99 Min -328.6244 0.144 0.156 1519.656 0.756 6ỉ20 1884.96 0.94 B60 Min -309.5492 0.135 0.146 1423.872 0.708 6ỉ20 1884.96 0.94 B60 Max 176.7478 0.077 0.080 785.306 0.391 4ỉ20 1256.64 0.63 B60 Min -513.3529 0.224 0.257 2512.416 1.250 6ỉ20 1884.96 0.94
Table 5 3: Spreadsheet of beam reinforcement in the Y direction
Beam Label M3 kN.m α m ξ m As mm2 μ
B140 Min -16.8928 0.007 0.007 72.305 0.036 4ỉ20 1256.64 0.63 B140 Max 177.6252 0.078 0.081 789.376 0.393 4ỉ20 1256.64 0.63 B140 Min -88.1846 0.039 0.039 383.589 0.191 4ỉ20 1256.64 0.63 B93 Min 50.549 0.022 0.022 217.995 0.108 4ỉ20 1256.64 0.63 B93 Max 239.2689 0.105 0.111 1080.082 0.537 4ỉ20 1256.64 0.63 B93 Min -360.0515 0.157 0.172 1679.938 0.836 6ỉ20 1884.96 0.94 B61 Min -200.8864 0.088 0.092 897.954 0.447 4ỉ20 1256.64 0.63 B61 Max 115.3938 0.050 0.052 505.153 0.251 4ỉ20 1256.64 0.63 B61 Min -242.394 0.106 0.112 1095.080 0.545 4ỉ20 1256.64 0.63 B24 Min -171.5501 0.075 0.078 761.235 0.379 4ỉ20 1256.64 0.63 B24 Max 77.8903 0.034 0.035 338.006 0.168 4ỉ20 1256.64 0.63 B24 Min -117.2291 0.051 0.053 513.411 0.255 4ỉ20 1256.64 0.63
B182 Min -136.7687 0.060 0.062 601.782 0.299 4ỉ20 1256.64 0.63 B182 Max 131.2038 0.057 0.059 576.527 0.287 4ỉ20 1256.64 0.63 B182 Min -329.509 0.144 0.156 1524.125 0.758 6ỉ20 1884.96 0.94 B141 Min -305.2717 0.133 0.144 1402.544 0.698 6ỉ20 1884.96 0.94 B141 Max 148.4528 0.065 0.067 653.749 0.325 4ỉ20 1256.64 0.63 B141 Min -257.2321 0.112 0.119 1166.645 0.580 4ỉ20 1256.64 0.63 B100 Min -292.3011 0.128 0.137 1338.201 0.666 6ỉ20 1884.96 0.94 B100 Max 106.5664 0.047 0.048 465.541 0.232 4ỉ20 1256.64 0.63 B100 Min -148.2904 0.065 0.067 654.293 0.326 4ỉ20 1256.64 0.63
B183 Min -103.3567 0.045 0.046 451.179 0.224 4ỉ20 1256.64 0.63 B183 Max 102.8397 0.045 0.046 448.868 0.223 4ỉ20 1256.64 0.63 B183 Min -312.7654 0.137 0.147 1439.945 0.716 6ỉ20 1884.96 0.94 B142 Min -261.8728 0.114 0.122 1189.150 0.592 4ỉ20 1256.64 0.63 B142 Max 159.3662 0.070 0.072 705.059 0.351 4ỉ20 1256.64 0.63 B142 Min -316.8163 0.138 0.150 1460.233 0.726 6ỉ20 1884.96 0.94 B101 Min -373.4801 0.163 0.179 1749.403 0.870 6ỉ20 1884.96 0.94 B101 Max 151.2386 0.066 0.068 667.779 0.332 4ỉ20 1256.64 0.63
B104 Min -369.4036 0.161 0.177 1728.252 0.860 6ỉ20 1884.96 0.94 B104 Max 149.8933 0.065 0.068 661.623 0.329 4ỉ20 1256.64 0.63 B104 Min -160.5337 0.070 0.073 710.427 0.353 4ỉ20 1256.64 0.63 B143 Min -221.2383 0.097 0.102 994.054 0.495 4ỉ20 1256.64 0.63 B143 Max 156.0379 0.068 0.071 689.774 0.343 4ỉ20 1256.64 0.63 B143 Min -307.2091 0.134 0.145 1412.197 0.703 6ỉ20 1884.96 0.94 B102 Min -331.1471 0.145 0.157 1532.407 0.762 6ỉ20 1884.96 0.94 B102 Max 130.0596 0.057 0.059 571.343 0.284 4ỉ20 1256.64 0.63 B102 Min -140.3972 0.061 0.063 618.287 0.308 4ỉ20 1256.64 0.63
The maximum shear force: Qmax = 265.325 kN
According to section 8.1.3.3.1 TCVN 5574:2018, there are regulations:
When there is no horizontal reinforcement, it is calculate according to condition: Qsw = 0
Calculation of flexural members according to the inclined section following conditions: Q ≤ Qb + Qsw
Qb: Shear force resisted by concrete in inclined section
Qsw = 0: Shear force by horizontal reinforcement in inclined section
0.5Rbtbh0 11.58(kN) ≤ Qb = 265.325 (kN) ≤ 2.5Rbtbh0 577.88 (kN) => OK
Choose stirrup ỉ8 (asw = 50.26 mm 2 ), number of branches: n= 2
→ Choose s = min(sct, stt, smax) = 100 (mm) scatter at L/4
→ Choose s = 150 (mm) scatter at span L/2
Check seismic resistance calculation conditions
– According to TCVN 9386:2012 and TCVN 5574:2018
+ Within the length of 3hd of the beam from the edge of the column, the belts must be placed thicker than the area between the beams, the distance between stirrup: Ss ;0.25h ;8d;150 tt d mm
+ In the area between beams (outside the range mentioned above), the distance between the stirrup: S0.5h ;12d;300d mm
We have stirrup ỉ8 (asw = 50.26 mm 2 ), number of branches n= 2
Stirrup ỉ 8a100 in the L/4 at support
– Check the condition again: sw sw
→ Qbd,min = 507 (kN) > Qmax = 265.625 (kN)
5.2.5 Calculate the length of the reinforcement anchor
According to Section 10.3.5.5 TCVN 5574-2018, the required calculation anchor length of the reinforcement: an 0,an s s,ef
Anchor reinforcement in the tension area:
Anchor reinforcement in the compression area:
Connecting reinforcement in tension area:
– Connecting reinforcement in the compression area:
Column reinforcement design
5.3.1 Working of oblique eccentric compression
For members working with elastic and homogeneous materials subject to oblique eccentric compression, use the addition method to calculate the stress: x y x y
Strength condition is the stress limit that does not to exceed the allowable stress or calculated strength of the material
Considering the simultaneous effects of three internal forces N, Mx, My when calculating reinforcement and check
The limit of the compression area is calculated from a distance of x = θx0 (θ 0.8 ÷ 0.85)
5.3.2 Determination of effects of random eccentricity and longitudinal bending
The calculated moment for the column is increased due to longitudinal bending and random eccentricity:
M = η e N Where: e0x : is the calculated eccentricity including random eccentricity: x 0x l H M e = max 20; ; ;
ηx: is the coefficient including longitudinal bending, according to 6.2.2.5
TCVN 356-2005: x x cr η = 1 1-N N Where: N x cr is the critical force on structural stability (TCVN 5574-2018) x b b x x cr 2 x s s e
+ Eb: elastic modulus of concrete
+ φ1 : factor taking into account the long-term effect of the load: l 1 φ = 1+M
+ J x s: The moment of inertia of the reinforcement area is taken with respect to the x-axis
The formula for calculating Ncr according to TCVN 5574:2018 considering the influence of many coefficients is quite complicated Using the approximate formula of Professor NGUYEN DINH CONG: b cr 2
The reasonable content of column reinforcement is: 1% < < 3%
Choose according to the three internal forces as follows
+ Case 1: |Nmax|, Mx, tu, My, tu
+ Case 2: Mx, max, Ntu, My, tu
+ Case 3: My, max, Ntu, Mx, tu
+ Need to consider more cross-sections with Mx, My and ex, ey are all large
Note: Choose the plan to place the steel symmetrically, so the values of Mx,max
My,max are spread to absolute values
Table 5 4: Summary table of column C3
Nmin, Vtu,M2.tu,M3.tu ULS11 -67.74 -13.35 -35.34 -49.71 -10.54 Nmax, Vtu,M2.tu,M3.tu ULS10 -39.08 -1.57 -29.45 32.32 20.22 M2min,Ntu, Vtu,M3.tu ULS1 -58.20 -2.37 -39.09 -58.57 5.53 M2max,Ntu, Vtu,M3.tu ULS22 -45.67 -3.64 -33.43 35.73 16.96 M3min,Ntu, Vtu,M3.tu ULS11 -67.74 -13.35 -35.34 -49.71 -10.54 M3max,Ntu, Vtu,M3.tu ULS11 -43.27 -2.21 -32.27 35.11 21.50
Nmin, Vtu,M2.tu,M3.tu ULS1 -531.07 138.75 -128.14 -214.47 220.17 Nmax, Vtu,M2.tu,M3.tu ULS10 -379.33 97.26 -86.08 93.66 -30.81 M2min,Ntu, Vtu,M3.tu ULS1 -531.07 138.75 -128.14 -214.47 220.17
M2max,Ntu, Vtu,M3.tu ULS1 -497.69 138.75 -128.14 131.51 -154.45 M3min,Ntu, Vtu,M3.tu ULS1 -497.69 138.75 -128.14 131.51 -154.45 M3max,Ntu, Vtu,M3.tu ULS1 -531.07 138.75 -128.14 -214.47 220.17
Nmin, Vtu,M2.tu,M3.tu ULS1 -1224.61 127.23 -130.15 -214.58 211.41 Nmax, Vtu,M2.tu,M3.tu ULS10 -912.63 105.25 -89.46 102.52 -46.17 M2min,Ntu, Vtu,M3.tu ULS9 -1206.14 118.18 -128.99 -215.18 195.66 M2max,Ntu, Vtu,M3.tu ULS1 -1191.23 127.23 -130.15 136.84 -132.10 M3min,Ntu, Vtu,M3.tu ULS6 -1171.73 127.90 -126.96 133.46 -132.11 M3max,Ntu, Vtu,M3.tu ULS18 -1085.32 126.53 -106.43 -173.69 214.29
Nmin, Vtu,M2.tu,M3.tu ULS1 -1918.41 129.42 -127.95 -211.00 212.26 Nmax, Vtu,M2.tu,M3.tu ULS10 -1444.25 85.18 -82.26 105.32 -61.22 M2min,Ntu, Vtu,M3.tu ULS8 -1891.50 125.84 -130.91 -214.62 206.54 M2max,Ntu, Vtu,M3.tu ULS8 -1858.12 125.84 -130.91 138.84 -133.22 M3min,Ntu, Vtu,M3.tu ULS1 -1885.04 129.42 -127.95 134.46 -137.16 M3max,Ntu, Vtu,M3.tu ULS1 -1918.41 129.42 -127.95 -211.00 212.26
Nmin, Vtu,M2.tu,M3.tu ULS1 -2610.80 129.53 -127.38 -211.10 215.31 Nmax, Vtu,M2.tu,M3.tu ULS10 -1974.07 89.57 -81.45 99.85 -30.11 M2min,Ntu, Vtu,M3.tu ULS22 -2365.10 82.60 -129.85 -250.97 125.69 M2max,Ntu, Vtu,M3.tu ULS9 -2531.11 121.93 -118.46 133.36 -123.80 M3min,Ntu, Vtu,M3.tu ULS18 -2314.65 75.10 -116.40 106.76 -140.68 M3max,Ntu, Vtu,M3.tu ULS1 -2610.80 129.53 -127.38 -211.10 215.31
Nmin, Vtu,M2.tu,M3.tu ULS1 -3300.75 118.62 -118.84 -193.82 188.99 Nmax, Vtu,M2.tu,M3.tu ULS10 -2509.46 121.99 -69.67 119.70 22.47 M2min,Ntu, Vtu,M3.tu ULS22 -2970.70 48.46 -146.22 -198.95 104.91 M2max,Ntu, Vtu,M3.tu ULS22 -2881.62 121.86 -54.01 196.98 -25.11 M3min,Ntu, Vtu,M3.tu ULS18 -2926.42 28.09 -114.86 77.78 -188.14 M3max,Ntu, Vtu,M3.tu ULS18 -2925.90 142.23 -85.37 -151.14 196.49
Nmin, Vtu,M2.tu,M3.tu ULS1 -3994.44 140.07 -124.87 -203.53 222.11 Nmax, Vtu,M2.tu,M3.tu ULS10 -3036.80 139.17 -72.80 119.40 4.33 M2min,Ntu, Vtu,M3.tu ULS22 -3607.99 61.09 -154.76 -230.35 114.49 M2max,Ntu, Vtu,M3.tu ULS22 -3475.96 140.33 -55.61 188.28 -49.15 M3min,Ntu, Vtu,M3.tu ULS18 -3545.17 38.39 -121.07 88.15 -202.10 M3max,Ntu, Vtu,M3.tu ULS18 -3538.78 163.03 -89.30 -152.49 239.18
Nmin, Vtu,M2.tu,M3.tu ULS1 -4686.47 126.95 -118.55 -195.85 210.23 Nmax, Vtu,M2.tu,M3.tu ULS10 -3554.55 140.33 -63.05 117.25 21.76 M2min,Ntu, Vtu,M3.tu ULS22 -4287.49 43.85 -165.37 -253.08 89.29 M2max,Ntu, Vtu,M3.tu ULS22 -4030.24 138.51 -34.31 194.14 -27.61 M3min,Ntu, Vtu,M3.tu ULS18 -4180.27 20.38 -120.95 75.81 -189.63 M3max,Ntu, Vtu,M3.tu ULS18 -4137.46 161.98 -78.72 -136.47 249.08
Nmin, Vtu,M2.tu,M3.tu ULS1 -5376.05 128.46 -117.28 -193.37 212.12 Nmax, Vtu,M2.tu,M3.tu ULS10 -4065.24 147.46 -58.94 118.10 22.06 M2min,Ntu, Vtu,M3.tu ULS22 -4982.21 40.18 -173.55 -271.02 77.83 M2max,Ntu, Vtu,M3.tu ULS22 -4565.16 144.10 -23.77 198.46 -28.90 M3min,Ntu, Vtu,M3.tu ULS18 -4818.61 14.87 -122.84 73.23 -192.44
M3max,Ntu, Vtu,M3.tu ULS18 -4728.76 169.41 -74.47 -127.55 266.44
Nmin, Vtu,M2.tu,M3.tu ULS1 -6063.00 117.06 -110.30 -178.58 185.33 Nmax, Vtu,M2.tu,M3.tu ULS10 -4569.85 142.56 -50.52 116.70 24.46 M2min,Ntu, Vtu,M3.tu ULS22 -5686.52 29.78 -177.74 -280.96 52.15 M2max,Ntu, Vtu,M3.tu ULS22 -5086.00 137.83 -7.66 199.95 -25.81 M3min,Ntu, Vtu,M3.tu ULS18 -5458.89 4.99 -120.24 68.14 -189.55 M3max,Ntu, Vtu,M3.tu ULS18 -5313.62 162.61 -65.16 -107.44 251.54
Nmin, Vtu,M2.tu,M3.tu ULS9 -6758.89 113.30 -139.20 -223.75 179.89 Nmax, Vtu,M2.tu,M3.tu ULS10 -5066.13 164.21 -50.15 121.20 28.67 M2min,Ntu, Vtu,M3.tu ULS22 -6406.33 31.98 -189.70 -302.95 54.03 M2max,Ntu, Vtu,M3.tu ULS22 -5588.63 156.72 -1.70 210.48 -28.64 M3min,Ntu, Vtu,M3.tu ULS18 -6100.68 1.84 -126.12 67.77 -214.11 M3max,Ntu, Vtu,M3.tu ULS18 -5894.27 186.86 -65.29 -108.06 293.35
Nmin, Vtu,M2.tu,M3.tu ULS9 -7468.51 102.36 -135.84 -221.52 168.22 Nmax, Vtu,M2.tu,M3.tu ULS10 -5562.17 155.74 -44.36 116.12 27.23 M2min,Ntu, Vtu,M3.tu ULS22 -7132.38 23.25 -190.37 -309.70 39.28 M2max,Ntu, Vtu,M3.tu ULS22 -6086.28 148.48 8.46 205.53 -19.28 M3min,Ntu, Vtu,M3.tu ULS18 -6748.68 -4.62 -123.17 60.32 -186.56 M3max,Ntu, Vtu,M3.tu ULS18 -6469.98 176.35 -58.74 -97.84 293.10
Nmin, Vtu,M2.tu,M3.tu ULS9 -8177.96 103.44 -136.38 -224.66 169.10 Nmax, Vtu,M2.tu,M3.tu ULS10 -6054.86 156.73 -42.73 114.25 18.65 M2min,Ntu, Vtu,M3.tu ULS22 -7860.87 23.43 -192.35 -318.46 34.41 M2max,Ntu, Vtu,M3.tu ULS22 -6577.73 150.04 12.04 202.07 -24.96 M3min,Ntu, Vtu,M3.tu ULS18 -7396.60 -4.12 -123.28 59.67 -179.49 M3max,Ntu, Vtu,M3.tu ULS18 -7042.01 177.58 -57.03 -93.89 303.22
Nmin, Vtu,M2.tu,M3.tu ULS9 -8885.83 91.04 -127.12 -205.31 137.89 Nmax, Vtu,M2.tu,M3.tu ULS10 -6544.92 144.33 -35.74 109.24 8.38 M2min,Ntu, Vtu,M3.tu ULS22 -8588.52 14.81 -184.35 -305.86 6.27 M2max,Ntu, Vtu,M3.tu ULS22 -7065.36 138.89 20.51 192.98 -29.79 M3min,Ntu, Vtu,M3.tu ULS18 -8042.88 -9.14 -115.20 57.49 -164.13 M3max,Ntu, Vtu,M3.tu ULS18 -7611.01 162.83 -48.65 -73.40 279.02
Nmin, Vtu,M2.tu,M3.tu ULS9 -9595.62 117.24 -149.40 -264.94 195.66 Nmax, Vtu,M2.tu,M3.tu ULS10 -7030.61 177.61 -43.86 108.50 -10.46 M2min,Ntu, Vtu,M3.tu ULS22 -9320.59 26.51 -210.58 -380.17 21.00 M2max,Ntu, Vtu,M3.tu ULS22 -7545.58 169.01 17.72 189.19 -46.63 M3min,Ntu, Vtu,M3.tu ULS18 -8686.49 -5.83 -133.27 60.41 -159.79 M3max,Ntu, Vtu,M3.tu ULS18 -8179.68 201.34 -59.59 -100.10 387.45
Nmin, Vtu,M2.tu,M3.tu ULS9 -10328.30 36.41 -52.59 -121.43 54.76 Nmax, Vtu,M2.tu,M3.tu ULS10 -7519.70 58.89 -13.13 86.96 -40.67 M2min,Ntu, Vtu,M3.tu ULS22 -10070.01 0.12 -82.61 -215.70 -59.34 M2max,Ntu, Vtu,M3.tu ULS22 -8034.43 62.97 15.29 148.58 -54.29 M3min,Ntu, Vtu,M3.tu ULS1 -10103.25 43.07 -37.16 86.52 -112.68 M3max,Ntu, Vtu,M3.tu ULS18 -8776.68 66.05 -17.31 -24.74 198.49 F2 Nmin, Vtu,M2.tu,M3.tu ULS9 -10781.19 7.22 -78.50 -222.88 -11.77
Nmax, Vtu,M2.tu,M3.tu ULS10 -7860.98 133.58 -3.65 45.83 51.23 M2min,Ntu, Vtu,M3.tu ULS22 -10530.40 -78.96 -119.63 -368.98 -357.78 M2max,Ntu, Vtu,M3.tu ULS14 -7956.72 102.18 41.29 183.45 392.27 M3min,Ntu, Vtu,M3.tu ULS10 -8586.37 -115.45 -62.48 -171.08 -479.35 M3max,Ntu, Vtu,M3.tu ULS18 -9150.64 137.84 -12.84 -7.55 512.75
Nmin, Vtu,M2.tu,M3.tu ULS9 -11383.56 77.21 -35.17 -26.33 158.57 Nmax, Vtu,M2.tu,M3.tu ULS10 -8076.05 89.72 -13.34 47.60 -11.02 M2min,Ntu, Vtu,M3.tu ULS14 -10359.50 27.50 -31.63 -66.09 59.98 M2max,Ntu, Vtu,M3.tu ULS1 -11192.49 77.90 -29.52 88.19 -72.02 M3min,Ntu, Vtu,M3.tu ULS18 -10172.26 22.64 -26.93 45.68 -79.01 M3max,Ntu, Vtu,M3.tu ULS18 -9491.13 101.17 -17.99 4.86 225.12
Calculation of corewall steel
Calculation by method of boundary region subjected to moment
Step 1: Assume the length B of the mooment boundary region Consider the wall bearing axial force N and bending moment in the plane Mx
Figure 5 6: Internal force in the Wall
Step 2: Determine the tensile force (Pk), compression (Pn) at the boundary region: n(k) b x k n
A L - 0.5B - 0.5BWhere: A = Ltw và Ab = Bn(k)tw
Step 3: Calculation of longitudinal reinforcement in tensile and compression zones: n b b k sn sk sc s
With φ ≤ 1 is the coefficient of reduction of bearing capacity due to bending effect
When: 28 < λ ≤ 120 => φ according to the formula: φ = 1.028 – 0.000028 λ 2 – 0.0016λ
Step 4: Calculation of compressive reinforcement in the middle zone bk bn bt sg sc
Step 5: Check reinforcement content Increase the size of the boundary area
B and then recalculate B1 in case it is not satisfied The maximum length of the boundary region is L/2 If exceeded, increase wall thickness Reasonable reinforcement content: μ= 1% 4%
Step 6: Check the rest of the wall as for the center compression member Concrete has enough bearing capacity, compressive reinforcement is placed according to the structure
Choose the wall P2 on the 1st floor to present the calculation
Area of the pier: A = tL = 0.3 2.5 0.75m 2
Assume the length of the boundary region Bb = Bb.left = Bb.right = 0.5m
Area of the middle area: A mid = A - 2A = 0.45 m b 2
Determine the longitudinal force in the mid-boundary region and the boundary zone b left right l b left right r b left right
Calculation of reinforcement for boundary and middle areas:
+ Pl (r) > 0 => the left boundary must be compressed
+ The area of reinforcement in the compressive boundary zone is: λ7.04 >28 => φ = 1.028 – 0.000028 λ2 – 0.0016λ = 0.9
=> Arrangement of reinforcement: ỉ22a100 (Asc 801.33 mm 2 )
+ Area of reinforcement in the middle zone: m 3 b m
=> Arrangement of reinforcement: ỉ22a150 (Asc %34.22 mm 2 )
Table 5 13: Results of calculating reinforcement of Pier 1
Roof top Pmin ULS11 -178.1 -247.4 48.58 -24.18 153.73 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3min ULS22 0.0 -1230.6 180.98 -180.98 0.02 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3max ULS14 -68.8 313.5 50.82 -41.40 59.35 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof Pmin ULS22 -952.0 -615.2 155.67 -25.26 821.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3min ULS18 -894.4 -715.3 166.45 -43.93 771.91 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Roof M3max ULS10 -476.9 -34.7 37.77 27.56 411.59 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F16 Pmin ULS22 -1962.8 -1240.8 316.91 -48.04 1693.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3min ULS18 -1779.1 -1407.0 328.76 -85.05 1535.34 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F16 M3max ULS10 -927.5 865.7 190.83 -63.78 800.40 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F15 Pmin ULS22 -3913.2 -944.5 406.92 129.13 3377.15 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3min ULS18 -2283.1 -7391.9 1243.43 -930.67 1970.38 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3max ULS10 -903.4 7059.5 1100.05 -976.29 779.66 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 Pmin ULS22 -8286.4 -2850.1 986.69 148.43 7151.29 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3min ULS18 -4872.5 -5204.5 1099.09 -431.63 4205.02 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F14 M3max ULS10 -31.7 5033.7 742.42 -738.08 27.34 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F13 Pmin ULS22 -9134.4 -2686.4 1020.70 230.59 7883.14 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3min ULS10 -4840.3 -7479.9 1431.51 -768.45 4177.27 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3max ULS18 -839.2 7892.9 1218.19 -1103.24 724.22 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 Pmin ULS22 -8720.7 -1953.3 884.57 310.06 7526.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3min ULS10 -5148.9 -6073.3 1245.80 -540.46 4443.60 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3max ULS18 -1849.6 6399.0 1067.71 -814.35 1596.21 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 Pmin ULS22 -8440.5 -2085.1 884.75 271.49 7284.29 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3min ULS10 -5456.2 -5270.4 1148.77 -401.35 4708.76 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3max ULS18 -2866.8 5427.0 994.44 -601.72 2474.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 Pmin ULS22 -8362.5 -2100.3 881.64 263.91 7216.96 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3min ULS10 -5788.3 -4445.1 1050.15 -257.23 4995.37 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3max ULS18 -3842.6 4455.5 918.42 -392.03 3316.23 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F9 Pmin ULS22 -8385.4 -2062.5 877.66 271.03 7236.71 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3min ULS11 -6583.1 -3668.5 990.38 -88.59 5681.28 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3max ULS10 -4071.2 3583.7 805.86 -248.16 3513.48 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 Pmin ULS22 -8618.3 -1969.8 879.97 300.63 7437.73 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3min ULS11 -7003.1 -3061.8 929.94 29.39 6043.78 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3max ULS10 -4799.0 2920.8 758.22 -100.83 4141.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 Pmin ULS22 -8989.4 -1981.7 907.15 324.28 7757.98 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3min ULS18 -7256.2 -3393.3 996.02 -2.02 6262.21 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3max ULS10 -4849.5 3111.9 789.78 -125.47 4185.17 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 Pmin ULS22 -9499.4 -2259.3 982.89 318.39 8198.10 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3min ULS18 -7833.1 -4559.9 1207.09 -134.07 6760.06 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3max ULS10 -5139.1 4265.6 979.29 -275.30 4435.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 Pmin ULS22 -10387.8 -2721.3 1111.69 311.30 8964.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3min ULS18 -8542.8 -6149.9 1489.52 -319.27 7372.59 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3max ULS10 -5253.2 5913.9 1229.50 -509.89 4533.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 Pmin ULS22 -11722.1 -3210.7 1275.04 330.72 10116.30 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3min ULS18 -9411.6 -7921.6 1809.58 -520.31 8122.37 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3max ULS11 -5771.1 7951.4 1564.61 -774.05 4980.50 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 Pmin ULS22 -16362.4 -5825.4 1977.39 264.03 14120.96 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3min ULS10 -10693.9 -12158.8 2520.52 -1055.61 9228.95 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3max ULS11 -5720.8 12764.1 2268.91 -1485.24 4937.11 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 Pmin ULS22 -20893.4 -6875.2 2442.10 420.00 18031.26 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3min ULS18 -14918.5 -13484.8 3004.87 -961.24 12874.85 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3max ULS18 -5634.5 14027.0 2448.73 -1676.87 4862.68 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 Pmin ULS22 -22685.5 -5981.9 2433.49 674.12 19577.90 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3min ULS18 -17313.9 -15365.3 3445.48 -1073.72 14942.12 N 1014.4 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3max ULS10 -7252.4 13637.5 2502.26 -1508.77 6258.96 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement Pmin ULS22 -22096.6 -5017.2 2251.29 775.64 19069.64 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3min ULS18 -18102.2 -13387.4 3208.61 -728.86 15622.40 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3max ULS10 -8665.6 13154.7 2528.04 -1340.98 7478.49 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Table 5 14: Results of calculating reinforcement of Pier 2
Roof top Pmin ULS11 -379.9 399.5 275.73 -123.76 227.95 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3min ULS22 -304.9 -461.8 291.89 -169.93 182.94 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3max ULS14 -333.3 460.6 296.96 -163.65 199.97 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Roof Pmin ULS22 -862.6 119.4 232.23 112.83 517.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Roof M3min ULS18 -789.8 -607.3 461.59 -145.67 473.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3max ULS10 -660.9 568.4 416.37 -152.01 396.54 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F16 Pmin ULS22 -1429.2 154.5 363.10 208.57 857.50 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F16 M3min ULS18 -1315.3 -661.1 593.58 -67.47 789.16 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3max ULS10 -625.5 630.8 440.47 -190.29 375.27 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 Pmin ULS22 -2393.9 -206.7 582.11 375.44 1436.32 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3min ULS18 -2105.7 -1416.4 1129.35 -287.06 1263.43 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3max ULS10 -435.1 1680.8 927.41 -753.37 261.07 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 Pmin ULS22 -5232.4 -257.9 1175.44 917.52 3139.44 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3min ULS18 -3513.0 -1192.1 1298.65 106.55 2107.79 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3max ULS10 410.7 1798.3 981.27 -816.99 246.42 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 Pmin ULS22 -5682.0 -323.9 1298.33 974.48 3409.21 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3min ULS10 -4235.6 -1726.8 1710.53 -16.31 2541.33 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3max ULS18 683.6 1203.7 738.59 -465.15 410.16 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 Pmin ULS22 -5274.9 -500.2 1305.08 804.89 3164.94 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3min ULS10 -4174.1 -1653.4 1661.52 8.13 2504.46 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3max ULS18 -312.0 1170.6 647.69 -522.88 187.22 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 Pmin ULS22 -5059.5 -641.5 1332.66 691.13 3035.68 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3min ULS10 -4183.1 -1721.6 1697.42 -24.20 2509.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3max ULS18 -954.7 1320.7 851.27 -469.39 572.82 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 Pmin ULS22 -4944.1 -770.5 1374.07 603.57 2966.47 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3min ULS10 -4216.4 -1748.2 1717.37 -30.81 2529.83 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3max ULS18 -1562.0 1444.1 1034.47 -409.65 937.22 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F9 Pmin ULS22 -4867.7 -886.8 1416.94 530.15 2920.63 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3min ULS11 -4263.6 -1791.0 1748.23 -42.79 2558.15 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3max ULS10 -2135.4 1594.8 1224.47 -370.31 1281.24 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 Pmin ULS22 -4928.1 -952.2 1461.71 509.52 2956.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3min ULS11 -4390.2 -1741.3 1748.71 7.38 2634.13 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3max ULS10 -2636.5 1658.0 1356.31 -301.73 1581.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 Pmin ULS22 -5079.4 -1058.0 1544.86 486.90 3047.65 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3min ULS18 -4623.7 -1792.5 1821.01 28.47 2774.21 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3max ULS10 -3028.9 1831.8 1521.67 -310.10 1817.35 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 Pmin ULS22 -5304.4 -1151.5 1636.62 485.12 3182.62 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3min ULS18 -5001.3 -1806.8 1903.67 96.85 3000.79 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3max ULS10 -3249.2 1995.9 1647.77 -348.09 1949.53 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 Pmin ULS22 -5774.2 -1225.5 1767.59 542.09 3464.51 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3min ULS18 -5089.9 -1896.0 1965.96 70.01 3053.95 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3max ULS10 -3255.3 2175.7 1738.91 -436.79 1953.17 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 Pmin ULS22 -6520.0 -1322.0 1964.99 643.01 3912.01 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3min ULS18 -5802.4 -2134.0 2227.49 93.45 3481.42 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3max ULS11 -3061.5 2364.9 1794.74 -570.15 1836.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 Pmin ULS22 -8526.2 -2098.4 2754.46 656.03 5115.73 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3min ULS10 -7135.9 -3467.8 3161.09 -306.73 4281.53 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3max ULS11 -2516.8 3803.0 2404.84 -1398.13 1510.07 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 Pmin ULS22 -10811.1 -905.8 2615.13 1709.30 6486.64 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3min ULS18 -8552.1 -2365.5 2893.14 527.69 5131.23 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3max ULS18 -1003.6 2545.8 1473.60 -1072.16 602.17 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 Pmin ULS22 -9839.6 77.2 2006.53 1929.29 5903.74 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3min ULS18 -8339.1 -2287.6 2811.62 524.01 5003.45 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F1 M3max ULS10 66.0 1663.0 844.71 -818.33 39.57 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Basement Pmin ULS22 -8169.8 -94.7 1681.30 1586.61 4901.86 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3min ULS18 -7042.7 -515.4 1666.25 1150.85 4225.64 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3max ULS10 -406.5 766.6 464.60 -301.99 243.91 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Table 5 15: Results of calculating reinforcement of Pier 3
Roof top Pmin ULS9 -684.0 -171.8 111.21 31.29 541.51 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3min ULS22 -657.5 -379.3 156.71 -19.73 520.54 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3max ULS22 -481.0 518.5 170.69 -70.48 380.79 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof Pmin ULS9 -1310.3 -370.9 222.75 50.23 1037.33 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3min ULS18 -1255.6 -966.6 355.58 -94.00 994.02 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3max ULS18 -902.8 646.0 244.27 -56.19 714.72 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 Pmin ULS22 -2387.9 -988.8 478.70 18.78 1890.41 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3min ULS18 -2207.3 -1334.3 540.23 -80.37 1747.45 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3max ULS18 -1088.4 1118.3 373.45 -146.70 861.67 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 Pmin ULS18 -3747.3 -4273.7 1384.23 -603.55 2966.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3min ULS18 -3747.3 -4273.7 1384.23 -603.55 2966.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3max ULS10 -741.2 3410.4 870.32 -715.89 586.80 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 Pmin ULS22 -7739.9 -2380.9 1359.94 252.55 6127.44 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3min ULS18 -6492.0 -5288.4 1906.11 -553.62 5139.48 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3max ULS10 645.2 4443.5 1100.58 -966.16 510.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 Pmin ULS22 -7885.9 -1523.7 1175.79 467.09 6242.97 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3min ULS10 -6621.0 -4029.7 1626.83 -247.46 5241.59 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3max ULS18 -111.6 5065.0 1189.52 -1166.28 88.31 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 Pmin ULS22 -7889.9 -1869.6 1256.65 387.08 6246.16 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3min ULS10 -6631.0 -3742.2 1561.01 -179.55 5249.53 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3max ULS18 -1263.1 4802.7 1248.48 -985.32 999.99 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 Pmin ULS22 -7820.3 -2060.9 1293.89 335.34 6191.10 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3min ULS10 -6645.3 -3604.5 1530.47 -146.02 5260.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3max ULS18 -2399.2 4659.0 1333.41 -833.58 1899.34 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 Pmin ULS22 -7881.4 -2274.7 1349.98 291.98 6239.44 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3min ULS10 -6704.1 -3398.9 1488.79 -92.10 5307.43 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3max ULS18 -3467.0 4435.8 1392.72 -670.43 2744.69 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F9 Pmin ULS22 -8002.5 -2534.9 1423.10 244.08 6335.30 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3min ULS10 -6804.6 -3214.9 1456.47 -38.84 5387.00 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3max ULS18 -4464.2 4229.8 1448.70 -518.66 3534.15 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 Pmin ULS22 -8322.6 -2717.2 1498.84 235.03 6588.72 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3min ULS18 -8036.1 -3540.8 1660.54 13.65 6361.93 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3max ULS18 -5291.0 3883.9 1454.37 -352.07 4188.74 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 Pmin ULS22 -8770.4 -2935.8 1596.32 230.85 6943.27 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3min ULS18 -8627.9 -4232.3 1882.99 -85.51 6830.41 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3max ULS18 -5860.9 3714.8 1474.41 -253.38 4639.91 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 Pmin ULS18 -9482.3 -5023.6 2156.02 -180.54 7506.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3min ULS18 -9482.3 -5023.6 2156.02 -180.54 7506.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3max ULS10 -5291.2 3898.1 1457.68 -355.36 4188.83 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 Pmin ULS18 -10593.6 -5994.3 2497.51 -290.51 8386.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3min ULS18 -10593.6 -5994.3 2497.51 -290.51 8386.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3max ULS10 -5180.0 4883.5 1675.28 -596.12 4100.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 Pmin ULS18 -11897.7 -6961.4 2858.28 -379.59 9419.04 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3min ULS18 -11897.7 -6961.4 2858.28 -379.59 9419.04 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3max ULS10 -4791.9 5907.0 1872.87 -874.57 3793.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 Pmin ULS18 -14188.7 -10845.1 4000.10 -1044.12 11232.74 N 3381.2 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3min ULS18 -14188.7 -10845.1 4000.10 -1044.12 11232.74 N 3381.2 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3max ULS10 -3839.2 9459.5 2599.81 -1799.98 3039.34 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 Pmin ULS22 -16553.9 -3129.0 2452.04 996.69 13105.19 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3min ULS18 -16173.1 -8692.5 3706.20 -336.81 12803.67 N 1966.9 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3max ULS10 -2417.3 8147.5 2146.56 -1642.97 1913.66 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 Pmin ULS22 -15708.9 -271.5 1699.49 1573.20 12436.22 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3min ULS18 -15329.0 -7948.7 3445.31 -251.76 12135.49 N 1013.8 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3max ULS10 -2066.2 7322.6 1918.16 -1487.71 1635.71 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement Pmin ULS18 -14495.7 -4973.5 2666.59 353.35 11475.78 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3min ULS18 -14495.7 -4973.5 2666.59 353.35 11475.78 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3max ULS10 -2129.1 4744.1 1325.05 -881.48 1685.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Table 5 16: Results of calculating reinforcement of Pier 4
Roof top Pmin ULS18 -446.8 -638.5 295.73 -160.34 311.41 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3min ULS9 -433.3 -694.5 313.69 -182.38 302.00 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3max ULS22 -304.0 609.4 263.70 -171.58 211.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Roof Pmin ULS22 -1046.6 48.0 175.72 141.43 729.45 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Roof M3min ULS22 -790.4 -763.7 392.51 -152.99 550.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3max ULS22 -780.9 467.8 285.39 -48.75 544.26 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F16 Pmin ULS22 -1561.9 13.4 241.44 231.87 1088.60 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F16 M3min ULS22 -1421.1 -1988.2 925.39 -494.75 990.46 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3max ULS14 -773.4 1006.3 476.57 -242.21 539.04 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 Pmin ULS18 -3120.3 -853.0 777.42 168.13 2174.75 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3min ULS14 -2062.8 -3044.7 1399.94 -774.85 1437.71 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3max ULS22 -1297.7 3994.0 1623.05 -1229.81 904.46 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 Pmin ULS18 -5575.5 -2322.6 1674.27 15.27 3885.95 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3min ULS22 -3168.8 -3874.3 1863.80 -903.56 2208.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3max ULS22 -1162.5 4474.8 1774.28 -1422.01 810.23 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 Pmin ULS18 -5714.8 -958.0 1208.02 523.74 3983.04 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3min ULS14 -3448.8 -3192.0 1662.55 -617.45 2403.71 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3max ULS22 -1447.2 4026.1 1657.17 -1218.62 1008.65 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 Pmin ULS18 -5806.3 -1076.2 1264.10 495.39 4046.82 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3min ULS14 -3859.2 -2840.0 1599.01 -429.56 2689.75 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3max ULS22 -1949.1 3838.4 1666.18 -1075.54 1358.46 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 Pmin ULS18 -5893.3 -1024.9 1258.96 526.89 4107.45 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3min ULS14 -4245.4 -2491.0 1532.89 -246.40 2958.92 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3max ULS22 -2516.7 3503.8 1632.68 -870.04 1754.06 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 Pmin ULS18 -5939.2 -1070.8 1282.31 517.45 4139.44 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3min ULS14 -4559.7 -2319.4 1519.22 -137.49 3177.97 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3max ULS22 -3054.7 3268.3 1630.08 -704.42 2129.03 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F9 Pmin ULS18 -5971.2 -1168.4 1322.01 487.44 4161.75 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3min ULS14 -4840.6 -2268.0 1543.42 -76.58 3373.75 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3max ULS22 -3570.0 3126.9 1657.66 -575.84 2488.18 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 Pmin ULS18 -6053.0 -1098.5 1309.44 524.80 4218.76 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3min ULS22 -5057.7 -2029.4 1491.10 41.53 3525.06 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3max ULS22 -4074.6 2712.6 1586.15 -351.42 2839.87 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 Pmin ULS18 -6343.7 -1875.6 1631.02 291.31 4421.37 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3min ULS22 -5537.0 -2316.4 1666.23 11.65 3859.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3max ULS22 -4554.9 2730.4 1665.28 -285.01 3174.63 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 Pmin ULS18 -7173.4 -2000.1 1801.20 372.56 4999.64 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3min ULS22 -6097.2 -2623.1 1860.64 -13.00 4249.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3max ULS22 -4917.8 2578.2 1665.91 -175.66 3427.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 Pmin ULS18 -8223.3 -2197.7 2030.85 461.06 5731.39 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3min ULS22 -6697.2 -3144.6 2137.80 -108.34 4667.75 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3max ULS14 -4762.0 2587.2 1645.52 -202.48 3318.97 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 Pmin ULS18 -9427.4 -2021.9 2150.50 706.29 6570.61 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3min ULS22 -7377.7 -3075.4 2216.19 19.48 5142.03 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3max ULS14 -4833.7 2675.3 1687.84 -223.09 3368.94 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 Pmin ULS18 -11643.2 -5159.8 3606.91 -78.66 8114.96 N 2122.1 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3min ULS22 -8156.2 -8291.0 4196.86 -1725.28 5684.62 N 3642.3 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3max ULS14 -4350.3 7376.5 3293.60 -1975.33 3032.03 N 1118.7 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 Pmin ULS18 -12935.4 -2516.2 2858.55 1061.27 9015.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3min ULS14 -8650.8 -6391.5 3593.41 -971.95 6029.35 N 1620.2 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3max ULS22 -4875.4 6608.4 3098.84 -1621.45 3398.01 N 99.52 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 Pmin ULS18 -12833.4 -3179.4 3079.95 808.95 8944.49 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3min ULS22 -9114.8 -6981.9 3874.57 -1112.51 6352.74 N 2314.9 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3max ULS14 -4494.3 4519.4 2295.03 -933.12 3132.39 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement Pmin ULS18 -12304.9 550.0 2060.81 1667.95 8576.14 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3min ULS14 -8762.0 -1231.9 1767.54 887.61 6106.85 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3max ULS22 -5107.6 3745.6 2111.59 -563.84 3559.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Table 5 17: Results of calculating reinforcement of Pier 5
Roof top Pmin ULS1 -235.2 -489.5 210.46 -139.18 163.93 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3min ULS9 -233.4 -544.6 229.86 -159.15 162.64 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3max ULS9 -154.7 261.5 116.83 -69.95 107.82 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Roof Pmin ULS8 -884.4 291.0 237.95 30.06 616.43 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Roof M3min ULS22 -568.3 -576.8 292.10 -119.88 396.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3max ULS14 -754.5 537.2 306.17 -77.55 525.83 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 Pmin ULS22 -1540.8 -826.1 528.51 -61.59 1073.92 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3min ULS14 -1494.9 -827.2 521.92 -68.91 1041.93 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3max ULS22 -1071.5 1160.1 576.67 -251.99 746.77 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 Pmin ULS18 -2247.3 -165.3 399.54 281.46 1566.30 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3min ULS14 -1492.4 -4521.4 1840.92 -1388.68 1040.13 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3max ULS22 -1136.9 3803.6 1530.68 -1186.17 792.38 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 Pmin ULS18 -3121.7 -940.2 808.75 137.21 2175.70 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3min ULS14 -2028.1 -5942.8 2429.70 -1815.14 1413.49 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3max ULS22 -1358.7 5302.8 2099.70 -1687.98 946.96 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 Pmin ULS18 -3553.4 -566.9 740.87 335.92 2476.61 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3min ULS22 -2872.6 -3117.2 1548.53 -678.04 2002.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3max ULS22 -2303.1 2463.7 1228.86 -530.95 1605.19 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 Pmin ULS18 -3976.6 -330.0 720.38 484.66 2771.59 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3min ULS22 -3093.8 -2896.9 1503.38 -565.86 2156.31 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3max ULS22 -2800.4 2022.8 1146.73 -298.12 1951.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 Pmin ULS18 -4325.2 -151.7 709.50 601.17 3014.55 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3min ULS22 -3397.2 -2635.0 1455.81 -426.35 2367.76 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3max ULS22 -3380.7 1886.7 1186.06 -161.61 2356.24 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 Pmin ULS18 -4684.3 -24.6 718.51 700.96 3264.79 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3min ULS22 -3697.3 -2440.6 1431.84 -311.43 2576.93 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3max ULS22 -3914.8 1808.8 1239.13 -52.84 2728.47 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F9 Pmin ULS6 -5082.5 721.0 1027.58 512.57 3542.36 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3min ULS22 -4001.0 -2387.7 1458.94 -246.52 2788.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3max ULS22 -4417.7 1789.9 1308.58 30.11 3078.97 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 Pmin ULS1 -5574.5 700.3 1094.74 594.51 3885.26 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3min ULS22 -4311.8 -1989.5 1363.82 -57.23 3005.17 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3max ULS22 -4884.2 1749.2 1364.75 115.32 3404.16 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 Pmin ULS1 -6047.0 765.1 1189.45 642.98 4214.60 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3min ULS22 -4632.0 -2135.6 1464.55 -60.91 3228.38 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3max ULS22 -5321.8 1887.9 1480.59 132.07 3709.13 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 Pmin ULS1 -6501.7 807.4 1273.47 696.75 4531.49 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3min ULS22 -4968.7 -2186.2 1533.60 -27.95 3463.01 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3max ULS22 -5720.3 2176.5 1644.03 89.38 3986.86 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 Pmin ULS1 -6932.8 849.6 1353.84 747.00 4831.93 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3min ULS22 -5340.4 -2267.5 1618.98 -0.66 3722.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3max ULS22 -6055.6 2771.7 1907.43 -72.39 4220.60 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 Pmin ULS7 -7345.1 818.6 1405.24 820.55 5119.33 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3min ULS22 -5764.1 -2075.3 1614.53 132.16 4017.38 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3max ULS22 -6322.7 3222.5 2108.87 -192.89 4406.76 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 Pmin ULS18 -8356.2 -813.3 1556.56 975.61 5823.99 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3min ULS14 -7547.3 -5362.9 3058.87 -771.81 5260.24 N 367.04 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3max ULS22 -6868.6 8193.7 3967.01 -1885.61 4787.23 N 3275.2 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 Pmin ULS18 -8921.5 -375.7 1485.93 1217.57 6218.04 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3min ULS14 -8099.6 -4902.7 2978.17 -523.74 5645.20 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3max ULS22 -6598.8 8338.6 3977.88 -1978.24 4599.16 N 2802.3 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 Pmin ULS18 -9188.1 3190.0 2531.41 252.85 6403.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3min ULS22 -7152.1 -7920.3 3912.31 -1745.01 4984.78 N 2429.3 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3max ULS22 -7106.4 6261.0 3312.81 -1159.35 4952.95 N 612.27 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement Pmin ULS18 -7896.8 -279.7 1296.37 1096.59 5503.82 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3min ULS14 -7329.5 -1915.1 1794.50 426.55 5108.43 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3max ULS22 -5585.2 3044.7 1933.65 -241.16 3892.72 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Table 5 18: Results of calculating reinforcement of Pier 6
Roof top Pmin ULS10 32.3 -386.2 190.11 -177.67 19.90 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3min ULS22 39.2 -497.0 244.19 -229.10 24.14 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3max ULS22 129.5 105.6 75.17 -25.36 79.70 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Roof Pmin ULS18 -551.8 225.2 213.33 -1.12 339.54 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
Roof M3min ULS22 -314.9 -591.3 342.14 -221.04 193.77 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3max ULS22 -350.6 404.2 259.91 -125.05 215.77 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F16 Pmin ULS18 -1154.8 82.1 261.19 182.97 710.66 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F16 M3min ULS22 -841.7 -1385.0 821.40 -497.66 517.99 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3max ULS18 -653.0 1004.1 603.73 -352.57 401.85 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 Pmin ULS18 -2657.9 -885.6 932.82 89.43 1635.60 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3min ULS14 -1895.4 -2122.7 1375.29 -646.29 1166.41 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3max ULS22 -648.9 3250.8 1672.78 -1423.19 399.34 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 Pmin ULS18 -4910.1 -1438.0 1629.00 259.49 3021.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3min ULS14 -3137.9 -2932.6 1999.91 -793.02 1931.02 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3max ULS22 -168.4 4261.3 2061.59 -1996.83 103.62 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 Pmin ULS18 -5277.1 -82.8 1054.26 975.40 3247.45 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3min ULS22 -3136.2 -1267.0 1206.42 -0.20 1929.95 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3max ULS22 -625.8 2234.6 1184.44 -943.75 385.10 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 Pmin ULS18 -5317.7 -171.3 1104.20 941.06 3272.41 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3min ULS22 -3327.8 -1268.4 1243.95 35.98 2047.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3max ULS22 -1079.3 2033.3 1175.78 -760.67 664.17 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 Pmin ULS18 -5225.2 -159.6 1080.85 928.86 3215.53 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3min ULS22 -3462.1 -1273.0 1271.98 59.59 2130.51 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3max ULS22 -1573.3 1832.5 1175.17 -570.07 968.16 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 Pmin ULS18 -5125.7 -142.7 1053.67 917.74 3154.26 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3min ULS22 -3610.9 -1290.6 1308.98 79.82 2222.09 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3max ULS22 -2063.4 1687.4 1200.34 -406.71 1269.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
F9 Pmin ULS18 -5034.1 -167.0 1047.61 888.57 3097.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3min ULS22 -3771.7 -1286.9 1338.15 112.50 2321.04 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3max ULS22 -2549.5 1626.2 1264.67 -284.09 1568.93 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 Pmin ULS18 -5025.1 -103.3 1015.58 917.16 3092.38 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3min ULS22 -4005.6 -1260.6 1370.60 170.02 2464.98 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3max ULS22 -2994.0 1412.5 1248.39 -96.87 1842.44 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 Pmin ULS18 -5240.3 -175.3 1091.20 924.29 3224.79 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3min ULS22 -4351.6 -1291.8 1451.96 221.71 2677.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3max ULS22 -3365.8 1443.8 1334.78 -40.23 2071.28 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 Pmin ULS18 -5852.5 -1161.8 1678.73 572.23 3601.54 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3min ULS22 -4816.2 -1370.6 1578.88 273.52 2963.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3max ULS22 -3634.9 1425.6 1377.87 20.18 2236.89 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 Pmin ULS18 -6860.3 -1235.6 1907.69 730.90 4221.75 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3min ULS22 -5377.1 -1602.1 1796.98 271.15 3309.00 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3max ULS22 -3777.5 1422.6 1403.84 49.03 2324.59 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 Pmin ULS18 -8031.7 -1114.2 2075.14 1013.97 4942.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3min ULS22 -5968.1 -1494.4 1859.32 436.09 3672.65 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3max ULS22 -3775.4 1217.3 1305.70 146.37 2323.32 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 Pmin ULS18 -9986.4 -2828.1 3267.15 573.76 6145.47 N 1034.1 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3min ULS22 -6864.3 -4360.1 3396.32 -756.19 4224.20 N 1447.7 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3max ULS14 -2469.8 2926.1 1868.36 -918.43 1519.89 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 Pmin ULS18 -11582.1 -1773.3 3071.75 1382.88 7127.42 N 16.22 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3min ULS14 -7761.0 -3336.1 3081.14 -96.14 4775.99 N 45.08 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3max ULS22 -2542.2 2931.7 1884.94 -907.16 1564.45 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 Pmin ULS18 -12271.2 -2393.3 3499.52 1220.17 7551.51 N 1178.2 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3min ULS22 -8532.2 -4432.0 3751.26 -469.66 5250.55 N 1941.2 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3max ULS22 -3223.3 2643.7 1878.77 -639.04 1983.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement Pmin ULS18 -12367.2 500.5 2616.64 2139.99 7610.61 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3min ULS14 -8672.3 -349.6 1834.24 1501.26 5336.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3max ULS22 -4314.1 2026.4 1794.57 -135.31 2654.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22
- Shear resistance of stirrup steel: sw sw 0 max bi swi bt o tt
Qbi, Qswi: Shear resistance of concrete and transverse reinforcement of the i th wall
Rsw, Rbt - calculated tensile strength of concrete and calculated shear of transverse reinforcement (MPa)
Asw - the area of stirrup steel corresponds to the number of stirrup branches
hoi - calculated height of the i th wall section, hoi = L - a (mm)
Si - horizontal steel step (mm)
Maximum shear force for each direction from Etabs:
Table 5 19: Internal force Story Output Case Location P (kN) V2 (kN) V3 (kN)
Table 5 20: Result of core calculation
Q bo kN Arrange q sw kN/m
A sw /s cm 2 /m s max mm ULS9 300 2500 2460 7271.13 3256.38 CT 12634.26 561.52 178 ULS14 300 2500 2460 2862.89 273.94 CT 3501.30 155.61 598
TYPICAL FLOOR CALCULATION
Floor plan
Figure 6 1: Typical layout Calculate the floor for the 14 th floor in the typical floor group The reason: the size of the 14 th floor column is the smallest in the typical group of floors, so the possibility of piercing the floor is the highest and the calculation Span of slab cell is also the largest, resulting in the moment appearing in the range will be the largest with the same distribution load
Floor load
Layers n γ t Load (daN/m 2 ) daN/m 3 m g tc g tt
Live Load (daN/m 2 ) n P tc P tt
Layers n γ t Load (daN/m 2 ) daN/m 3 m g tc g tt
Live Load (daN/m 2 ) n P tc P tt
Layers n γ t Load (daN/m 2 ) daN/m 3 m g tc g tt
Live Load (daN/m 2 ) n P tc P tt
(mm) h t Load (daN/m 2 ) daN/m 3 m g tc g tt
Calculation steps using SAFE 2016 software
Figure 6 2: Steps to design a floor using SAFE
Internal force
Figure 6 3: Structure layer load chart
Figure 6 5: Static load of construction wall
Figure 6 6: Floor strip L/4 in Y - direction
Figure 6 7: Floor strip L/4 in X - direction
92 Figure 6 8: Moment diagram in the X - direction
Figure 6 9: Moment diagram in the Y - direction
Reinforcement calculations
Table 6 5: Calculation material parameter table
Working condition coefficient of concrete γb 0.85 -
Compressive strength TTGH I Rb 17 Mpa
Tensile strength TTGH I Rbt 1.15 Mpa
Compressive strength TTGH II Rb,n,Rb,ser 22 Mpa Tensile strength TTGH II Rbt,n,Rbt,ser 1.75 Mpa
Rebar Steel CB400-V Value Unit
Tensile strength TTGH I Rs 350 Mpa
Compressive strength TTGH I Rsc 350 Mpa
Cường độ chịu kéo thép ngang Rsw 280 Mpa
Content of structural steel μmin 0.1 %
The largest steel content μmax 2.15 %
Content of economic steel μkinh tế 0.3÷0.9 %
Consider at the position of the floor cell with moment M = 84.310 (kN.m)
Chose: ao= 20 mm Floor thickness: hs = 20 cm
Calculation according to internal force results according to SAFE16
Table 6 6: Worksheet for reinforcement in the X direction
Strip Span M (kN/m) α ξ As (cm 2 ) Choose Asc
Span 32.632 0.059 0.061 4.542 10 100 7.85 0.44% OK Table 4 7: Worksheet for reinforcement in the Y direction
6.5.2 Check theshear resistance of the floor
Figure 6 10: Diagram of shear force in the Y- direction
Figure 6 11:Diagram of shear force in the X- direction The maximum shear force: Qmax = 226.825 kN
According to section 8.1.3.3.1 TCVN 5574:2018, there are regulations:
When there is no horizontal reinforcement: Qsw = 0
Calculation of flexural members according to the inclined section:
Qb: Shear force resistance of concrete in inclined section
Qsw = 0: Shear force by horizontal reinforcement in inclined section
0.5Rbtbh0 103(kN) ≤ Qb = 226.825 (kN) ≤ 2.5Rbtbh0 517.5 (kN)
Calculation by limit state II
The total deflection caused by various loads is calculated by the formula: f = f1 - f2 + f3
+ f1: The deflection due to the short-term effect of the entire load
+ f2: Deflection due to short-term effects of long-term loads
+ f3: Deflection due to long-term effects of long-term loads
According to section M.2.1, Appendix M - TCVN 5574:2018 has regulations: When calculating construction structures, the deflection or displacement should satisfy the following conditions: f ≤ fu
+ f: The deflection or displacement of the member is determined
+ fu: Limit deflection or displacement
+ According to table M1, limited vertical deflection fu for roof and floor members with span: L = 9.5(m) is [f] = L/250
Declare the deflection test combination in Safe software
Table 6 8: Deflection test load combination
1 f1 Nonlinear Static (1)TTBT + (1)TTHT + (1)TTTX + (1)LL1 + (1)LL2
2 f2 Nonlinear Static (1)TLBT + (1)TTHT + (1)TTTX + (0.3)LL1 + (0.3)LL2
2 f3 Nonlinear Static (1)TLBT + (1)TTHT + (1)TTTX + (0.3)LL1 + (0.3)LL2 For the combination f1 and f2, we select the item Nonlinear (Cracked) in
Appendix Analysis only mentioning the short-term component
For the f3 combination, we select the Nonlinear (Long Stamp Cracked) item in
Appendix Analysis, including the long-term component
Creep Coefficient = 1.7: Coefficient of creep of concrete (table 11 TCVN
Shrinkage Strain = 0.0003: Shrinkage coefficient (according to temperature and humidity conditions in Vietnam, we can choose 0.0003)
Check floor deflection by Safe software
Based on the deflection analysis chart by safe software
6.6.4 Check the condition of the crack
Calculations according to crack formation of reinforced concrete members are carried out in cases where the following conditions are observed:
+ M is the bending moment due to external force for an axis perpendicular to the plane of action of the bending moment and passing through the center of gravity of the converted cross-section of the member;
+ Mcrc is the bending moment due to the orthogonal cross-section of the bearing member upon crack formation, determined by the formula: crc bt,ser pl
+ Wpl is the elastic bending moment of the section for the outermost tensile concrete fiber: determined by the formula:
With: α: Conversion coefficient of reinforcement to concrete E s
Ared: The area of the converted cross-section of the member, determined by the formula:
(A' 0) x: Height of concrete area under compression; x = ξh 0
Ibo, Iso, I’so, : is the moment of inertia of the concrete and reinforced section with respect to the center of gravity of the converted cross-section of the member:
Table 6 9: Check table for crack occurrence condition
Concrete B30 - The compressive strength of concrete
Rb 17 Mpa Calculated compressive strength of concrete
Rbt,ser 1.75 Mpa The calculated tensile strength of concrete
Rs 350 Mpa Tensile strength of steel
Es 210000 Mpa Elastic modulus of steel
Eb 32500 Mpa The modulus of elasticity of concrete α 6.462 - Ratio of elastic modulus of steel / concrete b 1000 mm Width of the calculated cross-section h 200 mm Calculated cross-sectional height a 20 mm
Distance from the center of steel in the bearing area to the outer edge of the protective concrete layer a' 0 mm
Distance from the center of the steel in the compression zone to the outer edge of the protective concrete layer h0 180 mm
Distance from the center of the bearing reinforcement to the outer edge of the compressive concrete
As 1539 mm 2 Cross-sectional area of tensile reinforcement
A's 0 mm 2 Cross-sectional area of compressive reinforcement
Ared 209944.3077 mm 2 The converted cross-sectional area of the member ξ 0.523683204 - x 94.263 mm Height of concrete area under compression
Ibo 279191502 mm 4 Moment of inertia about the neutral axis of the compressive concrete area
Iso 11312938.4 mm 4 Moment of inertia about neutral axis of area of tensile reinforcement
Table 6 9: Check table for crack occurrence condition
I'so 0 mm 4 Moment of inertia about neutral axis of area of tensile reinforcement
Sbo 5590159.048 mm 3 Static moment with respect to the neutral axis of the tensile concrete area
The bending moment of the section for the outermost tensile fiber taking into account the inelastic strain of the concrete in the tension zone
Mcrc 21.444 kNm/m Crack resistance moment at the section under consideration
Mmax 84.6465 kNm/m Moment due to load at the section under consideration Check Mcrc < M Therefore, the cross-section appears cracks
Conclusion The floor slab has cracks, it is necessary to calculate and limit the crack width according to TCVN 5574 - 2018
According to Section 8.2.2.1.3 TCVN 5574:2018, there are regulations on calculation of crack width according to the following formula: acrc acrc,u
+ acrc: Is the crack width due to external force determined
+ acrc,u: Is the allowable limit crack width (taken according to Table 17 TCVN 5574:2018)
Load combination to check crack width
Table 6 10: Load combination to check crack width table
1 acrc1 Nonlinear Static (1)TLBT + (1)TTHT + (1)TTTX + (0.3)LL1 +
2 acrc2 Nonlinear Static (1)TLBT + (1)TTHT + (1)TTTX + (0.3)LL1 +
(0.3)LL2 When declaring the load combination to check the crack width is similar to the deflection test, we need to take into account the short-term (acrc1) and long-term (acrc2) components
For the acrc1 combination, we select the item Nonlinear (Cracked) in the Analysis section, only mentioning the short-term component
For the acrc2 combination, we select the Nonlinear (Long Stamp Cracked) item in the Analysis section, including the long-term component
Creep Coefficient = 1.7: Coefficient of creep of concrete (see table 11 TCVN 5574:2018)
Shrinkage Strain = 0.0003: Shrinkage coefficient (according to temperature and humidity conditions in Vietnam, we can choose 0.0003)
Check crack width with Safe software
Figure 6 13: Short-term load crack diagram
We have: acrc1 = 0.073 mm < [acrc1] = 0.4mm => Ok
Figure 6 14: Long-term load crack diagram
We have: acrc2 = 0.073 mm < [acrc1] = 0.4mm => OK
GEOLOGICAL STATISTICS
Theoretical basis of statistics
Observe the color change of seeds that we divide into each layer of soil
According to TCVN 9362-2012 (QPXD 45-78), it is called a engineering geological layer when the set of values corresponding to its mechanical and mechanical criteria must have a sufficiently small coefficient of variation.
Geological statistics of construction
Groundwater level: At a depth of -7.8 m from the ground
Layer 1: Clay, yellow-gray - gray-white - reddish brown, soft, hard
Layer 1a: Clay mixed with grit, gray-white - reddish brown, hard plastic - semi- hard
Layer 2: Sand, yellow brown - red brown, white gray - yellow gray, flexible Layer 3: Sand–grit, yellow-gray, medium tight
Layer 4: Yellow-gray clay, semi-hard - hard state
Layer 5: Clay, reddish brown – yellow brown – white gray, hard plastic
Layer 6: Sand, yellow-brown - yellow-gray - red-brown, plastic - hard state Layer 6b: Clay, yellow-brown – red-brown, semi-hard – hard state
Layer 7: Dust – medium coarse sand, yellowish gray – yellow brown – reddish brown, tight texture, very tight
Synthesize physical and mechanical parameters
Table 7 1: Synthetic table of physical and mechanical indicators of soil layers
The water level is at -7.8m behind the natural ground
Submerged unit weight: γdn (g/cm 3 ) 1.02 1.05 1.09 1.14 1.07 1 1.08 1.03 1.1
Natural moistural content: ω (%) 21.81 22.53 16.51 13.35 21.85 22.89 17.01 23.23 15.08 Specific gravity: Δ (g/cm 3 ) 2.69 2.74 2.67 2.65 2.75 2.7 2.67 2.74 2.66
Void ratio: e0 0.66 0.662 0.524 0.445 0.637 0.7 0.544 0.691 0.503 Liquid limit: WL (%) 30.5 38 21 - 44.1 32.9 23.1 44.6 - Plastic limit: WP (%) 15.3 18.7 14.6 - 21.8 17.9 16.7 22 - Plasticity index: IP 15.1 183.3 6.4 - 22.6 15.1 6.4 22.6 -
Angle of fiction: φ 0 14 0 38' 15 0 38' 26 0 59' 28 0 38' 17 0 10' 15 0 4' 27 0 7' 17 0 17' 29 0 56' Cohesion: c (kG/cm 2 ) 0.22 0.317 0.071 0.02 0.365 0.263 0.073 0.369 0.017 Moduyn vertical:
DESIGN FOUNDTION
Overview
Scale of the project 1 basement, 17 floating floors, large horizontal load Identify columns with equivalent reaction pairs (vertical force difference not more than 15%) into a group, taking the most dangerous internal force pairs of that column to calculate.
The solution of foundation design
I use the bored pile foundation solution to design
– Layer 7 with good load capacity, with depth from -46.5m to -60.0m Put the tip of the pile in the soil layer 7, having an internal friction angle φ = 29 0 56', SPT index 35-62, is reasonable.
Determine the calculation parameters
8.3.1 Determine the depth of the pile cap
– According to the Annotate 1 of Table 7 TCVN 10304:2014, there are regulations: Value of pile tip depth and average depth of soil layer on ground leveling ground by excavation, soil installation or accretion with a height of up to 3m, must be calculated from the height of the natural terrain, and if the excavation, earthing or accretion is from 3m to 10m, it must be calculated from the conventional elevation 3m higher than the level of excavation or 3m above the level of the embankment
– The foundation is designed at basement level 1 (-3.4 m), using the foundation surface as the basement floor
– The design of the bridge deck coincides with the bottom edge of the basement floor 1 (z = -3.4)
– Choose the estimated thickness of the elevator foundation: 2.5m
– Choose the estimated thickness of the foundation: 1.5m
8.3.2 Preliminary determination of pile materials
Working condition coefficient of concrete γb 0.85 -
Compressive strength TTGH I Rb 22 Mpa
Tensile strength TTGH I Rbt 1.4 Mpa
Compressive strength TTGH II Rb,n,Rb,ser 29 Mpa
Tensile strength TTGH II Rbt,n,Rbt,ser 2.1 Mpa
Rebar Steel CB400-V Value Unit
Tensile strength TTGH I Rs 350 Mpa
Compressive strength TTGH I Rsc 350 Mpa
Cường độ chịu kéo thép ngang Rsw 280 Mpa
Content of structural steel μmin 0.1 %
The largest steel content μmax 1 %
Content of economic steel μkinh tế 3 %
Select the pile diameter in accordance with the ground conditions and the current construction capacity of bored piles
– For axially compressed piles, the reinforcement content is not less than 0.2 - 0.4%
– The diameter of reinforcement is not less than 10mm and is arranged evenly around the pile circumference For piles subjected to horizontal loads, the reinforcement content is not less than 0.4 - 0.65%
– Because the pile mainly bears the compressive force, the reinforcement in the pile is calculated according to the structure:
+ The bearing longitudinal reinforcement is assumed to be 0.4% the area of the bearing longitudinal reinforcement
+ The bored cavity pile belt usually has a diameter (ỉ6 ữ ỉ10) with a distance of
– Section 8.17, TCVN 10304 – 2014 has regulations: “Longitudinal reinforcements must be connected not only by reinforcement but also by rings installed by welding over the length of the steel cage in steps not greater than
5 times diameter (but not less than 2m)”
– Section 8.3, TCVN 9395 – 2012 stipulates: “Reinforcing reinforcement is usually used with the same diameter as the main reinforcement, bent into a puddle placed inside the main reinforcement, the distance is from 2.5m to 3.0m, connected to the main reinforcement by welding and lanyards as required by the design” The width or radius of the millet depends on the thickness of the concrete layer, usually 5cm
Pile tip height and pile length:
– It is expected that the tip of the pile rests against soil layer 7 (dusty – medium coarse sand, yellowish gray – yellow brown – reddish brown, tight texture, very tight) because this soil layer is a good and thick soil layer
+ Lcoc: Actual length of pile
+ Ltt: Calculated length of pile
+ Lneo ≥ 30ỉ: Length of the pile to be demolished
+ Select pile tip depth Zmũi = 50m
Pile tip elevation: Zmũi = Ltt + Lmũi + Df + tbtl
Table 8 2: Reliminary size summary table of foudation
Length of pile head dam Lneo m 0.6 0.8
Length of poles anchored Lfix m 0.2 0.2
Thickness of lining concrete tbtl m 0.1 0.1
Concrete cross-sectional area Ab m2 0.499 0.499
The tip of the stake is inserted into the 7th layer of soil Zmui m 3.8 3.8
Building foundation is calculated according to the most dangerous internal force value transmitted to the foot of the column, including:
Table 8 3: Foundation internal force results from an etabs shape
Foundation Nmax M x tu M y tu Q x tu Q y tu
Piles load capacity
8.4.1 Load capacity according to material strength
– The bearing capacity of the pile according to the material:
+ γcb = 0.85: Coefficient at Section 7.9.1 TCVN 10304:2014
+ γ’cb = 0.8: The coefficient refers to the method of pile construction
+ Rb: Calculated compressive strength of concrete
+ Ab: The cross-sectional area of the pile
+ Rs: Tensile strength of steel reinforcement
+ As: Area of reinforcement in pile
+ φ: The coefficient of reduction of bearing capacity due to the effect of longitudinal bending
The longitudinal bending coefficient depends on the slenderness: 1 min λ = L i + λ ≤ 14 => φ = 1
+ i: Radius of inertia: I i = A + I: Moment of inertia of the cross section
+ Section 7.1.8, TCVN 10304:2014 stipulates: For all types of piles, when calculating l1 is determined by the fomula: 1 0 ε
+ L0=0: The length of the pile from the bottom of the platform to the leveling level Because the foundation of the building is a low base, l0 =0
+ k: The scale factor, taken depends on the type of soil surrounding the pile according to table A.1 TCVN 10304:2014
+ E: Elastic modulus of the pile material
+ I: Moment of inertia of the pile cross section:
+ bp: Conventional pile width, in m, for piles with a minimum pile diameter of 0.8m take b = d+1, for other cases: bp = 1.5d + 0.5 (m) + γc = 3: The coefficient of working conditions is taken according to A.2
The scale factor k, is taken depending on the type of soil surrounding the pile according to table A.1 TCVN 10304:2014
Table 8 4: Scale factor determination table
1a Clay with gravel, gray-white - red-brown, plastic-hard - semi-hard 3.5 0.662 12000
1 Lightning, yellow-gray - white gray - reddish brown, soft and hard 2.2 0.66 12000
2 Sand, yellow brown - red brown - white gray - yellow gray, plastic 7.8 0.524 12000
3 sand – gravel sand, yellow gray, medium tight texture 2.8 0.445 12000
4 Yellow-gray clay, semi-hard - hard state 3.3 0.637 12000
5 Lightning, reddish brown - yellow brown - white gray, hard plastic 3.9 0.7 12000
6 Asia sand, yellow brown - yellow gray - red brown, plastic - hard 19.4 0.544 12000 6b Clay, fawn - reddish brown, semi-hard - hard state 0.5 0.691 12000
7 Dust – medium coarse sand, yellowish gray – yellow brown – reddish brown, tight texture, very tight 2.5 0.503 12000 ktb = 12000
+ E : Elastic modulus of the pile material (E = 36000 MPa)
+ I: Moment of inertia of the pile cross-section:
L = L + 0 5(m) a 0.4 (The foundation of the building is a low platform,
– The bearing capacity of the pile:
8.4.2 The bearing capacity of the pile according to the physical and mechanical criteria of the ground
– According to TCVN 10304:2014, the bearing capacity according to the physical and mechanical criteria of the ground is determined: n 1 c,u c cq p b cf i i i=1
+ γc = 1: Coefficient of working condition of pile in soil
+ qb: Resistance strength of soil under pile tip,
' p 4 1 1 2 3 1 q = 0.75α (α γ d + α α γ h) + u: Perimeter of the cross section of the pile
+ fi: Is the average resistance strength of the soil layer “i” on the pile body (see table 3 TCVN 10304:2014)
+ Ab: Area of the pile resting on the ground, equal to the cross-sectional area of the pile tip
+ li: The length of the pile tip is in the “i” soil layer
+ γcq = 1: Coefficient of working condition of soil at pile tip
+ γcf: Coefficient of soil working condition on pile side
+ γcf = 0.7 through the clay layer
Table 8 5: Results of calculating SCT according to the physical and mechanical criteria of the ground
Normal foudation Layer Element Z tb (m) l i (m) I L f i γ cf,i f i l i
– Load capacity at pile tip:
Where : α1, α2, α3, α4: are dimensionless coefficients that depend on the friction angle in the calculation of the ground and are taken according to table 6 TCVN 10304-2014 multiplied by the reduction coefficient 0.9
+ γ'1: is the calculated density of the soil under the pile tip (taking into account the buoyancy effect of water-saturated soil
+ γ1: is the average calculated density of the soil lying on the tip of the pile
(taking into account the buoyant effect of water-saturated soil: 1 i i i γ = γ l l
+ h: pile lowering depth from design face to tips
+ Ground water level at depth: -7.8m
+ The pile tip is located at layer 7=> φ = 29⁰56' = 29.9330
Table 8 6: Calculation results of pile tip load capacity
Coefficient Pile tip load capacity α1 29.160
α2 54.133 α3 0.609 α4 0.265 γ'1 (kN/m 3 ) 11.0 γ1 (kN/m 3 ) 11.16 d (mm) 800 h 48.2 n 1 c,u c cq p b cf i i i=1
– Calculated bearing capacity of piles according to mechanical and mechanical criteria: 1 a 0 cu n k γ 1.15
+ γk: Ground reliability coefficient (depending on the number of piles):
+ γ0: Factor with working condition (γ0 = 1 for single pile foundation, γ0 1.15 for multi-pile foundation)
– γn: The importance coefficient of the building Grade 2 works => γn = 1.15
– Mechanical load capacity of elevator foundation, similar calculation:
8.4.3 Load capacity of piles according to ground strength
– According to Appendix B TCXD 205-1998, the bearing capacity according to the strength of the ground is determined:
R = q A +uγ f l Load capacity at the pile tip: Rp = qb.Ab
Load-bearing strength of the soil under the tips: qp = cNc + σ’vp Nq + γdp Nγ
c: Adhesive force of the soil layer at the pile tip
Nc, Nq, Ny: Look up from the friction angle of the soil layer at the pile tip according to Terzaghi
σ’vp: Effective vertical stress at the pile tip due to self-weight
– Components bearing the load due to friction around the pile Rf: f i i
li: The length of the pile tip is in the “i” soil layer
fi: Average resistance strength on pile body.f =k σ i i v,zi tanφ + c ai
ki: Horizontal pressure coefficient of the “i” soil layer
σv,zi: Effective normal stress in the vertical direction of the “i” soil layer
φ: Friction angle between soil and pile in loose soil layer “i”
Table 8 7: Results of calculating γcf,ifili base on the criterion of ground strength:
1a Clay with sand and gravel, hard - semi-hard 3.35 3.5 15.63 31.70 0.731 67.67 46 127
1 Lightning, flexible - soft and hard
6 Asia sand, flexible - hard 34.2 19.4 28.28 7.30 0.526 423.5 127 1974 6b Lightning, semi-hard-hard 44.15 0.5 17.28 36.90 0.703 530.8 153 61
7 Sand and dust, tight- very tight 45.4 2 29.93 1.70 0.501 544.4 159 254 Σγcf,ifili 3488
– Components subjected to loads due to friction around the pile Rf: f cf,i i i
R = uγ f l 2.51 3488 8735.9 (kN) – Load capacity at pile tip: Rp = qb.Ab qp = cNc + σ’vp Nq + γdp Nγ
– Using 2-D linear interpolation method to determine the coefficients Nc, Nq, Ny: Look up from the friction angle of the soil layer at the pile tip according to Terzaghi
– Effective vertical stress at the pile tip due to self-weight: vp i i vp vp σ' = γ h σ' = (2.02×3.4+1.97×0.9+1.02×1.3+1.09×7.2+1.14 ×2.8+1.07×3.3+1×3.9+1.08×19.4+1.03×0.5+1.1×2 σ' = 526.55 (kN)
– Load-bearing strength of the soil under the cap p c vp q p γ
– Load capacity at pile tip: Rp = qb.Ab = 9859.8×0.499 = 4918.9 (kN)
– So the bearing capacity of the pile according to the strength is: n c,u p b cf i i i=1 c,u
– So the calculated bearing capacity of the pile according to the strength is:
Where: FSs - factor of safety for the lateral friction component: 1.5-2.0
Fsp - factor of safety for the tips resistance component: 2.0-3.0 – Mechanical load capacity of elevator foundation, similar calculation: a, TM
8.4.4 The bearing capacity of the piles according to the results of the SPT test
(formula of the Japanese Institute of Architects 1988)
– The bearing capacity of the pile is determined by the formula: n c,u c cq p b cf ci ci si si
qb: Resistance strength of the soil under the pile tip
Ab: The cross-sectional area of the pile
fci, fsi: Average resistance strength on the pile segment lying in the cohesive and loose soil layer “i”
lci, lsi: The length of the pile is in the loose, sticky soil layer "i"
– Pile tip resistance: For loose soils by the bored cavity method qp = 150Np
– Strength of soil resistance on the pile body:
+ The pile body is in the loose soil layer: fsi = 10/3Nsi
+ The pile body is in the cohesive soil layer: fsi = αpfLcui= αcui =6.25αNs,i
αp: Determined according to the chart in Figure G.2a, Appendix G TCVN
fL: determined according to the chart in Figure G.2b, Appendix G TCVN 10304:2014
Nsi: SPT Index For the bored cavity pile fL=1, the coefficient αp is determined by looking up the graph G.2a, Appendix G TCVN 10304:2014
→ Pile load capacity according to SPT:
Table 8 8: Results of calculating the friction force around the pile
(m) Nsi Cui αp f si /f ci γ cf,i f i l i
1a Clay with sand and gravel, hard - semi-hard 3.5 13.50 84.38 0.500 42 103
1 Lightning, flexible - soft and hard 0.9
7 Sand and dust, tight- very tight 2 50.50 168 269 Σγcf,ifili 2606
– Components bearing the load due to friction around the pile Rf: f cf,i i i
– Pile tip resistance: For loose soil, the bored cavity method qp = 150N
With Np is the average SPT index between 1d below and 4d above the pile tip:
– So the load capacity of the pile calculation according to SPT test
– Mechanical load capacity of elevator foundation, similar calculation: a, TM
– Design load capacity:Q = min Q ; Q ; Q ; Q a vl 1 a 2 a 3 a
Determine the number of piles and layout of the foundation system
8.5.1 Determine the number of piles
– Preliminary determination of the number of piles: a
n: Number of stakes in the pile cap
N tt : Calculated load transmitted to the foundation
Qa: Calculation value of design load capacity of pile
Table 8 9: The result of calculating the number of piles
Móng N tt (kN) nmin nmax Chose
– Pile spacing: According to section 3.9.2 TCXD 205-1998:
Distance from the edge of the pile to the edge of the platform 1 1 ÷ D
The cost of pile caps and foundation braces also affects the choice of distance and pile size
The distance between the piles can determine the following conditions:
+ Construction method (piled or bored pile);
+ Load capacity of pile group
+ Normally, the center distance between two adjacent piles is taken as follows: + Friction pile is not less than 3d;
+ Piles with extension cord, not less than 1.5 diameter extension D or D +1m (when D > 2m)
+ According to article 10.7.1.5 standard 22TCN-272-05, the distance of the pile centers is at least 2.5D
Table 8 10: Dimensions of foundation plate
Figure 8 12: Ground for positioning the center of the pile
8.5.3 Modeling foundations by software SAFE 16
According to section 7.4.2 TCVN 10304:2014 For single hanging piles without extension tip, the settlement of piles is determined by the following formula:
The stiffness of the pile is calculated by the formula: N G l 1
+ N: vertical load acting on the pile
+ β': is the absolute stiffness coefficient: n 1
G d + α': Same as β' but for homogeneous ground: k l n α' = 0.17ln( ) d
+ Relative stiffness of the pile: 2
G l + EA: Pile body stiffness in compression:
+ G1: Average characteristic value of the entire soil layer in the piling depth + G2 : Taken within the range of 0.5L, from a depth of lL to 1.5L from the top of the pile, provided that the soil under the tip is not peat, silt or soil in a flowing state
According to section 7.4.2 TCVN 10304:2012, it is allowed to take the sliding module G: E 0 0
2(1+n) kn: is the coefficient determined by the formula:
2 k = 2.82 - 3.378υ + 2.18υ = 1.88 n υ: is the potxong coefficient of the ground: υ = 0.3
Table 8 13: Calculating the pile stiffness with the corresponding foundation
L = (m) 45.1 43.6 Pile calculation length d = (m) 0.8 0.8 Looks like piles
E = (Gpa) 36 36 Elastic modulus of pile material
E0,tb = (kN/m 2 ) 8910 The modulus of soil elasticity in the pile lowering depth
E0, tb(1L-.5L) (kN/m 2 ) 12314 Soil elasticity modulus from depth lL to 1.5L from top of pile
G2 = (kN/m 2 ) 4926 χ = 2.50 2.67 Relative stiffness of the pile λ = 0.81 0.82 β' = 0.74 0.73 Corresponding coefficient of absolute rigid pile α' = 0.79 0.79 Corresponding coefficient of absolute rigid pile with homogeneous ground β = 0.9 0.9 Relative stiffness of the pile
Figure 8 3: Foundation model with Safe 16
M1 foundation design
Where n1 ,n2 : number of row and pile on group’s pile : n1 = 1 , n2 = 2
S: distance between the two centers of the pile: S = 2.4 m θ(deg) = arctag(D/S) = arctag(0.8/2.4) = 18.43
Allowable bearing capacity of pile group:
9.6.3 Check the stability of the ground at the bottom of the conventional foundation block
Figure 8 6: Conventional foundation block model
The average friction angle of the soil layer that the pile penetrates i i tb i φ = φ l l
li: length of the soil layer i that the pile penetrates
φi: friction angle of the soil layer i that the pile penetrates
Table 8 14: The average friction angle
– Size of the base of the conventional foundation cube
– Determine the weight of the normal foundation pilecap pile s qu W + W + W 6655.63 2266.97 88055.72 96978.32 (kN)
Foundation block weight is usually from the bottom of the platform upwards:
Wpilecap = Fqu hđ γbt = 177.483×1.5×25 = 6655.63 (kN)
Self weight of pile group in soil mass:
Weight of normal foundation block from base base to surface of normal foundation:
Ws = (Fqu – nFc)h γtb = (177.483 - 4×0.53)×45.1×11.13 = 88055.72 (kN)
Check bearing capacity (R tc ) below the base of the normal foundation:
– Load tt tt qu qu
N = N + W 17121.82 96978.32 114100.14 (kN) tt tt tt x, qu x x mui tt tt tt y, qu y y mui
Foundation bottom pressure x y max 2 2 qu qu qu qu qu qu
2 max 2 2 x y mi u q n 2 2 qu qu qu qu qu q min u qu
– Standard load capacity (Rtc) of the subsoil under the normal foundation
With: Looking up the standard TCVN 9362-2012, we get the following values: ktc = 1, based on the test results of soil samples at the construction site
The tip of the pile in the soil layer 7 is a layer of sand and dust
=> A = 1.14; B = 5.57; D = 7.93 γ * : Specific gravity of soil layer on pile tip: i i 3 i γ* = γ h = 11.16 (kN/m ) h
γ: Specific gravity of soil layer under pile tip γ = 11 (kN/m 3 ) c: The cohension under the pile tip: c = 1.7 (kN/m 2 )
8.6.3 Checking for settlement of conventional foundation blocks
Self stress at pile tip: bt i
Settlement stress at pile tip: gl t 2 bt σ = Pc- σ = 643.14 - 540.85= 102.3 (kN/m )
We have σ bt = 540.85 (kN/m 2 ) > 5σ gl = 511.5 (kN/m 2 ) => OK
Figure 8 7: Punching shear tower Diagram According to Section 8.1.6.3.1 of TCVN 5574-2018, the penetration conditions are checked when bending in two directions: x y b,u bx,u by,u
F, Mx and My are the concentrated force and concentrated bending moments in the X and Y directions, respectively, which have been included in the puncture calculation (see 8.1.6.1 TCVN 5574-2018), due to the external force.;
Fb,u, Mbx,u and Mby,u are the limited concentrated forces and the limited concentrated bending moments in the X and Y directions, respectively, which the concrete in the calculated cross-section can withstand, respectively , when they act independently
Ab = uh0: is the calculated cross-sectional area at about 0.5h0; from the edge of the concentrated force transfer area F, with a working height h0
Calculated perimeter of cross section c c 0 u = 2b + 2h + 4h 2 700 2 1000 4 1350 8800 (mm)
– Maximum distance from failure envelope to foundation center of gravity c 0 max c 0 max b + h 700 1350 x = = 1025 (mm)
– Moment of inertia of the calculated contour with respect to the axis passing through the center of gravity of the calculated contour
– Check the condition of anti-piercing (TCVN 5574:2018):
8.6.5 Calculation of the reinforcement of the foundation
– Based on Appendix 8 Price of reinforced concrete 1– PHAN QUANG MINH with steel CB400-V and Concrete B40
Table 8 15: Internal force results from safe model Direction Moment (kN.m) Bstrip (m)
Table 8 16: Results of reinforcement of foundation column M1
Calculating the design similar to M1 we have:
Figure 8 9: Internal force chart M2 Table 8 17: Results of reinforcement of foundation column M2
MTM foundation design
Figure 8 10: The layout of the elevator foundation piles
Figure 8 11: Foundation pile head reaction M1
Where: n1,n2 : number of row and pile on group’s pile : n1 = 1, n2 = 2
S: distance between the two centers of the pile: S = 2 m
Allowable bearing capacity of pile group:
8.7.3 Check the stability of the ground at the bottom of the conventional foundation
The average friction angle of the soil layer that the pile penetrates i i tb i φ = φ l l
Table 8 18: Average internal friction angle
– Size of the base of the elevator foundation:
– Determine the weight of the elevator foundation pilecap pi qu W + W + Wle s 28114.3 182579 222825 (kN)
Weight of elevator foundation block from the bottom of the pedestal upwards:
Wpilecap = Fqu hđ γbt = 374.86×3×25 = 28114.3 (kN)
Self weight of pile group in soil mass:
The weight of the footing block is calculated from the bottom of the platform to the surface of the foundation:
Ws = (Fqu – nFc)h γtb = (374.86 - 21×0.53)×45.1×11.13 = 182579 (kN)
Check bearing capacity (Rtc) below the base of the conventional foundation tt tt qu qu
N = N + W 105219.375 222825 328044.36 (k )N tt tt tt x, qu x x qu tt tt tt y, qu y y qu
– Standard load capacity (Rtc) of the subsoil under the conventional foundation
With: Looking up the standard TCVN 9362-2012, we get the following values: ktc = 1
The tip of the pile is in soil layer 7 which is dust layer:
=> A = 1.14; B = 5.57; D = 7.93 γ * : Specific gravity of soil layer on pile tip: i i 3 i γ* = γ h = 11.16 (kN/m ) h
132 γ: Specific gravity of soil layer under pile tip γ = 11 (kN/m 3 ) c: The soil adhesion force under the pile tip: c = 1.7 (kN/m 2 )
8.7.4 Checking for settlement of conventional foundation blocks
Self stress at the pile tip: bt i i σ =γ h = 540.85×
The stress causing settlement at the pile tip: gl c 2 bt σ = Pt - σ = 878.50 - 540.85 = 337.65 (kN/m ) Divide the soil layers under the pile tip into elemental layers according to the height condition: hi = 0.5 (m)
Table 8 19: Calculation results of elevator foundation settlement
Layer Point hi z (m) z/b k0 σbt (kN/m 2 ) σgl (kN/m 2 ) E (kN/m 2 ) Si (cm) Ghi chú
Total settlement: S = 7.2 (cm) ≤ [S] = 8 cm => OK
Figure 8 12: Conventional footing pressure chart
According to Section 8.1.6.3.1 of TCVN 5574-2018: x y b,u bx,u by,u
F, Mx and My are concentrated force and concentrated bending moments in the X and Y axes, respectively
Fb,u, Mbx,u and Mby,u are the limited concentrated force and the limited concentrated bending moments in the X and Y directions, respectively,
Calculated perimeter of cross section c c 0 u = 2b + 2h + 4h 2 9900 2 3750 4 1850 34700mm
375 – Maximum distance from failure contour to foundation center of gravity: c 0 max c 0 max b + h 9900 1850 x = = 5875 (mm)
– Moment of inertia of the calculated contour with respect to the axis passing through the center of gravity of the calculated contour
– Check the condition of anti-piercing (TCVN 5574:2018): x y b,u bx,u by,u
8.7.6 Calculation of the reinforcement of the foundation
Figure 8 13: Internal force results in 2 directions – Based on Appendix 8 Price of reinforced concrete 1 – PHAN QUANG MINH with steel CB400-V and Concrete B40:
A = M ξ h R Table 8 20: Results of reinforcement of MTM-pile cap
DESIGN FORMWORK
Formwork work
9.1.1 Requirements when erecting formwork scaffolding
Formwork and scaffolding must be designed and accepted according to TCVN 4453-1995 standard before proceeding with the next work
Choose standard reinforcement of Hoa Phat company to calculate columns and foundations and only use TEKCOM film-coated formwork plywood to design the floor, advantages of fast construction
Figure 9 1: Parameters of Hoa Phat steel formwork
Table 9 1: Tekcom film faced plywood specification sheet (PlyCORE P type)
Water-resistant glue 100% WBP – Phenolic
Plank surface Pine type AA
The core of the board Dynee, brown
Boiling time without delamination 0.85 – 2 (MPa)
Horizontal: ≥ 5.5×10 6 (kN/m 2 ) Elastic Module E Vertical: ≥ 2.6×10 4 (kN/m 2 )
The force of pressing the board 7 – 15 (time)
When calculating, take flexural strength and transverse elastic modulus to check:
Design formwork for pile cap
Horizontal loads acting on the foundation formwork include:P ngang H
Where H is the radius of influence of the cantilever: H = 0.7m
Table 9 2: Load acting on the formwork
Load q tc (kN/m 2 ) n q tt (kN/m 2 )
Concussion load due to concrete pouring 4.0 1.3 5.20
The distance between the braces is L mm apart, so the calculated span of the formwork is L mm
Figure 9 3: Diagram of calculating the formwork of the pile cap
Maximum moment at mid span: 1 2
Check the stress in the formwork:
Moment of intertia of formwork:
1250 23.5 tc tc tc q L L EI EI f f L L
the distance between the vertical stiffener L = 30 (cm)
9.2.2 Check vertical stiffener (50x50x2 mm box steel)
Vertical Stiffener use rectangular steel box 50×50×2mm
Calculation load distributed acting on vertical stiffener: q tt = 30.55×0.3= 9.16 kN/m
Standard load evenly distributed on vertical stiffener: q tc = 23.5×0.3 = 7.05 kN/m
Spacing of horizontal rib is L
Figure 9 4: Diagram of calculating horizontal ribs
Test of transverse stiffener strength:
10 Check the stress in the formwork:
250 7.05 tc tc tc q L L EI EI f f L L
the distance between the vertical stiffener L = 60 (cm)
9.2.3 Check horizontal stiffener (2x50x100x2 steel box)
Consider the horizontal stiffeners to work as simple beams, to bear the concentrated load transmitted by the vertical stiffeners
Choose the distance between the two anti-skewers to be 0.6 (m)
Figure 9 5: Internal force diagram of horizontal stiffener
Figure 9 6: Deflection of horizontal stiffener
9.2.4 Check thread rod (steel d12 mm)
Design of corewall formwork
Each column uses Hoa Phat steel formwork panels: Where panels 1500x600x55mm, Corner V bar, Tyren D16mm
+ Flexural strength: [σ] = 210 Mpa = 210 (kN/cm 2 )
Figure 9 7: Corner V bar – bracing – dowel- tyren D17
Figure 9 9: Section of front location of the wall choose
Table 9 3: Load acting on retaining wall formwork
(kN/m 2 ) n Design load q tt (kN/m 2 )
Concussion load due to concrete pouring 4.0 1.3 5.20
The load acting on the formwork plate is the uniformly distributed load due to the horizontal pressure of the concrete and the vertical ribs are considered as supports working as continuous beams
Choose b = 1 (m) the bearing direction is the plank horizontal
Standard applied load Applied: q tc 23.5 1 23.5 (kN/m)
Distance between vertical stiffener: L = 30cm
Figure 9 10: Diagram of calculating formwork for retaining wall
Condition of strength of formwork plate:
Horizontal stiffener use 2x50x100x2(mm) box steel which is joined together by thread rod at boundary and scaffolding Spacing of scaffolding L = 0.6 m
The load acting on the horizontal stiffener is the concentrated force transmitted from the vertical stiffenr
Figure 9 11: Internal force diagram of horizontal stiffener
Figure 9 12: Deflection of horizontal stiffener
The force acting on the thread rod is the force transmitted by the reaction forces supporting the horizontal stiffener
Figure 9 13: Internal force acting thread rod
Internal of thread rod: N = 5.5 kN
5.5 3.5(kN/cm ) 2 210(kN/cm ) 2 bn 1.57
Choose 2mm thick pipe 49 steel rod,
Wind load in the area: W0 = 55 daN/m 2
Maximum horizontal pressure caused by horizontal load
Internal force caused by wind load: wind
Internal force P in the scaffoding:
Design of column formwork
– Column cross section is: 1200x700mm 5m high column,
Uses Hoa Phat steel formwork panels: 1500x600x55mm and ranges 1500x350x55m Tyren D16mm
Figure 9 14: Detail of column formwork
Table 9 4: Load acting on retaining wall formwork
(kN/m 2 ) n Design load q tt (kN/m 2 )
Concussion load due to concrete pouring 4.0 1.3 5.20
The load acting on the formwork plate is the uniformly distributed load due to the horizontal pressure of the concrete and the vertical ribs are supports working as continuous beams
Standard active load: q tc 23.5 1 23.5 (kN/m)
Distance between vertical stiffener: L = 30cm
Figure 9 15: Diagram of calculating formwork for retaining wall
Condition of strength of formwork plate:
Use steel box 2x50x100x2(mm) linked together by thread rod at edge and scaffolding Scaffolding distance L = 0.6 m
The load acting on the horizontal stiffener is the concentrated force transmitted from the vertical stiffener
Figure 9 16: Internal force diagram of horizontal stiffener
Figure 9 17: Deflection of horizontal stiffener
The force acting on the thread rod is the force transmitted by the reaction forces supporting the horizontal stiffener
Figure 9 18: Internal force acting thread rod
Internal of thread rod: N = 5.5 kN
5.5 3.5(kN/cm ) 2 210(kN/cm ) 2 bn 1.57
Choose 2mm thick pipe 49 steel rod
Wind load in the area: W0 = 55 daN/m 2
Maximum horizontal pressure caused by horizontal load
Internal force caused by wind load: wind
Internal force P in the scaffoding:
Design slab formwork
Table 9 5: Load applied slab formwork
Weight of equipment, people, machines 1.3 1.3 1.69
Concussion load due to concrete pouring 0.4 1.3 0.52
– Standard load distributed on the plank: q tc 6.95 1 6.95( kN m/ )
– Calculated load distributed on the plate: q tt 9.04 1 9.04( kN m/ )
– Distance between two upper beams: L
Figure 9 20: Diagram of calculating the formwork
Moment of intertia of formwork:
– Consider the lower beam as supports, the force acting on the upper layer scaffolding is distributed and works like a continuous beam
– Lower layer purlins receive concentrated load from upper layer momentum, consider supports as supports
– The distance between two lower beam is equal to the distance of the struts: L – Evenly distributed load acting on upper beam:
– The force distributed over a 0.5 m wide strip, evenly distributed along the long side of the board is: q tt 9.04 0.5 4.52(kN m/ )
– Consider the struts as support, the load applied to the lower beam is concentrated and the lower beam acts as a continous
– Concentrated load from upper layer momentum:
Figure 9 22: Deflection of lower beam
– Choose Ringlock D49 2mm thick with A = 2,953 (cm2), I = 8,321 (cm4) – The support strust is subjected to a compressive force equal to the magnitude of the reaction force of the support, one support must bear the load is: tt tt
– Length calculated according to the distance between brace points: l= 1.5m
– Radius of rotation of the circle: 8.321 i 1.679(
– Two plugs are considered to be mounts: 0.7
→ So the support struts enough bearing capacity.