1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Hđ tower apartment

175 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề HĐ Tower Apartment
Tác giả Nguyen Van Hien Duc
Người hướng dẫn Msc. Tran Van Thien
Trường học Ho Chi Minh City University of Technology and Education
Chuyên ngành Civil Engineering
Thể loại Graduation Project
Năm xuất bản 2023
Thành phố Ho Chi Minh City
Định dạng
Số trang 175
Dung lượng 9,65 MB

Cấu trúc

  • PART 1. ARCHITECTURE (21)
  • CHAPTER 1. OVERVIEW OF THE BUILDING (21)
    • 1.1. Overview of building (21)
    • 1.2. Natural conditions of Binh Duong province (21)
      • 1.2.1. Climate (21)
      • 1.2.2. Wind (21)
      • 1.2.3. Hydrography, river systems (22)
    • 1.3. Architectural solutions (22)
    • 1.4. Traffic solutions (22)
    • 1.5. Technical solutions (22)
    • 1.6. Water system (22)
    • 1.7. Ventilation system (23)
    • 1.8. Lighting system (23)
    • 1.9. Fire prevention and fighting system (23)
  • PART 2. STRUCTURE BULDING (24)
  • CHAPTER 2. STRUCTURAL SOLUTION (24)
    • 2.1. Structural body part solution (24)
    • 2.2. Vertical structural options (24)
      • 2.2.1. Horizontal structural options (24)
    • 2.3. Principles of calculation of reinforced concrete structures (26)
      • 2.3.1. Basic principles (26)
      • 2.3.2. Principles for calculation of load (26)
      • 2.3.3. Load combination (27)
      • 2.3.4. Method of determine internal force (28)
  • CHAPTER 3. LOADED (29)
    • 3.1. Preliminary selection (29)
      • 3.1.1. Preliminary selection of slab-beam (29)
      • 3.1.2. Preliminary selection of column sections (30)
      • 3.1.3. Preliminary selection of wall section (32)
    • 3.2. Loaded (33)
      • 3.2.1. Overload factor (33)
      • 3.2.2. Verticle load (33)
      • 3.2.3. Horizontal load (33)
    • 3.3. Active Load (34)
      • 3.3.1. Load acting on the floor (34)
      • 3.3.2. Wind Load (37)
      • 3.3.3. Earthquake (43)
    • 3.4. Load combination (45)
    • 3.5. Check lateral buckling (48)
      • 3.5.4. Check top displacement (48)
      • 3.5.5. Check the relative horizontal displacement between floors (49)
    • 3.6. Check anti-subversion (52)
    • 3.7. Check oscillation (peak acceleration) (52)
  • CHAPTER 4. STAIR CASE STRUCTURE (53)
    • 4.1. Geometric features (53)
    • 4.2. Determine ladder load (54)
    • 4.3. Calculation diagram (55)
    • 4.4. Ladder reinforcement design (56)
    • 4.5. Calculation of rebar of the landing beam (58)
  • CHAPTER 5. FRAME STRUCTURE (60)
    • 5.1. Overview (60)
    • 5.2. Main Beam Design (61)
      • 5.2.1. Calculation model and beam internal force (61)
      • 5.2.2. Calculation of longitudinal reinforcement (62)
      • 5.2.3. Calculation stirrup (67)
      • 5.2.4. Anti-seismic construction (68)
    • 5.3. Column reinforcement design (70)
      • 5.3.1. Working of oblique eccentric compression (70)
      • 5.3.2. Determination of effects of random eccentricity and longitudinal bending (70)
      • 5.3.3. Internal force (71)
      • 5.3.4. Calculation of reinforcement (82)
      • 5.3.5. Calculated stirrup (87)
    • 5.4. Calculation of corewall steel (91)
      • 5.4.1. Calculation theory (91)
      • 5.4.2. Calculation of reinforcement (92)
      • 5.4.3. Design stirrup (106)
  • CHAPTER 6. TYPICAL FLOOR CALCULATION (107)
    • 6.1. Floor plan (107)
    • 6.2. Floor load (108)
    • 6.3. Calculation steps using SAFE 2016 software (109)
    • 6.4. Internal force (110)
    • 6.5. Reinforcement calculations (113)
      • 6.5.1. Design longitudinal rebar (113)
      • 6.5.2. Check the shear resistance of the floor (115)
    • 6.6. Calculation by limit state II (116)
      • 6.6.3. Check deflection (116)
      • 6.6.4. Check the condition of the crack (118)
      • 6.6.5. Check crack width (120)
  • PART 3. FOUNDATION (122)
  • CHAPTER 7. GEOLOGICAL STATISTICS (122)
    • 7.1. Theoretical basis of statistics (122)
    • 7.2. Geological statistics of construction (122)
    • 7.3. Synthesize physical and mechanical parameters (124)
  • CHAPTER 8. DESIGN FOUNDTION (125)
    • 8.1. Overview (125)
    • 8.2. The solution of foundation design (125)
    • 8.3. Determine the calculation parameters (125)
      • 8.3.1. Determine the depth of the pile cap (125)
      • 8.3.2. Preliminary determination of pile materials (125)
      • 8.3.3. Choose pile size (126)
      • 8.3.4. Internal force (127)
    • 8.4. Piles load capacity (128)
      • 8.4.1. Load capacity according to material strength (128)
      • 8.4.2. The bearing capacity of the pile according to the physical and mechanical (130)
      • 8.4.3. Load capacity of piles according to ground strength (133)
      • 8.4.4. The bearing capacity of the piles according to the results of the SPT test (formula of the Japanese Institute of Architects 1988) (135)
      • 8.4.5. Determination of design load (136)
    • 8.5. Determine the number of piles and layout of the foundation system (136)
      • 8.5.1. Determine the number of piles (136)
      • 8.5.2. Pile layout (137)
      • 8.5.3. Modeling foundations by software SAFE 16 (139)
    • 8.6. M1 foundation design (141)
      • 8.6.2. Group work pile test (141)
      • 8.6.3. Checking for settlement of conventional foundation blocks (145)
      • 8.6.4. Check punching shear (145)
      • 8.6.5. Calculation of the reinforcement of the foundation (147)
    • 8.7. MTM foundation design (149)
      • 8.7.1. Check pile head reaction (149)
      • 8.7.2. Group work pile test (149)
      • 8.7.3. Check the stability of the ground at the bottom of the conventional (150)
      • 8.7.4. Checking for settlement of conventional foundation blocks (152)
      • 8.7.5. Check Punching shear (153)
      • 8.7.6. Calculation of the reinforcement of the foundation (155)
  • CHAPTER 9. DESIGN FORMWORK (156)
    • 9.1. Formwork work (156)
      • 9.1.1. Requirements when erecting formwork scaffolding (156)
      • 9.1.2. Selection of formwork type (156)
    • 9.2. Design formwork for pile cap (157)
      • 9.2.1. Check the formwork plate (158)
      • 9.2.2. Check vertical stiffener (50x50x2 mm box steel) (159)
      • 9.2.3. Check horizontal stiffener (2x50x100x2 steel box) (160)
      • 9.2.4. Check thread rod (steel d12 mm) (161)
    • 9.3. Design of corewall formwork (162)
      • 9.3.1. Corewall formwork design (163)
      • 9.3.2. Design horizontal stiffener (164)
      • 9.3.3. Design thread rod (165)
      • 9.3.4. Design scaffolding (165)
    • 9.4. Design of column formwork (166)
      • 9.4.1. Retaining wall formwork design (167)
      • 9.4.2. Design horizontal stiffener (168)
      • 9.4.3. Design thread rod (169)
      • 9.4.4. Design scaffolding (169)
    • 9.5. Design slab formwork (170)
      • 9.5.1. Design formword (170)
      • 9.5.2. Design upper beam (50x50x2mm) (171)
      • 9.5.3. Design lower beam (50x100x2mm) (172)
      • 9.5.4. Design scaffolding (174)

Nội dung

The vertical bearing structure system plays an important role in multi-storey building structure because Bear the load of floor beams transmitted to the foundation and soil Bear the ho

OVERVIEW OF THE BUILDING

Overview of building

Project name: HĐ TOWER APARTMENT

Construction location: 25 Huynh Van Nghe, Phu Loi Ward, Thu Dau Mot City, Binh Duong Province

Grade of works: Grade II works, fireproof grade II, 50 years design life

Figure 1 1 Location of land - neighboring works

Natural conditions of Binh Duong province

Binh Duong has a hot and humid climate, with a lot of rain and high humidity

It has a tropical monsoon climate, divided into two distinct rainy and dry seasons

The rainy season usually starts from May and lasts until the end of October Binh Duong rarely has storms, only affected by local storms

The average annual temperature in Binh Duong is 26–27 °C (79–81 °F), the highest is 39.3 °C (102.7 °F), but the lowest is 16–17 °C (61–63 °F) )

In the dry season, the annual average humidity is from 76–80%, the highest is 86% in September and the lowest at 66% in February The average annual rainfall is 1,800–2,000 mm, but the rainfall at the intersection of So Sao, Binh Duong regularly measures up to 2,113.3 mm

Relatively stable wind regime Binh Duong has 2 main wind directions: Southwest wind and Northeast wind The southwest wind is the prevailing wind

2 direction in the rainy season and the northeast wind direction is the prevailing wind direction in the dry season

The river flow changes with the seasons: The rainy season lasts from May to November, the dry season from November to May There are 3 large rivers, many canals in the riparian area, and numerous small streams.

Architectural solutions

Construction planning on 1 side, adjacent to the existing residential area, factory (1-3 floors) 1 side is adjacent to an alley of more than 4m wide, the back side is adjacent to empty land to plant trees, the front side is adjacent to street No 1 25

Scale of works according to architectural design includes:

1 basement: parking and water tank

1st floor: parking, mini shop, apartment lobby and community area

2nd floor: Gym, swimming pool, service center (SPA, daycare) and apartment 3rd floor to 16th floor: apartment

17th floor (roof floor): M&E and roof water tank (1 stainless steel water tank with a capacity of 20m3)

Traffic solutions

Horizontal traffic: move along the corridors.

Technical solutions

Electricity is supplied from the city's domestic electricity network with 3-phase

AC voltage of 380v/220v with frequency of 50Hz Ensure a stable power source for the entire project The electrical system is designed strictly according to Vietnamese standards for civil works to manage, repair, exploit, use safely and save energy.

Water system

Water supply for the building is taken from the water supply pipe on Huynh Van Nghe street into 04 30m3 stainless steel tanks containing clean water located at the 1st floor negative tank with a total capacity of about 120m³ The pipe system located in the basement room brings water from the reinforced concrete tank to the dome water tank, including 4 tanks of 20 m3 type (total capacity of 80 m3)

The domestic water supply system and the fire fighting water supply system are designed independently Water from the roof water tank is provided for the daily needs of the building such as domestic water and part of the water used for fire fighting of the building

Floor drainage: wastewater on the ground surface is mainly rain water, this flow is collected into the water collection manhole and then along the sewer line connected to the city drainage system

Rainwater drainage on slopes: The sloped ram area (the project has 1 ramp ram) will be arranged with a ditch to collect rain water, collect water to lead to the drainage ditch in the basement, then lead to manholes in the basement and be pumped up manholes to collect water outside the house, drained out with rainwater

Drainage of rainwater on the roof: rainwater from the roofs, terraces, and loggias is collected by hoppers, garbage bridges and exit through horizontal and vertical pipes to the 1st floor and then exit to the manhole outside the house The discharge water of the fire fighting system is also connected to the rainwater drainage system

Drainage of domestic wastewater: The indoor drainage system is drained by separate routes.

Ventilation system

The building is artificially ventilated in each room such as air conditioners, fans, through central ventilation and cooling systems The problem of ventilation in the basement is very noticeable with a strong suction and blowing system that helps to quickly absorb exhaust gases of cars and motorbikes.

Lighting system

Natural light test is presented in combination with artificial light Stairs and corridors are artificially illuminated by installations along the corridors.

Fire prevention and fighting system

Fire protection system is arranged throughout the building with smoke alarm sensor system and self-propelled fire fighting system throughout the building 120m3 fire extinguisher placed on the roof of the compost pile provides continuous system for 1 hour

STRUCTURAL SOLUTION

Vertical structural options

The vertical bearing structure system plays an important role in multi-storey building structure because

Bear the load of floor beams transmitted to the foundation and soil

Bear the horizontal load of wind and earth pressure acting on the building Linked with floor beams to form a rigid frame system, keeping the overall stability of the building, limiting shaking and displacement of the top of the work

The vertical bearing structure system includes the following types:

Basic structural system: Frame structure, load-bearing wall structure, hard core structure, tube structure

Combined structural system: Bracing frame structure, wall frame structure, core pipe structure and composite pipe structure

Special structural system: Structures with rigid floors, structures with beams for transmission, structures with interfloor bracing systems and structures with composite frames

The frame structure system has the advantage of being able to create large, flexible spaces with a clear working diagram However, this structural system has poor lateral load capacity (when the structure has a high height, or is located in an area with high earthquake intensity) This structural system is well used for buildings up to 15 stories high for buildings located in the zone 7 earthquake resistance calculation

The frame-wall, frame-core structure system dominates in the design of high- rise buildings thanks to its good horizontal bearing capacity However, this structural system requires more materials and construction is more complicated than the frame system

=> In this project, choose the frame - wall, core partition

The selection of a reasonable floor structure solution is a very important job, deciding the economy of the project The higher the building, the greater this load is on the columns of the lower floors and the foundation, which increases the cost of the foundation and columns, and increases the lateral load due to

5 earthquakes Therefore, it is preferable to choose a light floor solution to reduce vertical loads

Types of floor structures being widely used today include:

The structure consists of beams and floor slabs

+ Advantages: Simple calculation, widely used in our country with rich construction technology, so it is convenient for the selection of construction technology

+ Disadvantages: When the large aperture is exceeded, the beam height and the deflection of the floor slab are very large, leading to a large building height Does not save usable space

The structure consists of members directly on the column

+ Advantages: The height of the structure is small, so the height of the building can be reduced Space saving use Easily divide the space Faster than the beam floor plan The installation of formwork, formwork is also simple

+ Disadvantage: The columns are not linked together to form the frame, so the stiffness is smaller than the beam floor plan, so the horizontal bearing capacity of this option is worse than the beam floor plan The floor must have a large thickness to ensure the ability to withstand bending, puncture resistance and increase weight

+ Floor without pre-stressed beams:

The structure consists of members directly on the column The steel reinforcement is prestressed

+ Advantages: Reduces thickness, floor sag Reduce building height Divide the space into functional areas easily Space saving use

+ Disadvantage: Complicated calculation Need specialized equipment for construction

These panels are transported to the site and erected, then reinforced with concrete and then poured with concrete

+ Advantages: The ability to overcome large spans, fast construction time, saving materials

+ Disadvantages: Large component size, complicated calculation process

The Bubble Deck concrete floor slabs are flat, without beams, directly linked to the bearing system of columns and walls, using recycled plastic balls to replace concrete with little or no bearing in the middle grain of the floor

+ Advantages: Creates high flexibility in design, adapts to many types of premises Create a large space for interior design Increase the distance of the column grid and the ability to span span to 15m without prestressing, reducing the system of load-bearing walls and walls Save construction time and associated service costs

+ Disadvantages: New technology in Vietnam, calculation theory has not been popularized Reduced shear and bending resistance compared to conventional reinforced concrete floors of the same thickness

=> To facilitate the calculation of the structure, choose the floor beam system option

Principles of calculation of reinforced concrete structures

Calculation of the structure according to the bearing capacity is carried out based on the following conditions:

+ T – possible dangerous value of each internal force or due to the simultaneous action of several internal forces

+ Ttd – Bearing capacity of the section under consideration of the structure when the load-bearing section reaches the limit state

2.3.2 Principles for calculation of load

When designing, it is necessary to take into account the loads generated during use, construction, manufacturing, preservation and transportation of the work Two basic characteristics of the load when calculating are the standard load and the calculated load The calculated load is the product of the standard load and the load reliability factor

The load confidence factor calculates the probability of a possible adverse deviation of the load from the standard value and is determined depending on the limit states taken into account

+ When calculating strength and stability, the overload factor is taken according to Article 3.2; 4.2.2; 4.3.3; 4.4.2; 5.8; 6.3; 6.17 TCVN 2737 – 1995 “Loads and impacts”

+ When calculating the fatigue strength, take 1

+ When calculating according to deformation and displacement, it is taken as 1 According to the design standard TCVN 2737 - 1995 "Loads and impacts", loads are divided into permanent loads and temporary loads In addition, we need to consider special loads acting on specific high-rise buildings such as earthquakes a) Regular load (static load) b) Temporary load (live load) c) Special loads

Earthquake load Load due to explosion, fire Impact of ground deformation due to soil structure change

– Depending on the composition of the loads considered, the load combination includes the basic combination and a special combination

– The basic load combination includes permanent loads, long-term transient loads and short-term transients

– Special load combinations including permanent loads, long-term transient loads, probable short-term loads and one of the special loads

– Special combination of loads due to earthquakes, regardless of wind loads – Basic load combination is divided into two types: basic combination 1 and 2 – Basic combination 1 has a temporary load, the value of the temporary load is taken in its entirety

– Basic combination 2 with 2 or more temporary loads, the temporary load or internal force must be multiplied by the combination factor as follows:

+ Long-term and short-term temporary loads multiplied by a factor of 1 ÷ 0.9 + When a special load combination has a temporary load, the value of the temporary load is taken as a whole

+ The special load combination with two or more temporary loads, the value of the special load does not decrease Long-term temporary load (1 ÷ 0.95); short- term temporary load (1÷0.8)

+ When calculating the structure or foundation according to strength and stability with basic load combinations and especially in case of simultaneous application

8 of at least two temporary loads, the internal force calculation is allowed to take according to the instructions in Appendix A (TCVN 2737 - 1995)

2.3.4 Method of determine internal force

Currently, there are 3 methods of calculating the bearing system of multi-storey buildings, which are shown through the following 3 models:

Pure Continuity Model: Directly solve higher order differential equations Discrete Model: (Finite Element Method)

Discrete – Continuity Model: (Superblock method)

In this project, use the following software to analyze internal forces:

+ SAP2000 finite element software for general components analysis

+ ETABS V9.7.1 finite element software to analyze the working of the whole project

+ SAFE software V12.3.0: finite element software specializing in the analyzing plate members (floor slabs, rafters, )

LOADED

Preliminary selection

3.1.1 Preliminary selection of slab-beam

Calculated according to the largest slab tile size:

=> The floor slab is a 4-sided

The preliminary thickness of the slab according (TCVN 2737-1995):

+ D: coefficient depending on the load D = (0.8 – 1.4)

+ m: coefficient depending on the type of 4-sided manifest m = (40 – 45) + L: length of beam

The height is selected according to the formula: d d h = 1 l m The width is selected according to the formula: b= 0,3 ÷0,5 h  

+ ld: span of the beam under consideration

It is necessary to design beam columns to ensure seismic resistance requirements:

The largest girder span is: l = 9.5m d

The swimming pool is located on the 2nd floor, choose the beam area around the pool is 300x1600mm

 Preliminary selection of basement floor and basement wall

Basement floor thickness choose 300mm

Basement wall thickness choose 250mm

3.1.2 Preliminary selection of column sections

The column cross section is preliminarily selected according to the formula:

B40: Rb = 22(MPa) k: factor including horizontal load

+ qi: Load distribution on 1m 2 of floor i

+ Si: transmission area to the i-th floor

The q value is taken according to design experience The thickness of slab 20cm, take q = 15(kN)

Table 3 1: Preliminary selection of border column (C3)

Grade: B40 Rb " MPa Lx = 9.5 m Si = 30.875m 2 k =1.3

Rbt =1.4 MPa Ly = 7 m qi = 15 kN/m 2

Calculation results of the column

Table 3 2: Preliminary selection of the middle column (C4) (C5)

Grade: B40 Rb " MPa Lx1 = 9.5 m Lx2 = 9.5 m Si = 66.5 m 2 k =1.2

Rbt =1.4 MPa Ly1 = 7 m Ly2 = 7 m qi = 15 kN/m 2

Calculation results of the middle column

Table 3 3: Preliminary selection of the middle column (C6)

Grade: B40 Rb " MPa Lx1 = Lx2 = 7 m Si = 49m 2 k =1.2

Rbt =1.4 MPa Ly1 = Ly2 = 7 m qi = 15 kN/m 2

Calculation results of the middle column

3.1.3 Preliminary selection of wall section

Preliminary selection of the wall thickness of the hard core based on the height of the building, the number of floors and ensuring the provisions of Article 3.4.1 – TCXD 198:1997

Elevator walls must ensure seismic resistance

The elevator core thickness is calculated by formula: t

Do not change the section on the entire floor height because the building uses columns combined with load-bearing walls.

Loaded

Loads include 2 types: standard load and calculated load The calculated load is the product of the standard load and the load reliability factor This factor takes into account the possibility of an adverse deviation from the standard value and is subject to the limit states taken into account

The overload factor is taken according to Article 3.2; 4.2.2; 4.3.3; 4.4.2; 5.8; 6.3; 6.17 TCVN 2737 – 1995 when calculating durability and stability

When calculating the fatigue strength, take 1

When calculating according to deformation and displacement, take 1

According to the design standard TCVN 2737 – 1995 “Weight and impact”, the load is divided into penetrating load and temporary load

We need to consider special loads acting on high-rise buildings such as wind, earthquakes

 Long term Load (Dead Load)

Static loads are loads that do not change during construction and use of the work

Temporary loads are loads that may not appear during some phases of construction and use There are two types: long-term transients and short-term transitions

Load due to explosion, fire

Wind load and earthquake load are calculated according to the Standard of Load and Impact TCVN 2737-1995

According to the standard, we have to calculate the dynamic component of the wind load for this project Because the building height is 58.1m > 40m

Active Load

3.3.1 Load acting on the floor

Table 3 4: Weight table of structural layers

Table 3 5: Load acting on the basement floor

(daN/m 3 ) n t (m) Load (daN/m 2 ) g tc g tt

Table 3 6: Load acting on the 1st floor parking

Load Layers Density daN/m 3 n t (m) Load (daN/m 2 ) g tc g tt

Table 3 7: Floor load of internal road yard 1st floor

Load Layers Density daN/m 3 n t (m) Load (daN/m 2 ) g tc g tt

Table 3 8: Floor load of shop house, community activities on the 1 st and 2 nd

Load Layers Density daN/m 3 n t (m) Load (daN/m 2 ) g tc g tt

Load Layers Density daN/m 3 n t (m) Load (daN/m 2 ) g tc g tt

Load Layers Density daN/m 3 n t (m) Load (daN/m 2 ) g tc g tt

Table 3 11: Floor load of lobby, corridor, restaurant

(daN/m3) n t (m) Load (daN/m 2 ) g tc g tt

Table 3 12: Load of toilet floor, kitchen

(daN/m3) n t (m) Load (daN/m 2 ) g tc g tt

(daN/m3) n t (m) Load (daN/m 2 ) g tc g tt

Table 3 14: Yard slab of pool load

Table 3 15: Floor load of apartment, penthouse

(daN/m3) n t (m) Load (daN/m 2 ) g tc g tt

Table 3 1: Floor load of loyard, drying yard

(daN/m3) n t (m) Load (daN/m 2 ) g tc g tt

Principle of calculation of wind load components (according to section 2 TCXD 2737:1995)

Based on the terms stated in the load and impact standard TCVN 2737:1995 to get the value and calculation method of static wind

According to section 1.2 TC 229:1999, building height > 40m must take into account the dynamic component of wind load a Static wind

The static wind load is calculated according to TCVN 2737:1995 as follows: Features of the project

+ Construction site: Province/city: Binh Duong

+ Base elevation above the ground (m): 0.20

+ Peak height from the ground (m): 58.10

+ Wind pressure value W0 = 55 daN/m2 (See table 4 and section 6.4.1)

+ The floor plan of the base block is rectangular with dimensions of 44.5x100.6, the floor plan of the tower block is U-shaped, with short sides protruding about 12.9m, the total size is 34x90.1m

+ Rate Lt/B = 12.9/34 ~ 0.38 should refer to specialized wind documents for wind load plan with suitable aerodynamic coefficient (cannot use TCVN 2737:1995 on aerodynamic coefficient C for windward sides)

+ Refer to specialized China standard with the aerodynamic coefficients for U- shaped diagrams as follows:

Figure 3 2: The aerodynamic coeficient of the U-shaped block C Table 3 3: Table of static wind results in 2 directions

+ TCXDVN 229:1999 - Instructions for calculating the dynamic component of wind loads according to TCVN 2737:1995

Assign standard loads of dead and live loads to models with mass structures:

Table 3 4: Modal Periods And Frequencies

Case Mode Period Frequency CircFreq Eigenvalue sec cyc/sec rad/sec rad²/sec²

Table 3 5: Statistical table of oscillations

Frequency (fi) UX UY RZ SumUX SumUY SumRZ Check (s) (Hz)

Table 3 6: Calculation parameters base on TCVN 2737:1995

Parameter Symbol Value Unit Note

Wind pressure value Wo 55 kG/m 2 Table 4

The logarithmic decrement value δ 0.30 - Table 9

Vibration limit value of natural frequency fL 1.1 Hz Table 9

Table of dynamic wind load X

The mode of oscillation is of the form: 3 γ H χ(m) εi ξ i ѱ i

Table of dynamic wind load Y

The mode of oscillation is of the form: 1 γ H χ(m) εi ξ i ѱ i

1.20 3.3 58.1 0.06 1.6632 0.0008 Table 3 7: Spreadsheet of wind results in the X-direction

(kN) y ji y ji W Fj y ji 2 M j

Table 3 8:Spreadsheet of wind results in the Y-direction

(kN) y ji y ji W Fj y ji 2 M j W pjiY

Table 3 9: Wind load summary table

W Xj (kN) W Yj (kN) Mode 3 Mode 1

According to Article 3.2.2 and Article 4.3.3.3 of TCVN 9386: 2012

Table 3 10: Design earthquake spectrum worksheet

District: Thị xã Thủ Dầu Một

Reference base acceleration peak agR = 0.0813

Texture Type Frame system, composite system, double wall system

Plastic grade Plastic Grade Medium

The coefficient q of the vertical behavior qv = 1.50

Figure 3 4: Seismic load assignment in the X - direction

Figure 3 5: Seismic load assignment in the Y - direction

Load combination

Basic load combination: permanent loads, long-term transient loads and short- term transients

Special load combination: regular load, long-term transient load, probable short-term transient load and one of the special loads

Special load combinations that do not take into account wind loads

The basic load combination is divided into two types:

Basic combination 1 has a temporary load, the value of the temporary load is taken in its entirety

Basic combination 2 is a combination with 2 or more temporary loads, which must be multiplied by the combination factor as follows:

+ Long-term and short-term temporary loads multiplied by the factor 1 = 0.9 + For a special load combination with two or more temporary loads, the load is multiplied by the combination factor as follows: long-term temporary load multiplied by ѱ1 = 0.9; short-term temporary load: ѱ1 = 0.8;

Follow the instructions in Appendix A (TCVN 2737 – 1995) when calculating the structure or foundation for strength and stability with basic load combinations and especially in case of simultaneously bearing at least two temporary loads

FL SUPER DEAD 0 Complete static load

WALL SUPER DEAD 0 Wall Load

LL1 LIVE 0 Live Load ( LL < 2 kN/m 2 )

LL2 LIVE 0 Live Load ( LL ≥ 2 kN/m 2 )

WSX WIND 0 Static wind X-direction

WSY WIND 0 Static wind Y-direction

WDX WIND 0 Dynamic wind X-direction

WDY WIND 0 Dynamic wind Y-direction

DL 1(SWL)+1(FL)+1(WL) Dead load

LL 1(HT1)+1(HT2) Live Load

WINDX 1(WSX)+1(WDX) Standard Wind load X-direction

WINDY 1(WSY)+1(WDY) Standard Wind load Y-direction

WDX 1(WDX) Standard dynamic wind load X-direction WDY 1(WDY) Standard Wind load X-direction

DX 1(DX) Earthquake in the X-direction

DY 1(DY) Earthquake in the X-direction

Table 3 13: Table of load combinations THGH I

Combo DL LL WINDX WINDY EQX EQY Note

Table 3 14 Table of load combinations TTGH II

Combo DL LL WINDX WINDY EX EY Note

Combination of vertex displacement test

Table 3 29 Table of load combinations TTGH II

Combo DL LL WINDX WINDY EX EY Note

Test combination for dislocation displacement, P- Delta effect

Check lateral buckling

Hardness chek: The horizontal displacement at the top of the structure of a high-rise building calculated by the elastic method must satisfy the following conditions: f ≤ [fu]

Where: • f: Horizontal displacement at the top of the structure

• fu: Horizontal limit displacement at the top of the structure

Based on table M.4 Appendix M TCVN 5574-2018:

Test only effective combinations of wind loads with peak displacement testing Exporting the displacement results from the standard combination of Etab models:

Figure 3 6: Displacement of the top in the X direction

Figure 3 7: Displacement of the top in the Y direction

Table 3 15:Check the top displacement of the building

Story Combo Direction f (mm) [fu] (mm) Check

3.5.5 Check the relative horizontal displacement between floors

According to section 4.4.3.2 restricting relative horizontal displacement between floors, TCVN 9386:2012 stipulates: Except as otherwise specified in chapters 5 to

9 of this standard, the following restrictions should be observed:

For buildings with non-structural members of brittle material attached to the structure: drV ≤ 0.005h

+ dr: Relative design horizontal displacement between floors, determined as the difference of mean horizontal displacements ds at ceiling and floor of the floor under consideration calculated according to section 4.3.4 of this standard

+ v: Reduction factor taking into account the lower repetition period of the seismic action related to the damage limitation requirement

Note: Different values of v depending on seismic hazards and building importance are recommended as follows: v = 0.5 for levels of importance I and II and v = 0.4 for levels of importance important III and IV

Exporting the displacement results from the standard combination of Etab models, we get:

Figure 3 8: Relative horizontal displacement in the X direction

Figure 3 9: Relative horizontal displacement in the Y direction

Relative horizontal displacement test results

With grade II apartment buildings => Discount coefficient: v = 0.5

Check anti-subversion

According to TCVN 198 - 1997, reinforced concrete high-rise buildings with a ratio of height to width greater than 5 must check the anti-overturning ability of the building When calculating the anti-roll moment, the live load on the floors is taken into account 50%, and the dead load is taken 90%

The ratio of the moment causing overturning due to the horizontal load must satisfy the following conditions: MCL ≥ 1.5MGL

The building has a height H = 58.1 (m), Width B = 34(m)

No need to check the stability anti-subversion condition for the building

Check oscillation (peak acceleration)

For approximation (neglecting drag), the calculated value of the maximum peak acceleration will be calculated as follows: α = ω y = 2 2 2 y   α

+ [α]: Allowed value of acceleration is equal to 150mm/s2

+ y: maximum movement in the direction (due to dynamic wind)

+ R: distance from center of mass to edge of building, R = 17m

Export period of oscillation from Etab:

STAIR CASE STRUCTURE

Geometric features

Figure 4 1: Stair case layout According to the architectural drawings, we have the size of the stairs:

+ Ladder length: L3 = 2.60 m + Height of floor: ht = 3.30 m

Preliminary determination of ladder thickness

– Basis for choosing beam size choose the stair beam size according to the formula:

Beam DCN size: bdxhd = (20x30)cm

Determine ladder load

Dead Load: including the weight of stair, the layer structure

The equivalent thickness of grade i in the direction of ladder slope

Table 4 2: Ladder Step Stair Load Result

According to the standard TCVN 2737-95 with stairs case taking P tc 00 daN/m 2 , overload coefficient n=1.2 tc 2 p = p n = 300 1.2 60 (daN/m )p 

+ Weight of railings: g tc = 30 daN/m

+ Load railings on unit m 2 deck ladder: g tc = 25 daN/m 2

Calculation diagram

Ladder reinforcement design

Figure 4 5: Shear force diagram + Reinforcement calculations

We have: hb = 0.15m, cover concrete: a mm

Table 4 3: Results of reinforcement on part 1 of ladder

Calculation of reinforcement is the same as silde 1

Table 4 4: Results of reinforcement on part 2 of ladder

The specified deflection from the SAP2000 software in the inclined Span is : f = 0.003(m)

Figure 4 6: Displacement diagram Limit the permissible deflection: u

Calculation of rebar of the landing beam

Load including The weight of the beams gd = bd (hd - hs)n𝛾b = 0.2 × (0.3 - 0.15) × 1.1 × 2500 = 82.5 daN/m

Due to the transmission ladder, internal forces of supported at B and D distribute: q = gd + RB = 82.5 + 21.77 = 104.3 daN/m

Figure 4 7: Calculation diagram of resting landing beam

Table 4 5:Material parameter table of stairs case

Rb = 17 MPa Rs = 260 MPa 210 MPa

Rbt = 1.15 MPa Rsc = 210 MPa 170 MPa ξR 0.583 αR = 0.413

Maximun shear force:Q max 25.88 (kN)

Chose stirrup: ỉ8, asw = 50.27 mm 2 , n = 2 ssw = 150 mm b bt 0

2 2 4 bt 0 sw sw 3 db 3 sw

Vì 0.5γ R bh b bt 0 Q b 2.5γ R bh b bt

=> Do not calculate the stirrup for the beams

Figure 4 10: Deflection diagram The specified deflection from the SAP2000 software in the middle span is: f = 0.001(m)

FRAME STRUCTURE

Overview

Structural diagram: Beam and elevator core wall system bear horizontal force, column system bear vertical load The horizontal load will be transmitted to the frame in both directions, the simplicity of the frame diagram is unreasonable and does not reflect the work of the building

Use the software etabs 20 to analyze and calculate the structure for the project

Main Beam Design

5.2.1 Calculation model and beam internal force

Take the internal force of the beam through the typical floor force calculation model due to the load transmitted from the floor to the beam

Figure 5 3: Diagram of beam shear force

Table 5 1:Calculation material parameter table

Working condition coefficient of concrete γb 0.85 -

Compressive strength TTGH I Rb 17 Mpa

Tensile strength TTGH I Rbt 1.15 Mpa

Compressive strength TTGH II Rb,n,Rb,ser 22 Mpa Tensile strength TTGH II Rbt,n,Rbt,ser 1.75 Mpa

Rebar Steel CB400-V Value Unit

Tensile strength TTGH I Rs 350 Mpa

Compressive strength TTGH I Rsc 350 Mpa

Tensile strength TTGH II Rsw 310 Mpa

Content of structural steel μmin 0.1 %

The largest steel content μmax 2.15 %

Content of economic steel μkinh tế 0.6÷1.5 %

Consider at the position of beam with moment M = 183.11 (kN.m)

 Calculating steel according to internal force results according to Etabs 20

Table 5 2: Spreadsheet of beam reinforcement in the X direction

Beam Label M 3 kN.m α m ξ m As mm2 μ

B1 Min -53.4627 0.023 0.024 230.712 0.115 2ỉ20 + 2ỉ25 1610.066 0.80 B2 Min -319.9753 0.140 0.151 1476.088 0.734 2ỉ20 + 2ỉ25 1610.066 0.80 B2 Max 183.110 0.114 0.122 1012.398 0.805 2ỉ20 + 2ỉ25 1610.066 0.80 B2 Min -365.1821 0.160 0.175 1706.408 0.849 4ỉ20 + 2ỉ25 2238.385 1.11 B4 Min -288.2464 0.126 0.135 1318.187 0.656 4ỉ20 + 2ỉ25 2238.385 1.11 B4 Max 142.8332 0.062 0.064 629.384 0.313 2ỉ20 + 2ỉ25 1610.066 0.80 B4 Min -341.9507 0.149 0.163 1587.238 0.790 4ỉ20 + 2ỉ25 2238.385 1.11

B42 Min -84.727 0.037 0.038 368.254 0.183 2ỉ20 + 2ỉ25 1610.066 0.80 B44 Min -441.2393 0.193 0.216 2109.528 1.050 4ỉ20 + 2ỉ25 2238.385 1.11 B44 Max 268.7475 0.117 0.125 1222.597 0.608 2ỉ20 + 2ỉ25 1610.066 0.80 B44 Min -458.6632 0.200 0.226 2204.905 1.097 4ỉ20 + 2ỉ25 2238.385 1.11 B46 Min -193.9645 0.085 0.089 865.506 0.431 2ỉ20 + 2ỉ25 1610.066 0.80 B46 Max 167.2287 0.073 0.076 741.270 0.369 2ỉ20 + 2ỉ25 1610.066 0.80 B46 Min -264.7238 0.116 0.123 1203.005 0.599 4ỉ20 + 2ỉ25 1610.066 0.80

B75 Min -82.1244 0.036 0.037 356.728 0.177 2ỉ20 + 2ỉ25 1610.066 0.80 B76 Min -412.3048 0.180 0.200 1953.715 0.972 4ỉ20 + 2ỉ25 2238.385 1.11 B76 Max 261.734 0.114 0.122 1188.476 0.591 4ỉ20 + 2ỉ25 2238.385 0.80 B76 Min -465.802 0.203 0.230 2244.331 1.117 4ỉ20 + 2ỉ25 2238.385 1.11 B77 Min -200.1061 0.087 0.092 894.290 0.445 4ỉ20+ 2ỉ25 2238.385 1.11 B77 Max 86.8726 0.038 0.039 377.768 0.188 2ỉ20 + 2ỉ25 1610.066 0.80 B77 Min -257.1381 0.112 0.119 1166.189 0.580 4ỉ20 + 2ỉ25 2238.385 1.11 B78 Min -313.0463 0.137 0.148 1441.350 0.717 4ỉ20 + 2ỉ25 2238.385 1.11 B78 Max 76.415 0.033 0.034 331.491 0.165 2ỉ20 + 2ỉ25 1610.066 0.80 B78 Min -131.2492 0.057 0.059 576.733 0.287 2ỉ20 + 2ỉ25 1610.066 0.80 B79 Min -193.6707 0.085 0.089 864.131 0.430 2ỉ20 + 2ỉ25 1610.066 0.80 B79 Max 91.0353 0.040 0.041 396.252 0.197 2ỉ20 + 2ỉ25 1610.066 0.80 B79 Min -160.1489 0.070 0.073 708.657 0.353 2ỉ20 + 2ỉ25 1610.066 0.80 B80 Min -166.1922 0.073 0.075 736.488 0.366 2ỉ20 + 2ỉ25 1610.066 0.80 B80 Max 78.167 0.034 0.035 339.228 0.169 2ỉ20 + 2ỉ25 1610.066 0.80 B80 Min -188.1292 0.082 0.086 838.243 0.417 2ỉ20 + 2ỉ25 1610.066 0.80 B81 Min -185.8933 0.081 0.085 827.818 0.412 2ỉ20 + 2ỉ25 1610.066 0.80 B81 Max 80.2953 0.035 0.036 348.636 0.173 2ỉ20 + 2ỉ25 1610.066 0.80 B81 Min -172.6157 0.075 0.078 766.164 0.381 2ỉ20 + 2ỉ25 1610.066 0.80

B116 Min -87.2041 0.038 0.039 379.238 0.189 2ỉ20 + 2ỉ25 1610.066 0.80 B117 Min -424.3891 0.185 0.207 2018.408 1.004 2ỉ20 + 2ỉ25 2238.385 1.11 B117 Max 309.7386 0.135 0.146 1424.818 0.709 4ỉ20 + 2ỉ25 2238.385 0.80 B117 Min -532.3241 0.233 0.269 2622.181 1.305 4ỉ20 + 4ỉ25 3220.132 1.60 B118 Min -396.968 0.173 0.192 1872.374 0.932 4ỉ20 + 2ỉ25 2238.385 1.11 DX4’

Table 5 2: Spreadsheet of beam reinforcement in the X direction

Beam Label M 3 kN.m α m ξ m As mm2 μ

B120 Min -231.2577 0.101 0.107 1041.754 0.518 4ỉ20 + 2ỉ25 2238.385 1.11 B120 Max 146.1126 0.064 0.066 644.345 0.321 2ỉ20 + 2ỉ25 1610.066 0.63 B120 Min -207.7578 0.091 0.095 930.283 0.463 2ỉ20 + 2ỉ25 1610.066 0.80 B121 Min -207.0462 0.090 0.095 926.930 0.461 2ỉ20 + 2ỉ25 1610.066 0.80 B121 Max 127.8097 0.056 0.057 561.158 0.279 2ỉ20 + 2ỉ25 1610.066 0.80 B121 Min -254.3886 0.111 0.118 1152.884 0.574 2ỉ20 + 2ỉ25 1610.066 0.80 B122 Min -236.2745 0.103 0.109 1065.736 0.530 2ỉ20 + 2ỉ25 1610.066 0.80 B122 Max 112.2642 0.049 0.050 491.090 0.244 2ỉ20 + 2ỉ25 1610.066 0.80 B122 Min -217.1431 0.095 0.100 974.632 0.485 2ỉ20 + 2ỉ25 1610.066 0.80

B160 Min -82.493 0.036 0.037 358.360 0.178 2ỉ20 + 2ỉ25 1610.066 0.80 B161 Min -407.2278 0.178 0.197 1926.695 0.959 4ỉ20 + 2ỉ25 2238.385 1.11 B161 Max 238.8245 0.104 0.110 1077.952 0.536 2ỉ20 + 2ỉ25 1610.066 0.80 B161 Min -457.8274 0.200 0.225 2200.302 1.095 4ỉ20 + 2ỉ25 2238.385 1.11 B162 Min -350.0533 0.153 0.167 1628.603 0.810 4ỉ20 + 2ỉ25 2238.385 1.11 B162 Max 191.4258 0.084 0.087 853.634 0.425 2ỉ20 + 2ỉ25 1610.066 0.80 B162 Min -356.7696 0.156 0.170 1663.052 0.827 4ỉ20 + 2ỉ25 2238.385 1.11 B163 Min -312.1206 0.136 0.147 1436.720 0.715 4ỉ20 + 2ỉ25 2238.385 1.11 B163 Max 101.1229 0.044 0.045 441.197 0.220 2ỉ20 + 2ỉ25 1610.066 0.80 B163 Min -158.3236 0.069 0.072 700.268 0.348 2ỉ20 + 2ỉ25 1610.066 0.80 B164 Min -221.0015 0.097 0.102 992.930 0.494 2ỉ20 + 2ỉ25 1610.066 0.80 B164 Max 126.1228 0.055 0.057 553.529 0.275 2ỉ20 + 2ỉ25 1610.066 0.80 B164 Min -231.2512 0.101 0.107 1041.723 0.518 2ỉ20 + 2ỉ25 1610.066 0.80 B165 Min -204.0755 0.089 0.094 912.944 0.454 2ỉ20 + 2ỉ25 1610.066 0.80 B165 Max 125.9204 0.055 0.057 552.614 0.275 2ỉ20 + 2ỉ25 1610.066 0.80 B165 Min -251.0885 0.110 0.116 1136.942 0.566 2ỉ20 + 2ỉ25 1610.066 0.80 B166 Min -168.5038 0.074 0.077 747.156 0.372 2ỉ20 + 2ỉ25 1610.066 0.63 B166 Max 42.3994 0.019 0.019 182.514 0.091 2ỉ20 + 2ỉ25 1610.066 0.80 B166 Min -154.9201 0.068 0.070 684.646 0.341 2ỉ20 + 2ỉ25 1610.066 0.80

B197 Min -46.762 0.020 0.021 201.491 0.100 2ỉ20 + 2ỉ25 1610.066 0.80 B198 Min -338.8216 0.148 0.161 1571.319 0.782 4ỉ20+ 2ỉ25 1610.066 0.80 B198 Max 178.6742 0.078 0.081 794.244 0.395 2ỉ20 + 2ỉ25 1610.066 0.80 B198 Min -315.3648 0.138 0.149 1452.957 0.723 4ỉ20 + 2ỉ25 1610.066 0.80 B199 Min -308.4559 0.135 0.145 1418.416 0.706 4ỉ20 + 2ỉ25 1610.066 0.80 B199 Max 177.9921 0.078 0.081 791.078 0.394 2ỉ20 + 2ỉ25 1610.066 0.80 B199 Min -316.2502 0.138 0.149 1457.394 0.725 4ỉ20 + 2ỉ25 1610.066 0.80 B200 Min -201.165 0.088 0.092 899.262 0.447 4ỉ20 + 2ỉ25 1610.066 0.80 B200 Max 65.3758 0.029 0.029 282.886 0.141 2ỉ20 + 2ỉ25 1610.066 0.80 B200 Min -166.3714 0.073 0.076 737.315 0.367 2ỉ20 + 2ỉ25 1610.066 0.80 B201 Min -170.233 0.074 0.077 755.145 0.376 2ỉ20 + 2ỉ25 1610.066 0.80 B201 Max 79.2496 0.035 0.035 344.012 0.171 2ỉ20 + 2ỉ25 1610.066 0.80 B201 Min -172.8864 0.076 0.079 767.417 0.382 2ỉ20 + 2ỉ25 1610.066 0.80

Table 5 2: Spreadsheet of beam reinforcement in the X direction

Beam Label M 3 kN.m α m ξ m As mm2 μ

B202 Min -131.2472 0.057 0.059 576.724 0.287 2ỉ20 + 2ỉ25 1610.066 0.80 B202 Max 103.9557 0.045 0.046 453.857 0.226 2ỉ20 + 2ỉ25 1610.066 0.80 B202 Min -230.194 0.101 0.106 1036.678 0.516 2ỉ20 + 2ỉ25 1610.066 0.80 B203 Min -10.2378 0.004 0.004 43.756 0.022 2ỉ20 + 2ỉ25 1610.066 0.80 B203 Max 30.0635 0.013 0.013 129.056 0.064 2ỉ20 + 2ỉ25 1610.066 0.80 B203 Min -7.013 0.003 0.003 29.952 0.015 2ỉ20 + 2ỉ25 1610.066 0.80

Table 5 3: Spreadsheet of beam reinforcement in the Y direction

B179 Min -158.231 0.069 0.072 699.843 0.348 4ỉ20 1256.64 0.63 B179 Max 125.2603 0.055 0.056 549.631 0.273 4ỉ20 1256.64 0.63 B179 Min -233.1247 0.102 0.108 1050.671 0.523 4ỉ20 1256.64 0.63 B138 Min -224.8981 0.098 0.104 1011.448 0.503 4ỉ20 1256.64 0.63 B138 Max 120.0275 0.052 0.054 526.015 0.262 4ỉ20 1256.64 0.63 B138 Min -248.2902 0.108 0.115 1123.446 0.559 4ỉ20 1256.64 0.63 B98 Min -250.8922 0.110 0.116 1135.994 0.565 4ỉ20 1256.64 0.63 B98 Max 112.7664 0.049 0.051 493.345 0.245 4ỉ20 1256.64 0.63 B98 Min -277.3584 0.121 0.130 1264.678 0.629 4ỉ20 1256.64 0.63 B59 Min -225.0353 0.098 0.104 1012.100 0.504 4ỉ20 1256.64 0.63 B59 Max 119.1025 0.052 0.053 521.847 0.260 4ỉ20 1256.64 0.63 B59 Min -250.0227 0.109 0.116 1131.799 0.563 4ỉ20 1256.64 0.63 B21 Min -229.2693 0.100 0.106 1032.267 0.514 4ỉ20 1256.64 0.63 B21 Max 113.1443 0.049 0.051 495.043 0.246 4ỉ20 1256.64 0.63 B21 Min -148.4128 0.065 0.067 654.853 0.326 4ỉ20 1256.64 0.63

B180 Min -226.0478 0.099 0.104 1016.919 0.506 4ỉ20 1256.64 0.63 B180 Max 153.1317 0.067 0.069 676.449 0.337 4ỉ20 1256.64 0.63 B180 Min -279.5492 0.122 0.131 1275.418 0.635 8ỉ20 2513.27 1.25 B139 Min -494.8856 0.216 0.247 2407.140 1.198 8ỉ20 2513.27 1.25 B139 Max 171.2047 0.075 0.078 759.637 0.378 4ỉ20 1256.64 0.63 B139 Min -110.7466 0.048 0.050 484.278 0.241 4ỉ20 1256.64 0.63 B99 Min -31.5462 0.014 0.014 135.465 0.067 4ỉ20 1256.64 0.63 B99 Max 105.3781 0.046 0.047 460.221 0.229 4ỉ20 1256.64 0.63 B99 Min -328.6244 0.144 0.156 1519.656 0.756 6ỉ20 1884.96 0.94 B60 Min -309.5492 0.135 0.146 1423.872 0.708 6ỉ20 1884.96 0.94 B60 Max 176.7478 0.077 0.080 785.306 0.391 4ỉ20 1256.64 0.63 B60 Min -513.3529 0.224 0.257 2512.416 1.250 6ỉ20 1884.96 0.94

Table 5 3: Spreadsheet of beam reinforcement in the Y direction

Beam Label M3 kN.m α m ξ m As mm2 μ

B140 Min -16.8928 0.007 0.007 72.305 0.036 4ỉ20 1256.64 0.63 B140 Max 177.6252 0.078 0.081 789.376 0.393 4ỉ20 1256.64 0.63 B140 Min -88.1846 0.039 0.039 383.589 0.191 4ỉ20 1256.64 0.63 B93 Min 50.549 0.022 0.022 217.995 0.108 4ỉ20 1256.64 0.63 B93 Max 239.2689 0.105 0.111 1080.082 0.537 4ỉ20 1256.64 0.63 B93 Min -360.0515 0.157 0.172 1679.938 0.836 6ỉ20 1884.96 0.94 B61 Min -200.8864 0.088 0.092 897.954 0.447 4ỉ20 1256.64 0.63 B61 Max 115.3938 0.050 0.052 505.153 0.251 4ỉ20 1256.64 0.63 B61 Min -242.394 0.106 0.112 1095.080 0.545 4ỉ20 1256.64 0.63 B24 Min -171.5501 0.075 0.078 761.235 0.379 4ỉ20 1256.64 0.63 B24 Max 77.8903 0.034 0.035 338.006 0.168 4ỉ20 1256.64 0.63 B24 Min -117.2291 0.051 0.053 513.411 0.255 4ỉ20 1256.64 0.63

B182 Min -136.7687 0.060 0.062 601.782 0.299 4ỉ20 1256.64 0.63 B182 Max 131.2038 0.057 0.059 576.527 0.287 4ỉ20 1256.64 0.63 B182 Min -329.509 0.144 0.156 1524.125 0.758 6ỉ20 1884.96 0.94 B141 Min -305.2717 0.133 0.144 1402.544 0.698 6ỉ20 1884.96 0.94 B141 Max 148.4528 0.065 0.067 653.749 0.325 4ỉ20 1256.64 0.63 B141 Min -257.2321 0.112 0.119 1166.645 0.580 4ỉ20 1256.64 0.63 B100 Min -292.3011 0.128 0.137 1338.201 0.666 6ỉ20 1884.96 0.94 B100 Max 106.5664 0.047 0.048 465.541 0.232 4ỉ20 1256.64 0.63 B100 Min -148.2904 0.065 0.067 654.293 0.326 4ỉ20 1256.64 0.63

B183 Min -103.3567 0.045 0.046 451.179 0.224 4ỉ20 1256.64 0.63 B183 Max 102.8397 0.045 0.046 448.868 0.223 4ỉ20 1256.64 0.63 B183 Min -312.7654 0.137 0.147 1439.945 0.716 6ỉ20 1884.96 0.94 B142 Min -261.8728 0.114 0.122 1189.150 0.592 4ỉ20 1256.64 0.63 B142 Max 159.3662 0.070 0.072 705.059 0.351 4ỉ20 1256.64 0.63 B142 Min -316.8163 0.138 0.150 1460.233 0.726 6ỉ20 1884.96 0.94 B101 Min -373.4801 0.163 0.179 1749.403 0.870 6ỉ20 1884.96 0.94 B101 Max 151.2386 0.066 0.068 667.779 0.332 4ỉ20 1256.64 0.63

B104 Min -369.4036 0.161 0.177 1728.252 0.860 6ỉ20 1884.96 0.94 B104 Max 149.8933 0.065 0.068 661.623 0.329 4ỉ20 1256.64 0.63 B104 Min -160.5337 0.070 0.073 710.427 0.353 4ỉ20 1256.64 0.63 B143 Min -221.2383 0.097 0.102 994.054 0.495 4ỉ20 1256.64 0.63 B143 Max 156.0379 0.068 0.071 689.774 0.343 4ỉ20 1256.64 0.63 B143 Min -307.2091 0.134 0.145 1412.197 0.703 6ỉ20 1884.96 0.94 B102 Min -331.1471 0.145 0.157 1532.407 0.762 6ỉ20 1884.96 0.94 B102 Max 130.0596 0.057 0.059 571.343 0.284 4ỉ20 1256.64 0.63 B102 Min -140.3972 0.061 0.063 618.287 0.308 4ỉ20 1256.64 0.63

The maximum shear force: Qmax = 265.325 kN

According to section 8.1.3.3.1 TCVN 5574:2018, there are regulations:

When there is no horizontal reinforcement, it is calculate according to condition: Qsw = 0

Calculation of flexural members according to the inclined section following conditions: Q ≤ Qb + Qsw

Qb: Shear force resisted by concrete in inclined section

Qsw = 0: Shear force by horizontal reinforcement in inclined section

0.5Rbtbh0  11.58(kN) ≤ Qb = 265.325 (kN) ≤ 2.5Rbtbh0  577.88 (kN) => OK

Choose stirrup ỉ8 (asw = 50.26 mm 2 ), number of branches: n= 2

→ Choose s = min(sct, stt, smax) = 100 (mm) scatter at L/4

→ Choose s = 150 (mm) scatter at span L/2

 Check seismic resistance calculation conditions

– According to TCVN 9386:2012 and TCVN 5574:2018

+ Within the length of 3hd of the beam from the edge of the column, the belts must be placed thicker than the area between the beams, the distance between stirrup: Ss ;0.25h ;8d;150 tt d mm

+ In the area between beams (outside the range mentioned above), the distance between the stirrup: S0.5h ;12d;300d mm

We have stirrup ỉ8 (asw = 50.26 mm 2 ), number of branches n= 2

Stirrup ỉ 8a100 in the L/4 at support

– Check the condition again: sw sw

→ Qbd,min = 507 (kN) > Qmax = 265.625 (kN)

5.2.5 Calculate the length of the reinforcement anchor

According to Section 10.3.5.5 TCVN 5574-2018, the required calculation anchor length of the reinforcement: an 0,an s s,ef

Anchor reinforcement in the tension area:

Anchor reinforcement in the compression area:

Connecting reinforcement in tension area:

– Connecting reinforcement in the compression area:

Column reinforcement design

5.3.1 Working of oblique eccentric compression

For members working with elastic and homogeneous materials subject to oblique eccentric compression, use the addition method to calculate the stress: x y x y

Strength condition is the stress limit that does not to exceed the allowable stress or calculated strength of the material

Considering the simultaneous effects of three internal forces N, Mx, My when calculating reinforcement and check

The limit of the compression area is calculated from a distance of x = θx0 (θ 0.8 ÷ 0.85)

5.3.2 Determination of effects of random eccentricity and longitudinal bending

The calculated moment for the column is increased due to longitudinal bending and random eccentricity:

M = η e N Where: e0x : is the calculated eccentricity including random eccentricity: x 0x l H M e = max 20; ; ;

  ηx: is the coefficient including longitudinal bending, according to 6.2.2.5

TCVN 356-2005: x x cr η = 1 1-N N Where: N x cr is the critical force on structural stability (TCVN 5574-2018) x b b x x cr 2 x s s e

+ Eb: elastic modulus of concrete

+ φ1 : factor taking into account the long-term effect of the load: l 1 φ = 1+M

+ J x s: The moment of inertia of the reinforcement area is taken with respect to the x-axis

The formula for calculating Ncr according to TCVN 5574:2018 considering the influence of many coefficients is quite complicated Using the approximate formula of Professor NGUYEN DINH CONG: b cr 2

The reasonable content of column reinforcement is: 1% < < 3%

Choose according to the three internal forces as follows

+ Case 1: |Nmax|, Mx, tu, My, tu

+ Case 2: Mx, max, Ntu, My, tu

+ Case 3: My, max, Ntu, Mx, tu

+ Need to consider more cross-sections with Mx, My and ex, ey are all large

Note: Choose the plan to place the steel symmetrically, so the values of Mx,max

My,max are spread to absolute values

Table 5 4: Summary table of column C3

Nmin, Vtu,M2.tu,M3.tu ULS11 -67.74 -13.35 -35.34 -49.71 -10.54 Nmax, Vtu,M2.tu,M3.tu ULS10 -39.08 -1.57 -29.45 32.32 20.22 M2min,Ntu, Vtu,M3.tu ULS1 -58.20 -2.37 -39.09 -58.57 5.53 M2max,Ntu, Vtu,M3.tu ULS22 -45.67 -3.64 -33.43 35.73 16.96 M3min,Ntu, Vtu,M3.tu ULS11 -67.74 -13.35 -35.34 -49.71 -10.54 M3max,Ntu, Vtu,M3.tu ULS11 -43.27 -2.21 -32.27 35.11 21.50

Nmin, Vtu,M2.tu,M3.tu ULS1 -531.07 138.75 -128.14 -214.47 220.17 Nmax, Vtu,M2.tu,M3.tu ULS10 -379.33 97.26 -86.08 93.66 -30.81 M2min,Ntu, Vtu,M3.tu ULS1 -531.07 138.75 -128.14 -214.47 220.17

M2max,Ntu, Vtu,M3.tu ULS1 -497.69 138.75 -128.14 131.51 -154.45 M3min,Ntu, Vtu,M3.tu ULS1 -497.69 138.75 -128.14 131.51 -154.45 M3max,Ntu, Vtu,M3.tu ULS1 -531.07 138.75 -128.14 -214.47 220.17

Nmin, Vtu,M2.tu,M3.tu ULS1 -1224.61 127.23 -130.15 -214.58 211.41 Nmax, Vtu,M2.tu,M3.tu ULS10 -912.63 105.25 -89.46 102.52 -46.17 M2min,Ntu, Vtu,M3.tu ULS9 -1206.14 118.18 -128.99 -215.18 195.66 M2max,Ntu, Vtu,M3.tu ULS1 -1191.23 127.23 -130.15 136.84 -132.10 M3min,Ntu, Vtu,M3.tu ULS6 -1171.73 127.90 -126.96 133.46 -132.11 M3max,Ntu, Vtu,M3.tu ULS18 -1085.32 126.53 -106.43 -173.69 214.29

Nmin, Vtu,M2.tu,M3.tu ULS1 -1918.41 129.42 -127.95 -211.00 212.26 Nmax, Vtu,M2.tu,M3.tu ULS10 -1444.25 85.18 -82.26 105.32 -61.22 M2min,Ntu, Vtu,M3.tu ULS8 -1891.50 125.84 -130.91 -214.62 206.54 M2max,Ntu, Vtu,M3.tu ULS8 -1858.12 125.84 -130.91 138.84 -133.22 M3min,Ntu, Vtu,M3.tu ULS1 -1885.04 129.42 -127.95 134.46 -137.16 M3max,Ntu, Vtu,M3.tu ULS1 -1918.41 129.42 -127.95 -211.00 212.26

Nmin, Vtu,M2.tu,M3.tu ULS1 -2610.80 129.53 -127.38 -211.10 215.31 Nmax, Vtu,M2.tu,M3.tu ULS10 -1974.07 89.57 -81.45 99.85 -30.11 M2min,Ntu, Vtu,M3.tu ULS22 -2365.10 82.60 -129.85 -250.97 125.69 M2max,Ntu, Vtu,M3.tu ULS9 -2531.11 121.93 -118.46 133.36 -123.80 M3min,Ntu, Vtu,M3.tu ULS18 -2314.65 75.10 -116.40 106.76 -140.68 M3max,Ntu, Vtu,M3.tu ULS1 -2610.80 129.53 -127.38 -211.10 215.31

Nmin, Vtu,M2.tu,M3.tu ULS1 -3300.75 118.62 -118.84 -193.82 188.99 Nmax, Vtu,M2.tu,M3.tu ULS10 -2509.46 121.99 -69.67 119.70 22.47 M2min,Ntu, Vtu,M3.tu ULS22 -2970.70 48.46 -146.22 -198.95 104.91 M2max,Ntu, Vtu,M3.tu ULS22 -2881.62 121.86 -54.01 196.98 -25.11 M3min,Ntu, Vtu,M3.tu ULS18 -2926.42 28.09 -114.86 77.78 -188.14 M3max,Ntu, Vtu,M3.tu ULS18 -2925.90 142.23 -85.37 -151.14 196.49

Nmin, Vtu,M2.tu,M3.tu ULS1 -3994.44 140.07 -124.87 -203.53 222.11 Nmax, Vtu,M2.tu,M3.tu ULS10 -3036.80 139.17 -72.80 119.40 4.33 M2min,Ntu, Vtu,M3.tu ULS22 -3607.99 61.09 -154.76 -230.35 114.49 M2max,Ntu, Vtu,M3.tu ULS22 -3475.96 140.33 -55.61 188.28 -49.15 M3min,Ntu, Vtu,M3.tu ULS18 -3545.17 38.39 -121.07 88.15 -202.10 M3max,Ntu, Vtu,M3.tu ULS18 -3538.78 163.03 -89.30 -152.49 239.18

Nmin, Vtu,M2.tu,M3.tu ULS1 -4686.47 126.95 -118.55 -195.85 210.23 Nmax, Vtu,M2.tu,M3.tu ULS10 -3554.55 140.33 -63.05 117.25 21.76 M2min,Ntu, Vtu,M3.tu ULS22 -4287.49 43.85 -165.37 -253.08 89.29 M2max,Ntu, Vtu,M3.tu ULS22 -4030.24 138.51 -34.31 194.14 -27.61 M3min,Ntu, Vtu,M3.tu ULS18 -4180.27 20.38 -120.95 75.81 -189.63 M3max,Ntu, Vtu,M3.tu ULS18 -4137.46 161.98 -78.72 -136.47 249.08

Nmin, Vtu,M2.tu,M3.tu ULS1 -5376.05 128.46 -117.28 -193.37 212.12 Nmax, Vtu,M2.tu,M3.tu ULS10 -4065.24 147.46 -58.94 118.10 22.06 M2min,Ntu, Vtu,M3.tu ULS22 -4982.21 40.18 -173.55 -271.02 77.83 M2max,Ntu, Vtu,M3.tu ULS22 -4565.16 144.10 -23.77 198.46 -28.90 M3min,Ntu, Vtu,M3.tu ULS18 -4818.61 14.87 -122.84 73.23 -192.44

M3max,Ntu, Vtu,M3.tu ULS18 -4728.76 169.41 -74.47 -127.55 266.44

Nmin, Vtu,M2.tu,M3.tu ULS1 -6063.00 117.06 -110.30 -178.58 185.33 Nmax, Vtu,M2.tu,M3.tu ULS10 -4569.85 142.56 -50.52 116.70 24.46 M2min,Ntu, Vtu,M3.tu ULS22 -5686.52 29.78 -177.74 -280.96 52.15 M2max,Ntu, Vtu,M3.tu ULS22 -5086.00 137.83 -7.66 199.95 -25.81 M3min,Ntu, Vtu,M3.tu ULS18 -5458.89 4.99 -120.24 68.14 -189.55 M3max,Ntu, Vtu,M3.tu ULS18 -5313.62 162.61 -65.16 -107.44 251.54

Nmin, Vtu,M2.tu,M3.tu ULS9 -6758.89 113.30 -139.20 -223.75 179.89 Nmax, Vtu,M2.tu,M3.tu ULS10 -5066.13 164.21 -50.15 121.20 28.67 M2min,Ntu, Vtu,M3.tu ULS22 -6406.33 31.98 -189.70 -302.95 54.03 M2max,Ntu, Vtu,M3.tu ULS22 -5588.63 156.72 -1.70 210.48 -28.64 M3min,Ntu, Vtu,M3.tu ULS18 -6100.68 1.84 -126.12 67.77 -214.11 M3max,Ntu, Vtu,M3.tu ULS18 -5894.27 186.86 -65.29 -108.06 293.35

Nmin, Vtu,M2.tu,M3.tu ULS9 -7468.51 102.36 -135.84 -221.52 168.22 Nmax, Vtu,M2.tu,M3.tu ULS10 -5562.17 155.74 -44.36 116.12 27.23 M2min,Ntu, Vtu,M3.tu ULS22 -7132.38 23.25 -190.37 -309.70 39.28 M2max,Ntu, Vtu,M3.tu ULS22 -6086.28 148.48 8.46 205.53 -19.28 M3min,Ntu, Vtu,M3.tu ULS18 -6748.68 -4.62 -123.17 60.32 -186.56 M3max,Ntu, Vtu,M3.tu ULS18 -6469.98 176.35 -58.74 -97.84 293.10

Nmin, Vtu,M2.tu,M3.tu ULS9 -8177.96 103.44 -136.38 -224.66 169.10 Nmax, Vtu,M2.tu,M3.tu ULS10 -6054.86 156.73 -42.73 114.25 18.65 M2min,Ntu, Vtu,M3.tu ULS22 -7860.87 23.43 -192.35 -318.46 34.41 M2max,Ntu, Vtu,M3.tu ULS22 -6577.73 150.04 12.04 202.07 -24.96 M3min,Ntu, Vtu,M3.tu ULS18 -7396.60 -4.12 -123.28 59.67 -179.49 M3max,Ntu, Vtu,M3.tu ULS18 -7042.01 177.58 -57.03 -93.89 303.22

Nmin, Vtu,M2.tu,M3.tu ULS9 -8885.83 91.04 -127.12 -205.31 137.89 Nmax, Vtu,M2.tu,M3.tu ULS10 -6544.92 144.33 -35.74 109.24 8.38 M2min,Ntu, Vtu,M3.tu ULS22 -8588.52 14.81 -184.35 -305.86 6.27 M2max,Ntu, Vtu,M3.tu ULS22 -7065.36 138.89 20.51 192.98 -29.79 M3min,Ntu, Vtu,M3.tu ULS18 -8042.88 -9.14 -115.20 57.49 -164.13 M3max,Ntu, Vtu,M3.tu ULS18 -7611.01 162.83 -48.65 -73.40 279.02

Nmin, Vtu,M2.tu,M3.tu ULS9 -9595.62 117.24 -149.40 -264.94 195.66 Nmax, Vtu,M2.tu,M3.tu ULS10 -7030.61 177.61 -43.86 108.50 -10.46 M2min,Ntu, Vtu,M3.tu ULS22 -9320.59 26.51 -210.58 -380.17 21.00 M2max,Ntu, Vtu,M3.tu ULS22 -7545.58 169.01 17.72 189.19 -46.63 M3min,Ntu, Vtu,M3.tu ULS18 -8686.49 -5.83 -133.27 60.41 -159.79 M3max,Ntu, Vtu,M3.tu ULS18 -8179.68 201.34 -59.59 -100.10 387.45

Nmin, Vtu,M2.tu,M3.tu ULS9 -10328.30 36.41 -52.59 -121.43 54.76 Nmax, Vtu,M2.tu,M3.tu ULS10 -7519.70 58.89 -13.13 86.96 -40.67 M2min,Ntu, Vtu,M3.tu ULS22 -10070.01 0.12 -82.61 -215.70 -59.34 M2max,Ntu, Vtu,M3.tu ULS22 -8034.43 62.97 15.29 148.58 -54.29 M3min,Ntu, Vtu,M3.tu ULS1 -10103.25 43.07 -37.16 86.52 -112.68 M3max,Ntu, Vtu,M3.tu ULS18 -8776.68 66.05 -17.31 -24.74 198.49 F2 Nmin, Vtu,M2.tu,M3.tu ULS9 -10781.19 7.22 -78.50 -222.88 -11.77

Nmax, Vtu,M2.tu,M3.tu ULS10 -7860.98 133.58 -3.65 45.83 51.23 M2min,Ntu, Vtu,M3.tu ULS22 -10530.40 -78.96 -119.63 -368.98 -357.78 M2max,Ntu, Vtu,M3.tu ULS14 -7956.72 102.18 41.29 183.45 392.27 M3min,Ntu, Vtu,M3.tu ULS10 -8586.37 -115.45 -62.48 -171.08 -479.35 M3max,Ntu, Vtu,M3.tu ULS18 -9150.64 137.84 -12.84 -7.55 512.75

Nmin, Vtu,M2.tu,M3.tu ULS9 -11383.56 77.21 -35.17 -26.33 158.57 Nmax, Vtu,M2.tu,M3.tu ULS10 -8076.05 89.72 -13.34 47.60 -11.02 M2min,Ntu, Vtu,M3.tu ULS14 -10359.50 27.50 -31.63 -66.09 59.98 M2max,Ntu, Vtu,M3.tu ULS1 -11192.49 77.90 -29.52 88.19 -72.02 M3min,Ntu, Vtu,M3.tu ULS18 -10172.26 22.64 -26.93 45.68 -79.01 M3max,Ntu, Vtu,M3.tu ULS18 -9491.13 101.17 -17.99 4.86 225.12

Calculation of corewall steel

Calculation by method of boundary region subjected to moment

 Step 1: Assume the length B of the mooment boundary region Consider the wall bearing axial force N and bending moment in the plane Mx

Figure 5 6: Internal force in the Wall

 Step 2: Determine the tensile force (Pk), compression (Pn) at the boundary region: n(k) b x k n

A L - 0.5B - 0.5BWhere: A = Ltw và Ab = Bn(k)tw

 Step 3: Calculation of longitudinal reinforcement in tensile and compression zones: n b b k sn sk sc s

With φ ≤ 1 is the coefficient of reduction of bearing capacity due to bending effect

When: 28 < λ ≤ 120 => φ according to the formula: φ = 1.028 – 0.000028 λ 2 – 0.0016λ

 Step 4: Calculation of compressive reinforcement in the middle zone bk bn bt sg sc

 Step 5: Check reinforcement content Increase the size of the boundary area

B and then recalculate B1 in case it is not satisfied The maximum length of the boundary region is L/2 If exceeded, increase wall thickness Reasonable reinforcement content: μ= 1% 4%

 Step 6: Check the rest of the wall as for the center compression member Concrete has enough bearing capacity, compressive reinforcement is placed according to the structure

Choose the wall P2 on the 1st floor to present the calculation

Area of the pier: A = tL = 0.3 2.5 0.75m 2

Assume the length of the boundary region Bb = Bb.left = Bb.right = 0.5m

Area of the middle area: A mid = A - 2A = 0.45 m b 2

Determine the longitudinal force in the mid-boundary region and the boundary zone b left right l b left right r b left right

Calculation of reinforcement for boundary and middle areas:

+ Pl (r) > 0 => the left boundary must be compressed

+ The area of reinforcement in the compressive boundary zone is: λ7.04 >28 => φ = 1.028 – 0.000028 λ2 – 0.0016λ = 0.9

=> Arrangement of reinforcement: ỉ22a100 (Asc 801.33 mm 2 )

+ Area of reinforcement in the middle zone: m 3 b m

=> Arrangement of reinforcement: ỉ22a150 (Asc %34.22 mm 2 )

Table 5 13: Results of calculating reinforcement of Pier 1

Roof top Pmin ULS11 -178.1 -247.4 48.58 -24.18 153.73 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3min ULS22 0.0 -1230.6 180.98 -180.98 0.02 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3max ULS14 -68.8 313.5 50.82 -41.40 59.35 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof Pmin ULS22 -952.0 -615.2 155.67 -25.26 821.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3min ULS18 -894.4 -715.3 166.45 -43.93 771.91 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Roof M3max ULS10 -476.9 -34.7 37.77 27.56 411.59 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F16 Pmin ULS22 -1962.8 -1240.8 316.91 -48.04 1693.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3min ULS18 -1779.1 -1407.0 328.76 -85.05 1535.34 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F16 M3max ULS10 -927.5 865.7 190.83 -63.78 800.40 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F15 Pmin ULS22 -3913.2 -944.5 406.92 129.13 3377.15 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3min ULS18 -2283.1 -7391.9 1243.43 -930.67 1970.38 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3max ULS10 -903.4 7059.5 1100.05 -976.29 779.66 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 Pmin ULS22 -8286.4 -2850.1 986.69 148.43 7151.29 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3min ULS18 -4872.5 -5204.5 1099.09 -431.63 4205.02 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F14 M3max ULS10 -31.7 5033.7 742.42 -738.08 27.34 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F13 Pmin ULS22 -9134.4 -2686.4 1020.70 230.59 7883.14 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3min ULS10 -4840.3 -7479.9 1431.51 -768.45 4177.27 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3max ULS18 -839.2 7892.9 1218.19 -1103.24 724.22 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 Pmin ULS22 -8720.7 -1953.3 884.57 310.06 7526.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3min ULS10 -5148.9 -6073.3 1245.80 -540.46 4443.60 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3max ULS18 -1849.6 6399.0 1067.71 -814.35 1596.21 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 Pmin ULS22 -8440.5 -2085.1 884.75 271.49 7284.29 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3min ULS10 -5456.2 -5270.4 1148.77 -401.35 4708.76 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3max ULS18 -2866.8 5427.0 994.44 -601.72 2474.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 Pmin ULS22 -8362.5 -2100.3 881.64 263.91 7216.96 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3min ULS10 -5788.3 -4445.1 1050.15 -257.23 4995.37 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3max ULS18 -3842.6 4455.5 918.42 -392.03 3316.23 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F9 Pmin ULS22 -8385.4 -2062.5 877.66 271.03 7236.71 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3min ULS11 -6583.1 -3668.5 990.38 -88.59 5681.28 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3max ULS10 -4071.2 3583.7 805.86 -248.16 3513.48 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 Pmin ULS22 -8618.3 -1969.8 879.97 300.63 7437.73 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3min ULS11 -7003.1 -3061.8 929.94 29.39 6043.78 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3max ULS10 -4799.0 2920.8 758.22 -100.83 4141.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 Pmin ULS22 -8989.4 -1981.7 907.15 324.28 7757.98 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3min ULS18 -7256.2 -3393.3 996.02 -2.02 6262.21 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3max ULS10 -4849.5 3111.9 789.78 -125.47 4185.17 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 Pmin ULS22 -9499.4 -2259.3 982.89 318.39 8198.10 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3min ULS18 -7833.1 -4559.9 1207.09 -134.07 6760.06 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3max ULS10 -5139.1 4265.6 979.29 -275.30 4435.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 Pmin ULS22 -10387.8 -2721.3 1111.69 311.30 8964.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3min ULS18 -8542.8 -6149.9 1489.52 -319.27 7372.59 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3max ULS10 -5253.2 5913.9 1229.50 -509.89 4533.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 Pmin ULS22 -11722.1 -3210.7 1275.04 330.72 10116.30 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3min ULS18 -9411.6 -7921.6 1809.58 -520.31 8122.37 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3max ULS11 -5771.1 7951.4 1564.61 -774.05 4980.50 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 Pmin ULS22 -16362.4 -5825.4 1977.39 264.03 14120.96 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3min ULS10 -10693.9 -12158.8 2520.52 -1055.61 9228.95 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3max ULS11 -5720.8 12764.1 2268.91 -1485.24 4937.11 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 Pmin ULS22 -20893.4 -6875.2 2442.10 420.00 18031.26 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3min ULS18 -14918.5 -13484.8 3004.87 -961.24 12874.85 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3max ULS18 -5634.5 14027.0 2448.73 -1676.87 4862.68 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 Pmin ULS22 -22685.5 -5981.9 2433.49 674.12 19577.90 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3min ULS18 -17313.9 -15365.3 3445.48 -1073.72 14942.12 N 1014.4 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3max ULS10 -7252.4 13637.5 2502.26 -1508.77 6258.96 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement Pmin ULS22 -22096.6 -5017.2 2251.29 775.64 19069.64 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3min ULS18 -18102.2 -13387.4 3208.61 -728.86 15622.40 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3max ULS10 -8665.6 13154.7 2528.04 -1340.98 7478.49 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Table 5 14: Results of calculating reinforcement of Pier 2

Roof top Pmin ULS11 -379.9 399.5 275.73 -123.76 227.95 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3min ULS22 -304.9 -461.8 291.89 -169.93 182.94 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3max ULS14 -333.3 460.6 296.96 -163.65 199.97 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Roof Pmin ULS22 -862.6 119.4 232.23 112.83 517.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Roof M3min ULS18 -789.8 -607.3 461.59 -145.67 473.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3max ULS10 -660.9 568.4 416.37 -152.01 396.54 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F16 Pmin ULS22 -1429.2 154.5 363.10 208.57 857.50 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F16 M3min ULS18 -1315.3 -661.1 593.58 -67.47 789.16 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3max ULS10 -625.5 630.8 440.47 -190.29 375.27 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 Pmin ULS22 -2393.9 -206.7 582.11 375.44 1436.32 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3min ULS18 -2105.7 -1416.4 1129.35 -287.06 1263.43 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3max ULS10 -435.1 1680.8 927.41 -753.37 261.07 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 Pmin ULS22 -5232.4 -257.9 1175.44 917.52 3139.44 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3min ULS18 -3513.0 -1192.1 1298.65 106.55 2107.79 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3max ULS10 410.7 1798.3 981.27 -816.99 246.42 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 Pmin ULS22 -5682.0 -323.9 1298.33 974.48 3409.21 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3min ULS10 -4235.6 -1726.8 1710.53 -16.31 2541.33 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3max ULS18 683.6 1203.7 738.59 -465.15 410.16 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 Pmin ULS22 -5274.9 -500.2 1305.08 804.89 3164.94 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3min ULS10 -4174.1 -1653.4 1661.52 8.13 2504.46 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3max ULS18 -312.0 1170.6 647.69 -522.88 187.22 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 Pmin ULS22 -5059.5 -641.5 1332.66 691.13 3035.68 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3min ULS10 -4183.1 -1721.6 1697.42 -24.20 2509.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3max ULS18 -954.7 1320.7 851.27 -469.39 572.82 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 Pmin ULS22 -4944.1 -770.5 1374.07 603.57 2966.47 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3min ULS10 -4216.4 -1748.2 1717.37 -30.81 2529.83 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3max ULS18 -1562.0 1444.1 1034.47 -409.65 937.22 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F9 Pmin ULS22 -4867.7 -886.8 1416.94 530.15 2920.63 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3min ULS11 -4263.6 -1791.0 1748.23 -42.79 2558.15 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3max ULS10 -2135.4 1594.8 1224.47 -370.31 1281.24 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 Pmin ULS22 -4928.1 -952.2 1461.71 509.52 2956.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3min ULS11 -4390.2 -1741.3 1748.71 7.38 2634.13 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3max ULS10 -2636.5 1658.0 1356.31 -301.73 1581.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 Pmin ULS22 -5079.4 -1058.0 1544.86 486.90 3047.65 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3min ULS18 -4623.7 -1792.5 1821.01 28.47 2774.21 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3max ULS10 -3028.9 1831.8 1521.67 -310.10 1817.35 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 Pmin ULS22 -5304.4 -1151.5 1636.62 485.12 3182.62 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3min ULS18 -5001.3 -1806.8 1903.67 96.85 3000.79 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3max ULS10 -3249.2 1995.9 1647.77 -348.09 1949.53 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 Pmin ULS22 -5774.2 -1225.5 1767.59 542.09 3464.51 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3min ULS18 -5089.9 -1896.0 1965.96 70.01 3053.95 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3max ULS10 -3255.3 2175.7 1738.91 -436.79 1953.17 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 Pmin ULS22 -6520.0 -1322.0 1964.99 643.01 3912.01 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3min ULS18 -5802.4 -2134.0 2227.49 93.45 3481.42 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3max ULS11 -3061.5 2364.9 1794.74 -570.15 1836.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 Pmin ULS22 -8526.2 -2098.4 2754.46 656.03 5115.73 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3min ULS10 -7135.9 -3467.8 3161.09 -306.73 4281.53 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3max ULS11 -2516.8 3803.0 2404.84 -1398.13 1510.07 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 Pmin ULS22 -10811.1 -905.8 2615.13 1709.30 6486.64 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3min ULS18 -8552.1 -2365.5 2893.14 527.69 5131.23 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3max ULS18 -1003.6 2545.8 1473.60 -1072.16 602.17 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 Pmin ULS22 -9839.6 77.2 2006.53 1929.29 5903.74 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3min ULS18 -8339.1 -2287.6 2811.62 524.01 5003.45 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F1 M3max ULS10 66.0 1663.0 844.71 -818.33 39.57 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Basement Pmin ULS22 -8169.8 -94.7 1681.30 1586.61 4901.86 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3min ULS18 -7042.7 -515.4 1666.25 1150.85 4225.64 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3max ULS10 -406.5 766.6 464.60 -301.99 243.91 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Table 5 15: Results of calculating reinforcement of Pier 3

Roof top Pmin ULS9 -684.0 -171.8 111.21 31.29 541.51 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3min ULS22 -657.5 -379.3 156.71 -19.73 520.54 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3max ULS22 -481.0 518.5 170.69 -70.48 380.79 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof Pmin ULS9 -1310.3 -370.9 222.75 50.23 1037.33 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3min ULS18 -1255.6 -966.6 355.58 -94.00 994.02 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3max ULS18 -902.8 646.0 244.27 -56.19 714.72 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 Pmin ULS22 -2387.9 -988.8 478.70 18.78 1890.41 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3min ULS18 -2207.3 -1334.3 540.23 -80.37 1747.45 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3max ULS18 -1088.4 1118.3 373.45 -146.70 861.67 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 Pmin ULS18 -3747.3 -4273.7 1384.23 -603.55 2966.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3min ULS18 -3747.3 -4273.7 1384.23 -603.55 2966.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3max ULS10 -741.2 3410.4 870.32 -715.89 586.80 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 Pmin ULS22 -7739.9 -2380.9 1359.94 252.55 6127.44 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3min ULS18 -6492.0 -5288.4 1906.11 -553.62 5139.48 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3max ULS10 645.2 4443.5 1100.58 -966.16 510.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 Pmin ULS22 -7885.9 -1523.7 1175.79 467.09 6242.97 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3min ULS10 -6621.0 -4029.7 1626.83 -247.46 5241.59 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3max ULS18 -111.6 5065.0 1189.52 -1166.28 88.31 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 Pmin ULS22 -7889.9 -1869.6 1256.65 387.08 6246.16 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3min ULS10 -6631.0 -3742.2 1561.01 -179.55 5249.53 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3max ULS18 -1263.1 4802.7 1248.48 -985.32 999.99 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 Pmin ULS22 -7820.3 -2060.9 1293.89 335.34 6191.10 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3min ULS10 -6645.3 -3604.5 1530.47 -146.02 5260.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3max ULS18 -2399.2 4659.0 1333.41 -833.58 1899.34 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 Pmin ULS22 -7881.4 -2274.7 1349.98 291.98 6239.44 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3min ULS10 -6704.1 -3398.9 1488.79 -92.10 5307.43 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3max ULS18 -3467.0 4435.8 1392.72 -670.43 2744.69 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F9 Pmin ULS22 -8002.5 -2534.9 1423.10 244.08 6335.30 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3min ULS10 -6804.6 -3214.9 1456.47 -38.84 5387.00 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3max ULS18 -4464.2 4229.8 1448.70 -518.66 3534.15 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 Pmin ULS22 -8322.6 -2717.2 1498.84 235.03 6588.72 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3min ULS18 -8036.1 -3540.8 1660.54 13.65 6361.93 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3max ULS18 -5291.0 3883.9 1454.37 -352.07 4188.74 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 Pmin ULS22 -8770.4 -2935.8 1596.32 230.85 6943.27 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3min ULS18 -8627.9 -4232.3 1882.99 -85.51 6830.41 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3max ULS18 -5860.9 3714.8 1474.41 -253.38 4639.91 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 Pmin ULS18 -9482.3 -5023.6 2156.02 -180.54 7506.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3min ULS18 -9482.3 -5023.6 2156.02 -180.54 7506.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3max ULS10 -5291.2 3898.1 1457.68 -355.36 4188.83 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 Pmin ULS18 -10593.6 -5994.3 2497.51 -290.51 8386.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3min ULS18 -10593.6 -5994.3 2497.51 -290.51 8386.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3max ULS10 -5180.0 4883.5 1675.28 -596.12 4100.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 Pmin ULS18 -11897.7 -6961.4 2858.28 -379.59 9419.04 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3min ULS18 -11897.7 -6961.4 2858.28 -379.59 9419.04 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3max ULS10 -4791.9 5907.0 1872.87 -874.57 3793.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 Pmin ULS18 -14188.7 -10845.1 4000.10 -1044.12 11232.74 N 3381.2 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3min ULS18 -14188.7 -10845.1 4000.10 -1044.12 11232.74 N 3381.2 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3max ULS10 -3839.2 9459.5 2599.81 -1799.98 3039.34 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 Pmin ULS22 -16553.9 -3129.0 2452.04 996.69 13105.19 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3min ULS18 -16173.1 -8692.5 3706.20 -336.81 12803.67 N 1966.9 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3max ULS10 -2417.3 8147.5 2146.56 -1642.97 1913.66 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 Pmin ULS22 -15708.9 -271.5 1699.49 1573.20 12436.22 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3min ULS18 -15329.0 -7948.7 3445.31 -251.76 12135.49 N 1013.8 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3max ULS10 -2066.2 7322.6 1918.16 -1487.71 1635.71 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement Pmin ULS18 -14495.7 -4973.5 2666.59 353.35 11475.78 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3min ULS18 -14495.7 -4973.5 2666.59 353.35 11475.78 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3max ULS10 -2129.1 4744.1 1325.05 -881.48 1685.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Table 5 16: Results of calculating reinforcement of Pier 4

Roof top Pmin ULS18 -446.8 -638.5 295.73 -160.34 311.41 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3min ULS9 -433.3 -694.5 313.69 -182.38 302.00 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3max ULS22 -304.0 609.4 263.70 -171.58 211.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Roof Pmin ULS22 -1046.6 48.0 175.72 141.43 729.45 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Roof M3min ULS22 -790.4 -763.7 392.51 -152.99 550.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3max ULS22 -780.9 467.8 285.39 -48.75 544.26 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F16 Pmin ULS22 -1561.9 13.4 241.44 231.87 1088.60 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F16 M3min ULS22 -1421.1 -1988.2 925.39 -494.75 990.46 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3max ULS14 -773.4 1006.3 476.57 -242.21 539.04 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 Pmin ULS18 -3120.3 -853.0 777.42 168.13 2174.75 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3min ULS14 -2062.8 -3044.7 1399.94 -774.85 1437.71 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3max ULS22 -1297.7 3994.0 1623.05 -1229.81 904.46 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 Pmin ULS18 -5575.5 -2322.6 1674.27 15.27 3885.95 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3min ULS22 -3168.8 -3874.3 1863.80 -903.56 2208.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3max ULS22 -1162.5 4474.8 1774.28 -1422.01 810.23 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 Pmin ULS18 -5714.8 -958.0 1208.02 523.74 3983.04 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3min ULS14 -3448.8 -3192.0 1662.55 -617.45 2403.71 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3max ULS22 -1447.2 4026.1 1657.17 -1218.62 1008.65 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 Pmin ULS18 -5806.3 -1076.2 1264.10 495.39 4046.82 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3min ULS14 -3859.2 -2840.0 1599.01 -429.56 2689.75 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3max ULS22 -1949.1 3838.4 1666.18 -1075.54 1358.46 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 Pmin ULS18 -5893.3 -1024.9 1258.96 526.89 4107.45 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3min ULS14 -4245.4 -2491.0 1532.89 -246.40 2958.92 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3max ULS22 -2516.7 3503.8 1632.68 -870.04 1754.06 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 Pmin ULS18 -5939.2 -1070.8 1282.31 517.45 4139.44 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3min ULS14 -4559.7 -2319.4 1519.22 -137.49 3177.97 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3max ULS22 -3054.7 3268.3 1630.08 -704.42 2129.03 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F9 Pmin ULS18 -5971.2 -1168.4 1322.01 487.44 4161.75 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3min ULS14 -4840.6 -2268.0 1543.42 -76.58 3373.75 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3max ULS22 -3570.0 3126.9 1657.66 -575.84 2488.18 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 Pmin ULS18 -6053.0 -1098.5 1309.44 524.80 4218.76 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3min ULS22 -5057.7 -2029.4 1491.10 41.53 3525.06 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3max ULS22 -4074.6 2712.6 1586.15 -351.42 2839.87 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 Pmin ULS18 -6343.7 -1875.6 1631.02 291.31 4421.37 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3min ULS22 -5537.0 -2316.4 1666.23 11.65 3859.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3max ULS22 -4554.9 2730.4 1665.28 -285.01 3174.63 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 Pmin ULS18 -7173.4 -2000.1 1801.20 372.56 4999.64 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3min ULS22 -6097.2 -2623.1 1860.64 -13.00 4249.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3max ULS22 -4917.8 2578.2 1665.91 -175.66 3427.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 Pmin ULS18 -8223.3 -2197.7 2030.85 461.06 5731.39 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3min ULS22 -6697.2 -3144.6 2137.80 -108.34 4667.75 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3max ULS14 -4762.0 2587.2 1645.52 -202.48 3318.97 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 Pmin ULS18 -9427.4 -2021.9 2150.50 706.29 6570.61 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3min ULS22 -7377.7 -3075.4 2216.19 19.48 5142.03 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3max ULS14 -4833.7 2675.3 1687.84 -223.09 3368.94 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 Pmin ULS18 -11643.2 -5159.8 3606.91 -78.66 8114.96 N 2122.1 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3min ULS22 -8156.2 -8291.0 4196.86 -1725.28 5684.62 N 3642.3 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3max ULS14 -4350.3 7376.5 3293.60 -1975.33 3032.03 N 1118.7 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 Pmin ULS18 -12935.4 -2516.2 2858.55 1061.27 9015.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3min ULS14 -8650.8 -6391.5 3593.41 -971.95 6029.35 N 1620.2 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3max ULS22 -4875.4 6608.4 3098.84 -1621.45 3398.01 N 99.52 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 Pmin ULS18 -12833.4 -3179.4 3079.95 808.95 8944.49 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3min ULS22 -9114.8 -6981.9 3874.57 -1112.51 6352.74 N 2314.9 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3max ULS14 -4494.3 4519.4 2295.03 -933.12 3132.39 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement Pmin ULS18 -12304.9 550.0 2060.81 1667.95 8576.14 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3min ULS14 -8762.0 -1231.9 1767.54 887.61 6106.85 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3max ULS22 -5107.6 3745.6 2111.59 -563.84 3559.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Table 5 17: Results of calculating reinforcement of Pier 5

Roof top Pmin ULS1 -235.2 -489.5 210.46 -139.18 163.93 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3min ULS9 -233.4 -544.6 229.86 -159.15 162.64 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3max ULS9 -154.7 261.5 116.83 -69.95 107.82 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Roof Pmin ULS8 -884.4 291.0 237.95 30.06 616.43 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Roof M3min ULS22 -568.3 -576.8 292.10 -119.88 396.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3max ULS14 -754.5 537.2 306.17 -77.55 525.83 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 Pmin ULS22 -1540.8 -826.1 528.51 -61.59 1073.92 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3min ULS14 -1494.9 -827.2 521.92 -68.91 1041.93 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3max ULS22 -1071.5 1160.1 576.67 -251.99 746.77 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 Pmin ULS18 -2247.3 -165.3 399.54 281.46 1566.30 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3min ULS14 -1492.4 -4521.4 1840.92 -1388.68 1040.13 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3max ULS22 -1136.9 3803.6 1530.68 -1186.17 792.38 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 Pmin ULS18 -3121.7 -940.2 808.75 137.21 2175.70 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3min ULS14 -2028.1 -5942.8 2429.70 -1815.14 1413.49 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3max ULS22 -1358.7 5302.8 2099.70 -1687.98 946.96 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 Pmin ULS18 -3553.4 -566.9 740.87 335.92 2476.61 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3min ULS22 -2872.6 -3117.2 1548.53 -678.04 2002.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3max ULS22 -2303.1 2463.7 1228.86 -530.95 1605.19 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 Pmin ULS18 -3976.6 -330.0 720.38 484.66 2771.59 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3min ULS22 -3093.8 -2896.9 1503.38 -565.86 2156.31 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3max ULS22 -2800.4 2022.8 1146.73 -298.12 1951.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 Pmin ULS18 -4325.2 -151.7 709.50 601.17 3014.55 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3min ULS22 -3397.2 -2635.0 1455.81 -426.35 2367.76 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3max ULS22 -3380.7 1886.7 1186.06 -161.61 2356.24 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 Pmin ULS18 -4684.3 -24.6 718.51 700.96 3264.79 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3min ULS22 -3697.3 -2440.6 1431.84 -311.43 2576.93 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3max ULS22 -3914.8 1808.8 1239.13 -52.84 2728.47 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F9 Pmin ULS6 -5082.5 721.0 1027.58 512.57 3542.36 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3min ULS22 -4001.0 -2387.7 1458.94 -246.52 2788.56 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3max ULS22 -4417.7 1789.9 1308.58 30.11 3078.97 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 Pmin ULS1 -5574.5 700.3 1094.74 594.51 3885.26 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3min ULS22 -4311.8 -1989.5 1363.82 -57.23 3005.17 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3max ULS22 -4884.2 1749.2 1364.75 115.32 3404.16 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 Pmin ULS1 -6047.0 765.1 1189.45 642.98 4214.60 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3min ULS22 -4632.0 -2135.6 1464.55 -60.91 3228.38 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3max ULS22 -5321.8 1887.9 1480.59 132.07 3709.13 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 Pmin ULS1 -6501.7 807.4 1273.47 696.75 4531.49 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3min ULS22 -4968.7 -2186.2 1533.60 -27.95 3463.01 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3max ULS22 -5720.3 2176.5 1644.03 89.38 3986.86 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 Pmin ULS1 -6932.8 849.6 1353.84 747.00 4831.93 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3min ULS22 -5340.4 -2267.5 1618.98 -0.66 3722.12 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3max ULS22 -6055.6 2771.7 1907.43 -72.39 4220.60 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 Pmin ULS7 -7345.1 818.6 1405.24 820.55 5119.33 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3min ULS22 -5764.1 -2075.3 1614.53 132.16 4017.38 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3max ULS22 -6322.7 3222.5 2108.87 -192.89 4406.76 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 Pmin ULS18 -8356.2 -813.3 1556.56 975.61 5823.99 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3min ULS14 -7547.3 -5362.9 3058.87 -771.81 5260.24 N 367.04 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3max ULS22 -6868.6 8193.7 3967.01 -1885.61 4787.23 N 3275.2 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 Pmin ULS18 -8921.5 -375.7 1485.93 1217.57 6218.04 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3min ULS14 -8099.6 -4902.7 2978.17 -523.74 5645.20 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3max ULS22 -6598.8 8338.6 3977.88 -1978.24 4599.16 N 2802.3 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 Pmin ULS18 -9188.1 3190.0 2531.41 252.85 6403.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3min ULS22 -7152.1 -7920.3 3912.31 -1745.01 4984.78 N 2429.3 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3max ULS22 -7106.4 6261.0 3312.81 -1159.35 4952.95 N 612.27 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement Pmin ULS18 -7896.8 -279.7 1296.37 1096.59 5503.82 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3min ULS14 -7329.5 -1915.1 1794.50 426.55 5108.43 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3max ULS22 -5585.2 3044.7 1933.65 -241.16 3892.72 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Table 5 18: Results of calculating reinforcement of Pier 6

Roof top Pmin ULS10 32.3 -386.2 190.11 -177.67 19.90 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3min ULS22 39.2 -497.0 244.19 -229.10 24.14 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof top M3max ULS22 129.5 105.6 75.17 -25.36 79.70 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Roof Pmin ULS18 -551.8 225.2 213.33 -1.12 339.54 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

Roof M3min ULS22 -314.9 -591.3 342.14 -221.04 193.77 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Roof M3max ULS22 -350.6 404.2 259.91 -125.05 215.77 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F16 Pmin ULS18 -1154.8 82.1 261.19 182.97 710.66 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F16 M3min ULS22 -841.7 -1385.0 821.40 -497.66 517.99 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F16 M3max ULS18 -653.0 1004.1 603.73 -352.57 401.85 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 Pmin ULS18 -2657.9 -885.6 932.82 89.43 1635.60 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3min ULS14 -1895.4 -2122.7 1375.29 -646.29 1166.41 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F15 M3max ULS22 -648.9 3250.8 1672.78 -1423.19 399.34 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 Pmin ULS18 -4910.1 -1438.0 1629.00 259.49 3021.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3min ULS14 -3137.9 -2932.6 1999.91 -793.02 1931.02 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F14 M3max ULS22 -168.4 4261.3 2061.59 -1996.83 103.62 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 Pmin ULS18 -5277.1 -82.8 1054.26 975.40 3247.45 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3min ULS22 -3136.2 -1267.0 1206.42 -0.20 1929.95 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F13 M3max ULS22 -625.8 2234.6 1184.44 -943.75 385.10 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 Pmin ULS18 -5317.7 -171.3 1104.20 941.06 3272.41 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3min ULS22 -3327.8 -1268.4 1243.95 35.98 2047.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F12 M3max ULS22 -1079.3 2033.3 1175.78 -760.67 664.17 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 Pmin ULS18 -5225.2 -159.6 1080.85 928.86 3215.53 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3min ULS22 -3462.1 -1273.0 1271.98 59.59 2130.51 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F11 M3max ULS22 -1573.3 1832.5 1175.17 -570.07 968.16 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 Pmin ULS18 -5125.7 -142.7 1053.67 917.74 3154.26 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3min ULS22 -3610.9 -1290.6 1308.98 79.82 2222.09 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F10 M3max ULS22 -2063.4 1687.4 1200.34 -406.71 1269.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

F9 Pmin ULS18 -5034.1 -167.0 1047.61 888.57 3097.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3min ULS22 -3771.7 -1286.9 1338.15 112.50 2321.04 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F9 M3max ULS22 -2549.5 1626.2 1264.67 -284.09 1568.93 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 Pmin ULS18 -5025.1 -103.3 1015.58 917.16 3092.38 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3min ULS22 -4005.6 -1260.6 1370.60 170.02 2464.98 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F8 M3max ULS22 -2994.0 1412.5 1248.39 -96.87 1842.44 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 Pmin ULS18 -5240.3 -175.3 1091.20 924.29 3224.79 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3min ULS22 -4351.6 -1291.8 1451.96 221.71 2677.88 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F7 M3max ULS22 -3365.8 1443.8 1334.78 -40.23 2071.28 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 Pmin ULS18 -5852.5 -1161.8 1678.73 572.23 3601.54 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3min ULS22 -4816.2 -1370.6 1578.88 273.52 2963.84 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F6 M3max ULS22 -3634.9 1425.6 1377.87 20.18 2236.89 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 Pmin ULS18 -6860.3 -1235.6 1907.69 730.90 4221.75 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3min ULS22 -5377.1 -1602.1 1796.98 271.15 3309.00 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F5 M3max ULS22 -3777.5 1422.6 1403.84 49.03 2324.59 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 Pmin ULS18 -8031.7 -1114.2 2075.14 1013.97 4942.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3min ULS22 -5968.1 -1494.4 1859.32 436.09 3672.65 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F4 M3max ULS22 -3775.4 1217.3 1305.70 146.37 2323.32 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 Pmin ULS18 -9986.4 -2828.1 3267.15 573.76 6145.47 N 1034.1 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3min ULS22 -6864.3 -4360.1 3396.32 -756.19 4224.20 N 1447.7 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F3 M3max ULS14 -2469.8 2926.1 1868.36 -918.43 1519.89 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 Pmin ULS18 -11582.1 -1773.3 3071.75 1382.88 7127.42 N 16.22 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3min ULS14 -7761.0 -3336.1 3081.14 -96.14 4775.99 N 45.08 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F2 M3max ULS22 -2542.2 2931.7 1884.94 -907.16 1564.45 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 Pmin ULS18 -12271.2 -2393.3 3499.52 1220.17 7551.51 N 1178.2 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3min ULS22 -8532.2 -4432.0 3751.26 -469.66 5250.55 N 1941.2 N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 F1 M3max ULS22 -3223.3 2643.7 1878.77 -639.04 1983.58 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement Pmin ULS18 -12367.2 500.5 2616.64 2139.99 7610.61 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3min ULS14 -8672.3 -349.6 1834.24 1501.26 5336.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22 Basement M3max ULS22 -4314.1 2026.4 1794.57 -135.31 2654.81 N CT N CT ỉ22a100 3801.33 CT ỉ22a150 2534.22

- Shear resistance of stirrup steel: sw sw 0 max bi swi bt o tt

 Qbi, Qswi: Shear resistance of concrete and transverse reinforcement of the i th wall

 Rsw, Rbt - calculated tensile strength of concrete and calculated shear of transverse reinforcement (MPa)

 Asw - the area of stirrup steel corresponds to the number of stirrup branches

 hoi - calculated height of the i th wall section, hoi = L - a (mm)

 Si - horizontal steel step (mm)

Maximum shear force for each direction from Etabs:

Table 5 19: Internal force Story Output Case Location P (kN) V2 (kN) V3 (kN)

Table 5 20: Result of core calculation

Q bo kN Arrange q sw kN/m

A sw /s cm 2 /m s max mm ULS9 300 2500 2460 7271.13 3256.38 CT 12634.26 561.52 178 ULS14 300 2500 2460 2862.89 273.94 CT 3501.30 155.61 598

TYPICAL FLOOR CALCULATION

Floor plan

Figure 6 1: Typical layout Calculate the floor for the 14 th floor in the typical floor group The reason: the size of the 14 th floor column is the smallest in the typical group of floors, so the possibility of piercing the floor is the highest and the calculation Span of slab cell is also the largest, resulting in the moment appearing in the range will be the largest with the same distribution load

Floor load

Layers n γ t Load (daN/m 2 ) daN/m 3 m g tc g tt

Live Load (daN/m 2 ) n P tc P tt

Layers n γ t Load (daN/m 2 ) daN/m 3 m g tc g tt

Live Load (daN/m 2 ) n P tc P tt

Layers n γ t Load (daN/m 2 ) daN/m 3 m g tc g tt

Live Load (daN/m 2 ) n P tc P tt

(mm) h t Load (daN/m 2 ) daN/m 3 m g tc g tt

Calculation steps using SAFE 2016 software

Figure 6 2: Steps to design a floor using SAFE

Internal force

Figure 6 3: Structure layer load chart

Figure 6 5: Static load of construction wall

Figure 6 6: Floor strip L/4 in Y - direction

Figure 6 7: Floor strip L/4 in X - direction

92 Figure 6 8: Moment diagram in the X - direction

Figure 6 9: Moment diagram in the Y - direction

Reinforcement calculations

Table 6 5: Calculation material parameter table

Working condition coefficient of concrete γb 0.85 -

Compressive strength TTGH I Rb 17 Mpa

Tensile strength TTGH I Rbt 1.15 Mpa

Compressive strength TTGH II Rb,n,Rb,ser 22 Mpa Tensile strength TTGH II Rbt,n,Rbt,ser 1.75 Mpa

Rebar Steel CB400-V Value Unit

Tensile strength TTGH I Rs 350 Mpa

Compressive strength TTGH I Rsc 350 Mpa

Cường độ chịu kéo thép ngang Rsw 280 Mpa

Content of structural steel μmin 0.1 %

The largest steel content μmax 2.15 %

Content of economic steel μkinh tế 0.3÷0.9 %

Consider at the position of the floor cell with moment M = 84.310 (kN.m)

Chose: ao= 20 mm Floor thickness: hs = 20 cm

Calculation according to internal force results according to SAFE16

Table 6 6: Worksheet for reinforcement in the X direction

Strip Span M (kN/m) α ξ As (cm 2 ) Choose Asc

Span 32.632 0.059 0.061 4.542 10 100 7.85 0.44% OK Table 4 7: Worksheet for reinforcement in the Y direction

6.5.2 Check theshear resistance of the floor

Figure 6 10: Diagram of shear force in the Y- direction

Figure 6 11:Diagram of shear force in the X- direction The maximum shear force: Qmax = 226.825 kN

According to section 8.1.3.3.1 TCVN 5574:2018, there are regulations:

When there is no horizontal reinforcement: Qsw = 0

Calculation of flexural members according to the inclined section:

Qb: Shear force resistance of concrete in inclined section

Qsw = 0: Shear force by horizontal reinforcement in inclined section

0.5Rbtbh0  103(kN) ≤ Qb = 226.825 (kN) ≤ 2.5Rbtbh0  517.5 (kN)

Calculation by limit state II

The total deflection caused by various loads is calculated by the formula: f = f1 - f2 + f3

+ f1: The deflection due to the short-term effect of the entire load

+ f2: Deflection due to short-term effects of long-term loads

+ f3: Deflection due to long-term effects of long-term loads

According to section M.2.1, Appendix M - TCVN 5574:2018 has regulations: When calculating construction structures, the deflection or displacement should satisfy the following conditions: f ≤ fu

+ f: The deflection or displacement of the member is determined

+ fu: Limit deflection or displacement

+ According to table M1, limited vertical deflection fu for roof and floor members with span: L = 9.5(m) is [f] = L/250

 Declare the deflection test combination in Safe software

Table 6 8: Deflection test load combination

1 f1 Nonlinear Static (1)TTBT + (1)TTHT + (1)TTTX + (1)LL1 + (1)LL2

2 f2 Nonlinear Static (1)TLBT + (1)TTHT + (1)TTTX + (0.3)LL1 + (0.3)LL2

2 f3 Nonlinear Static (1)TLBT + (1)TTHT + (1)TTTX + (0.3)LL1 + (0.3)LL2 For the combination f1 and f2, we select the item Nonlinear (Cracked) in

Appendix Analysis only mentioning the short-term component

For the f3 combination, we select the Nonlinear (Long Stamp Cracked) item in

Appendix Analysis, including the long-term component

Creep Coefficient = 1.7: Coefficient of creep of concrete (table 11 TCVN

Shrinkage Strain = 0.0003: Shrinkage coefficient (according to temperature and humidity conditions in Vietnam, we can choose 0.0003)

 Check floor deflection by Safe software

Based on the deflection analysis chart by safe software

6.6.4 Check the condition of the crack

Calculations according to crack formation of reinforced concrete members are carried out in cases where the following conditions are observed:

+ M is the bending moment due to external force for an axis perpendicular to the plane of action of the bending moment and passing through the center of gravity of the converted cross-section of the member;

+ Mcrc is the bending moment due to the orthogonal cross-section of the bearing member upon crack formation, determined by the formula: crc bt,ser pl

+ Wpl is the elastic bending moment of the section for the outermost tensile concrete fiber: determined by the formula:

With: α: Conversion coefficient of reinforcement to concrete E s

Ared: The area of the converted cross-section of the member, determined by the formula:

(A' 0) x: Height of concrete area under compression; x = ξh 0

Ibo, Iso, I’so, : is the moment of inertia of the concrete and reinforced section with respect to the center of gravity of the converted cross-section of the member:

Table 6 9: Check table for crack occurrence condition

Concrete B30 - The compressive strength of concrete

Rb 17 Mpa Calculated compressive strength of concrete

Rbt,ser 1.75 Mpa The calculated tensile strength of concrete

Rs 350 Mpa Tensile strength of steel

Es 210000 Mpa Elastic modulus of steel

Eb 32500 Mpa The modulus of elasticity of concrete α 6.462 - Ratio of elastic modulus of steel / concrete b 1000 mm Width of the calculated cross-section h 200 mm Calculated cross-sectional height a 20 mm

Distance from the center of steel in the bearing area to the outer edge of the protective concrete layer a' 0 mm

Distance from the center of the steel in the compression zone to the outer edge of the protective concrete layer h0 180 mm

Distance from the center of the bearing reinforcement to the outer edge of the compressive concrete

As 1539 mm 2 Cross-sectional area of tensile reinforcement

A's 0 mm 2 Cross-sectional area of compressive reinforcement

Ared 209944.3077 mm 2 The converted cross-sectional area of the member ξ 0.523683204 - x 94.263 mm Height of concrete area under compression

Ibo 279191502 mm 4 Moment of inertia about the neutral axis of the compressive concrete area

Iso 11312938.4 mm 4 Moment of inertia about neutral axis of area of tensile reinforcement

Table 6 9: Check table for crack occurrence condition

I'so 0 mm 4 Moment of inertia about neutral axis of area of tensile reinforcement

Sbo 5590159.048 mm 3 Static moment with respect to the neutral axis of the tensile concrete area

The bending moment of the section for the outermost tensile fiber taking into account the inelastic strain of the concrete in the tension zone

Mcrc 21.444 kNm/m Crack resistance moment at the section under consideration

Mmax 84.6465 kNm/m Moment due to load at the section under consideration Check Mcrc < M Therefore, the cross-section appears cracks

Conclusion The floor slab has cracks, it is necessary to calculate and limit the crack width according to TCVN 5574 - 2018

According to Section 8.2.2.1.3 TCVN 5574:2018, there are regulations on calculation of crack width according to the following formula: acrc  acrc,u

+ acrc: Is the crack width due to external force determined

+ acrc,u: Is the allowable limit crack width (taken according to Table 17 TCVN 5574:2018)

 Load combination to check crack width

Table 6 10: Load combination to check crack width table

1 acrc1 Nonlinear Static (1)TLBT + (1)TTHT + (1)TTTX + (0.3)LL1 +

2 acrc2 Nonlinear Static (1)TLBT + (1)TTHT + (1)TTTX + (0.3)LL1 +

(0.3)LL2 When declaring the load combination to check the crack width is similar to the deflection test, we need to take into account the short-term (acrc1) and long-term (acrc2) components

For the acrc1 combination, we select the item Nonlinear (Cracked) in the Analysis section, only mentioning the short-term component

For the acrc2 combination, we select the Nonlinear (Long Stamp Cracked) item in the Analysis section, including the long-term component

Creep Coefficient = 1.7: Coefficient of creep of concrete (see table 11 TCVN 5574:2018)

Shrinkage Strain = 0.0003: Shrinkage coefficient (according to temperature and humidity conditions in Vietnam, we can choose 0.0003)

 Check crack width with Safe software

Figure 6 13: Short-term load crack diagram

We have: acrc1 = 0.073 mm < [acrc1] = 0.4mm => Ok

Figure 6 14: Long-term load crack diagram

We have: acrc2 = 0.073 mm < [acrc1] = 0.4mm => OK

GEOLOGICAL STATISTICS

Theoretical basis of statistics

 Observe the color change of seeds that we divide into each layer of soil

 According to TCVN 9362-2012 (QPXD 45-78), it is called a engineering geological layer when the set of values corresponding to its mechanical and mechanical criteria must have a sufficiently small coefficient of variation.

Geological statistics of construction

Groundwater level: At a depth of -7.8 m from the ground

Layer 1: Clay, yellow-gray - gray-white - reddish brown, soft, hard

Layer 1a: Clay mixed with grit, gray-white - reddish brown, hard plastic - semi- hard

Layer 2: Sand, yellow brown - red brown, white gray - yellow gray, flexible Layer 3: Sand–grit, yellow-gray, medium tight

Layer 4: Yellow-gray clay, semi-hard - hard state

Layer 5: Clay, reddish brown – yellow brown – white gray, hard plastic

Layer 6: Sand, yellow-brown - yellow-gray - red-brown, plastic - hard state Layer 6b: Clay, yellow-brown – red-brown, semi-hard – hard state

Layer 7: Dust – medium coarse sand, yellowish gray – yellow brown – reddish brown, tight texture, very tight

Synthesize physical and mechanical parameters

Table 7 1: Synthetic table of physical and mechanical indicators of soil layers

The water level is at -7.8m behind the natural ground

Submerged unit weight: γdn (g/cm 3 ) 1.02 1.05 1.09 1.14 1.07 1 1.08 1.03 1.1

Natural moistural content: ω (%) 21.81 22.53 16.51 13.35 21.85 22.89 17.01 23.23 15.08 Specific gravity: Δ (g/cm 3 ) 2.69 2.74 2.67 2.65 2.75 2.7 2.67 2.74 2.66

Void ratio: e0 0.66 0.662 0.524 0.445 0.637 0.7 0.544 0.691 0.503 Liquid limit: WL (%) 30.5 38 21 - 44.1 32.9 23.1 44.6 - Plastic limit: WP (%) 15.3 18.7 14.6 - 21.8 17.9 16.7 22 - Plasticity index: IP 15.1 183.3 6.4 - 22.6 15.1 6.4 22.6 -

Angle of fiction: φ 0 14 0 38' 15 0 38' 26 0 59' 28 0 38' 17 0 10' 15 0 4' 27 0 7' 17 0 17' 29 0 56' Cohesion: c (kG/cm 2 ) 0.22 0.317 0.071 0.02 0.365 0.263 0.073 0.369 0.017 Moduyn vertical:

DESIGN FOUNDTION

Overview

Scale of the project 1 basement, 17 floating floors, large horizontal load Identify columns with equivalent reaction pairs (vertical force difference not more than 15%) into a group, taking the most dangerous internal force pairs of that column to calculate.

The solution of foundation design

I use the bored pile foundation solution to design

– Layer 7 with good load capacity, with depth from -46.5m to -60.0m Put the tip of the pile in the soil layer 7, having an internal friction angle φ = 29 0 56', SPT index 35-62, is reasonable.

Determine the calculation parameters

8.3.1 Determine the depth of the pile cap

– According to the Annotate 1 of Table 7 TCVN 10304:2014, there are regulations: Value of pile tip depth and average depth of soil layer on ground leveling ground by excavation, soil installation or accretion with a height of up to 3m, must be calculated from the height of the natural terrain, and if the excavation, earthing or accretion is from 3m to 10m, it must be calculated from the conventional elevation 3m higher than the level of excavation or 3m above the level of the embankment

– The foundation is designed at basement level 1 (-3.4 m), using the foundation surface as the basement floor

– The design of the bridge deck coincides with the bottom edge of the basement floor 1 (z = -3.4)

– Choose the estimated thickness of the elevator foundation: 2.5m

– Choose the estimated thickness of the foundation: 1.5m

8.3.2 Preliminary determination of pile materials

Working condition coefficient of concrete γb 0.85 -

Compressive strength TTGH I Rb 22 Mpa

Tensile strength TTGH I Rbt 1.4 Mpa

Compressive strength TTGH II Rb,n,Rb,ser 29 Mpa

Tensile strength TTGH II Rbt,n,Rbt,ser 2.1 Mpa

Rebar Steel CB400-V Value Unit

Tensile strength TTGH I Rs 350 Mpa

Compressive strength TTGH I Rsc 350 Mpa

Cường độ chịu kéo thép ngang Rsw 280 Mpa

Content of structural steel μmin 0.1 %

The largest steel content μmax 1 %

Content of economic steel μkinh tế 3 %

Select the pile diameter in accordance with the ground conditions and the current construction capacity of bored piles

– For axially compressed piles, the reinforcement content is not less than 0.2 - 0.4%

– The diameter of reinforcement is not less than 10mm and is arranged evenly around the pile circumference For piles subjected to horizontal loads, the reinforcement content is not less than 0.4 - 0.65%

– Because the pile mainly bears the compressive force, the reinforcement in the pile is calculated according to the structure:

+ The bearing longitudinal reinforcement is assumed to be 0.4% the area of the bearing longitudinal reinforcement

+ The bored cavity pile belt usually has a diameter (ỉ6 ữ ỉ10) with a distance of

– Section 8.17, TCVN 10304 – 2014 has regulations: “Longitudinal reinforcements must be connected not only by reinforcement but also by rings installed by welding over the length of the steel cage in steps not greater than

5 times diameter (but not less than 2m)”

– Section 8.3, TCVN 9395 – 2012 stipulates: “Reinforcing reinforcement is usually used with the same diameter as the main reinforcement, bent into a puddle placed inside the main reinforcement, the distance is from 2.5m to 3.0m, connected to the main reinforcement by welding and lanyards as required by the design” The width or radius of the millet depends on the thickness of the concrete layer, usually 5cm

 Pile tip height and pile length:

– It is expected that the tip of the pile rests against soil layer 7 (dusty – medium coarse sand, yellowish gray – yellow brown – reddish brown, tight texture, very tight) because this soil layer is a good and thick soil layer

+ Lcoc: Actual length of pile

+ Ltt: Calculated length of pile

+ Lneo ≥ 30ỉ: Length of the pile to be demolished

+ Select pile tip depth Zmũi = 50m

 Pile tip elevation: Zmũi = Ltt + Lmũi + Df + tbtl

Table 8 2: Reliminary size summary table of foudation

Length of pile head dam Lneo m 0.6 0.8

Length of poles anchored Lfix m 0.2 0.2

Thickness of lining concrete tbtl m 0.1 0.1

Concrete cross-sectional area Ab m2 0.499 0.499

The tip of the stake is inserted into the 7th layer of soil Zmui m 3.8 3.8

 Building foundation is calculated according to the most dangerous internal force value transmitted to the foot of the column, including:

Table 8 3: Foundation internal force results from an etabs shape

Foundation Nmax M x tu M y tu Q x tu Q y tu

Piles load capacity

8.4.1 Load capacity according to material strength

– The bearing capacity of the pile according to the material:

+ γcb = 0.85: Coefficient at Section 7.9.1 TCVN 10304:2014

+ γ’cb = 0.8: The coefficient refers to the method of pile construction

+ Rb: Calculated compressive strength of concrete

+ Ab: The cross-sectional area of the pile

+ Rs: Tensile strength of steel reinforcement

+ As: Area of reinforcement in pile

+ φ: The coefficient of reduction of bearing capacity due to the effect of longitudinal bending

The longitudinal bending coefficient depends on the slenderness: 1 min λ = L i + λ ≤ 14 => φ = 1

+ i: Radius of inertia: I i = A + I: Moment of inertia of the cross section

+ Section 7.1.8, TCVN 10304:2014 stipulates: For all types of piles, when calculating l1 is determined by the fomula: 1 0 ε

+ L0=0: The length of the pile from the bottom of the platform to the leveling level Because the foundation of the building is a low base, l0 =0

+ k: The scale factor, taken depends on the type of soil surrounding the pile according to table A.1 TCVN 10304:2014

+ E: Elastic modulus of the pile material

+ I: Moment of inertia of the pile cross section:

+ bp: Conventional pile width, in m, for piles with a minimum pile diameter of 0.8m take b = d+1, for other cases: bp = 1.5d + 0.5 (m) + γc = 3: The coefficient of working conditions is taken according to A.2

The scale factor k, is taken depending on the type of soil surrounding the pile according to table A.1 TCVN 10304:2014

Table 8 4: Scale factor determination table

1a Clay with gravel, gray-white - red-brown, plastic-hard - semi-hard 3.5 0.662 12000

1 Lightning, yellow-gray - white gray - reddish brown, soft and hard 2.2 0.66 12000

2 Sand, yellow brown - red brown - white gray - yellow gray, plastic 7.8 0.524 12000

3 sand – gravel sand, yellow gray, medium tight texture 2.8 0.445 12000

4 Yellow-gray clay, semi-hard - hard state 3.3 0.637 12000

5 Lightning, reddish brown - yellow brown - white gray, hard plastic 3.9 0.7 12000

6 Asia sand, yellow brown - yellow gray - red brown, plastic - hard 19.4 0.544 12000 6b Clay, fawn - reddish brown, semi-hard - hard state 0.5 0.691 12000

7 Dust – medium coarse sand, yellowish gray – yellow brown – reddish brown, tight texture, very tight 2.5 0.503 12000 ktb = 12000

+ E : Elastic modulus of the pile material (E = 36000 MPa)

+ I: Moment of inertia of the pile cross-section:

L = L + 0 5(m) a  0.4  (The foundation of the building is a low platform,

– The bearing capacity of the pile:

8.4.2 The bearing capacity of the pile according to the physical and mechanical criteria of the ground

– According to TCVN 10304:2014, the bearing capacity according to the physical and mechanical criteria of the ground is determined: n 1 c,u c cq p b cf i i i=1

+ γc = 1: Coefficient of working condition of pile in soil

+ qb: Resistance strength of soil under pile tip,

' p 4 1 1 2 3 1 q = 0.75α (α γ d + α α γ h) + u: Perimeter of the cross section of the pile

+ fi: Is the average resistance strength of the soil layer “i” on the pile body (see table 3 TCVN 10304:2014)

+ Ab: Area of the pile resting on the ground, equal to the cross-sectional area of the pile tip

+ li: The length of the pile tip is in the “i” soil layer

+ γcq = 1: Coefficient of working condition of soil at pile tip

+ γcf: Coefficient of soil working condition on pile side

+ γcf = 0.7 through the clay layer

Table 8 5: Results of calculating SCT according to the physical and mechanical criteria of the ground

Normal foudation Layer Element Z tb (m) l i (m) I L f i γ cf,i f i l i

– Load capacity at pile tip:

Where : α1, α2, α3, α4: are dimensionless coefficients that depend on the friction angle in the calculation of the ground and are taken according to table 6 TCVN 10304-2014 multiplied by the reduction coefficient 0.9

+ γ'1: is the calculated density of the soil under the pile tip (taking into account the buoyancy effect of water-saturated soil

+ γ1: is the average calculated density of the soil lying on the tip of the pile

(taking into account the buoyant effect of water-saturated soil: 1 i i i γ = γ l l

+ h: pile lowering depth from design face to tips

+ Ground water level at depth: -7.8m

+ The pile tip is located at layer 7=> φ = 29⁰56' = 29.9330

Table 8 6: Calculation results of pile tip load capacity

Coefficient Pile tip load capacity α1 29.160

  α2 54.133 α3 0.609 α4 0.265 γ'1 (kN/m 3 ) 11.0 γ1 (kN/m 3 ) 11.16 d (mm) 800 h 48.2 n 1 c,u c cq p b cf i i i=1

– Calculated bearing capacity of piles according to mechanical and mechanical criteria: 1 a 0 cu n k γ 1.15

+ γk: Ground reliability coefficient (depending on the number of piles):

+ γ0: Factor with working condition (γ0 = 1 for single pile foundation, γ0 1.15 for multi-pile foundation)

– γn: The importance coefficient of the building Grade 2 works => γn = 1.15

– Mechanical load capacity of elevator foundation, similar calculation:

8.4.3 Load capacity of piles according to ground strength

– According to Appendix B TCXD 205-1998, the bearing capacity according to the strength of the ground is determined:

R = q A +uγ f l Load capacity at the pile tip: Rp = qb.Ab

Load-bearing strength of the soil under the tips: qp = cNc + σ’vp Nq + γdp Nγ

 c: Adhesive force of the soil layer at the pile tip

 Nc, Nq, Ny: Look up from the friction angle of the soil layer at the pile tip according to Terzaghi

 σ’vp: Effective vertical stress at the pile tip due to self-weight

– Components bearing the load due to friction around the pile Rf: f i i

 li: The length of the pile tip is in the “i” soil layer

 fi: Average resistance strength on pile body.f =k σ i i v,zi tanφ + c ai

 ki: Horizontal pressure coefficient of the “i” soil layer

 σv,zi: Effective normal stress in the vertical direction of the “i” soil layer

 φ: Friction angle between soil and pile in loose soil layer “i”

Table 8 7: Results of calculating γcf,ifili base on the criterion of ground strength:

1a Clay with sand and gravel, hard - semi-hard 3.35 3.5 15.63 31.70 0.731 67.67 46 127

1 Lightning, flexible - soft and hard

6 Asia sand, flexible - hard 34.2 19.4 28.28 7.30 0.526 423.5 127 1974 6b Lightning, semi-hard-hard 44.15 0.5 17.28 36.90 0.703 530.8 153 61

7 Sand and dust, tight- very tight 45.4 2 29.93 1.70 0.501 544.4 159 254 Σγcf,ifili 3488

– Components subjected to loads due to friction around the pile Rf: f cf,i i i

R = uγ f l 2.51 3488 8735.9 (kN)  – Load capacity at pile tip: Rp = qb.Ab qp = cNc + σ’vp Nq + γdp Nγ

– Using 2-D linear interpolation method to determine the coefficients Nc, Nq, Ny: Look up from the friction angle of the soil layer at the pile tip according to Terzaghi

– Effective vertical stress at the pile tip due to self-weight: vp i i vp vp σ' = γ h σ' = (2.02×3.4+1.97×0.9+1.02×1.3+1.09×7.2+1.14 ×2.8+1.07×3.3+1×3.9+1.08×19.4+1.03×0.5+1.1×2 σ' = 526.55 (kN)

– Load-bearing strength of the soil under the cap p c vp q p γ

– Load capacity at pile tip: Rp = qb.Ab = 9859.8×0.499 = 4918.9 (kN)

– So the bearing capacity of the pile according to the strength is: n c,u p b cf i i i=1 c,u

– So the calculated bearing capacity of the pile according to the strength is:

Where: FSs - factor of safety for the lateral friction component: 1.5-2.0

Fsp - factor of safety for the tips resistance component: 2.0-3.0 – Mechanical load capacity of elevator foundation, similar calculation: a, TM

8.4.4 The bearing capacity of the piles according to the results of the SPT test

(formula of the Japanese Institute of Architects 1988)

– The bearing capacity of the pile is determined by the formula: n c,u c cq p b cf ci ci si si

 qb: Resistance strength of the soil under the pile tip

 Ab: The cross-sectional area of the pile

 fci, fsi: Average resistance strength on the pile segment lying in the cohesive and loose soil layer “i”

 lci, lsi: The length of the pile is in the loose, sticky soil layer "i"

– Pile tip resistance: For loose soils by the bored cavity method qp = 150Np

– Strength of soil resistance on the pile body:

+ The pile body is in the loose soil layer: fsi = 10/3Nsi

+ The pile body is in the cohesive soil layer: fsi = αpfLcui= αcui =6.25αNs,i

 αp: Determined according to the chart in Figure G.2a, Appendix G TCVN

 fL: determined according to the chart in Figure G.2b, Appendix G TCVN 10304:2014

 Nsi: SPT Index For the bored cavity pile fL=1, the coefficient αp is determined by looking up the graph G.2a, Appendix G TCVN 10304:2014

→ Pile load capacity according to SPT:

Table 8 8: Results of calculating the friction force around the pile

(m) Nsi Cui αp f si /f ci γ cf,i f i l i

1a Clay with sand and gravel, hard - semi-hard 3.5 13.50 84.38 0.500 42 103

1 Lightning, flexible - soft and hard 0.9

7 Sand and dust, tight- very tight 2 50.50 168 269 Σγcf,ifili 2606

– Components bearing the load due to friction around the pile Rf: f cf,i i i

– Pile tip resistance: For loose soil, the bored cavity method qp = 150N

With Np is the average SPT index between 1d below and 4d above the pile tip:

– So the load capacity of the pile calculation according to SPT test

 – Mechanical load capacity of elevator foundation, similar calculation: a, TM

– Design load capacity:Q = min Q ; Q ; Q ; Q a  vl 1 a 2 a 3 a 

Determine the number of piles and layout of the foundation system

8.5.1 Determine the number of piles

– Preliminary determination of the number of piles: a

 n: Number of stakes in the pile cap

 N tt : Calculated load transmitted to the foundation

 Qa: Calculation value of design load capacity of pile

Table 8 9: The result of calculating the number of piles

Móng N tt (kN) nmin nmax Chose

– Pile spacing: According to section 3.9.2 TCXD 205-1998:

Distance from the edge of the pile to the edge of the platform 1 1 ÷ D

The cost of pile caps and foundation braces also affects the choice of distance and pile size

The distance between the piles can determine the following conditions:

+ Construction method (piled or bored pile);

+ Load capacity of pile group

+ Normally, the center distance between two adjacent piles is taken as follows: + Friction pile is not less than 3d;

+ Piles with extension cord, not less than 1.5 diameter extension D or D +1m (when D > 2m)

+ According to article 10.7.1.5 standard 22TCN-272-05, the distance of the pile centers is at least 2.5D

Table 8 10: Dimensions of foundation plate

Figure 8 12: Ground for positioning the center of the pile

8.5.3 Modeling foundations by software SAFE 16

According to section 7.4.2 TCVN 10304:2014 For single hanging piles without extension tip, the settlement of piles is determined by the following formula:

The stiffness of the pile is calculated by the formula: N G l 1

+ N: vertical load acting on the pile

+ β': is the absolute stiffness coefficient: n 1

G d + α': Same as β' but for homogeneous ground: k l n α' = 0.17ln( ) d

+ Relative stiffness of the pile: 2

G l + EA: Pile body stiffness in compression:

+ G1: Average characteristic value of the entire soil layer in the piling depth + G2 : Taken within the range of 0.5L, from a depth of lL to 1.5L from the top of the pile, provided that the soil under the tip is not peat, silt or soil in a flowing state

According to section 7.4.2 TCVN 10304:2012, it is allowed to take the sliding module G: E 0 0

2(1+n) kn: is the coefficient determined by the formula:

2 k = 2.82 - 3.378υ + 2.18υ = 1.88 n υ: is the potxong coefficient of the ground: υ = 0.3

Table 8 13: Calculating the pile stiffness with the corresponding foundation

L = (m) 45.1 43.6 Pile calculation length d = (m) 0.8 0.8 Looks like piles

E = (Gpa) 36 36 Elastic modulus of pile material

E0,tb = (kN/m 2 ) 8910 The modulus of soil elasticity in the pile lowering depth

E0, tb(1L-.5L) (kN/m 2 ) 12314 Soil elasticity modulus from depth lL to 1.5L from top of pile

G2 = (kN/m 2 ) 4926 χ = 2.50 2.67 Relative stiffness of the pile λ = 0.81 0.82 β' = 0.74 0.73 Corresponding coefficient of absolute rigid pile α' = 0.79 0.79 Corresponding coefficient of absolute rigid pile with homogeneous ground β = 0.9 0.9 Relative stiffness of the pile

Figure 8 3: Foundation model with Safe 16

M1 foundation design

Where n1 ,n2 : number of row and pile on group’s pile : n1 = 1 , n2 = 2

S: distance between the two centers of the pile: S = 2.4 m θ(deg) = arctag(D/S) = arctag(0.8/2.4) = 18.43

Allowable bearing capacity of pile group:

9.6.3 Check the stability of the ground at the bottom of the conventional foundation block

Figure 8 6: Conventional foundation block model

 The average friction angle of the soil layer that the pile penetrates i i tb i φ = φ l l

 li: length of the soil layer i that the pile penetrates

 φi: friction angle of the soil layer i that the pile penetrates

Table 8 14: The average friction angle

– Size of the base of the conventional foundation cube

– Determine the weight of the normal foundation pilecap pile s qu W + W + W 6655.63 2266.97 88055.72 96978.32 (kN)

Foundation block weight is usually from the bottom of the platform upwards:

Wpilecap = Fqu hđ γbt = 177.483×1.5×25 = 6655.63 (kN)

Self weight of pile group in soil mass:

Weight of normal foundation block from base base to surface of normal foundation:

Ws = (Fqu – nFc)h γtb = (177.483 - 4×0.53)×45.1×11.13 = 88055.72 (kN)

 Check bearing capacity (R tc ) below the base of the normal foundation:

– Load tt tt qu qu

N = N + W 17121.82 96978.32 114100.14 (kN)  tt tt tt x, qu x x mui tt tt tt y, qu y y mui

 Foundation bottom pressure x y max 2 2 qu qu qu qu qu qu

2 max 2 2 x y mi u q n 2 2 qu qu qu qu qu q min u qu

 – Standard load capacity (Rtc) of the subsoil under the normal foundation

With: Looking up the standard TCVN 9362-2012, we get the following values: ktc = 1, based on the test results of soil samples at the construction site

The tip of the pile in the soil layer 7 is a layer of sand and dust

=> A = 1.14; B = 5.57; D = 7.93 γ * : Specific gravity of soil layer on pile tip: i i 3 i γ* = γ h = 11.16 (kN/m ) h

  γ: Specific gravity of soil layer under pile tip γ = 11 (kN/m 3 ) c: The cohension under the pile tip: c = 1.7 (kN/m 2 )

8.6.3 Checking for settlement of conventional foundation blocks

 Self stress at pile tip: bt i

 Settlement stress at pile tip: gl t 2 bt σ = Pc- σ = 643.14 - 540.85= 102.3 (kN/m )

We have σ bt = 540.85 (kN/m 2 ) > 5σ gl = 511.5 (kN/m 2 ) => OK

Figure 8 7: Punching shear tower Diagram According to Section 8.1.6.3.1 of TCVN 5574-2018, the penetration conditions are checked when bending in two directions: x y b,u bx,u by,u

 F, Mx and My are the concentrated force and concentrated bending moments in the X and Y directions, respectively, which have been included in the puncture calculation (see 8.1.6.1 TCVN 5574-2018), due to the external force.;

 Fb,u, Mbx,u and Mby,u are the limited concentrated forces and the limited concentrated bending moments in the X and Y directions, respectively, which the concrete in the calculated cross-section can withstand, respectively , when they act independently

 Ab = uh0: is the calculated cross-sectional area at about 0.5h0; from the edge of the concentrated force transfer area F, with a working height h0

 Calculated perimeter of cross section c c 0 u = 2b + 2h + 4h  2 700 2 1000 4 1350    8800 (mm)

– Maximum distance from failure envelope to foundation center of gravity c 0 max c 0 max b + h 700 1350 x = = 1025 (mm)

– Moment of inertia of the calculated contour with respect to the axis passing through the center of gravity of the calculated contour

– Check the condition of anti-piercing (TCVN 5574:2018):

8.6.5 Calculation of the reinforcement of the foundation

– Based on Appendix 8 Price of reinforced concrete 1– PHAN QUANG MINH with steel CB400-V and Concrete B40

Table 8 15: Internal force results from safe model Direction Moment (kN.m) Bstrip (m)

Table 8 16: Results of reinforcement of foundation column M1

 Calculating the design similar to M1 we have:

Figure 8 9: Internal force chart M2 Table 8 17: Results of reinforcement of foundation column M2

MTM foundation design

Figure 8 10: The layout of the elevator foundation piles

Figure 8 11: Foundation pile head reaction M1

Where: n1,n2 : number of row and pile on group’s pile : n1 = 1, n2 = 2

S: distance between the two centers of the pile: S = 2 m

Allowable bearing capacity of pile group:

8.7.3 Check the stability of the ground at the bottom of the conventional foundation

 The average friction angle of the soil layer that the pile penetrates i i tb i φ = φ l l

Table 8 18: Average internal friction angle

– Size of the base of the elevator foundation:

– Determine the weight of the elevator foundation pilecap pi qu W + W + Wle s 28114.3 182579 222825 (kN)

Weight of elevator foundation block from the bottom of the pedestal upwards:

Wpilecap = Fqu hđ γbt = 374.86×3×25 = 28114.3 (kN)

Self weight of pile group in soil mass:

The weight of the footing block is calculated from the bottom of the platform to the surface of the foundation:

Ws = (Fqu – nFc)h γtb = (374.86 - 21×0.53)×45.1×11.13 = 182579 (kN)

 Check bearing capacity (Rtc) below the base of the conventional foundation tt tt qu qu

N = N + W 105219.375 222825 328044.36 (k )N tt tt tt x, qu x x qu tt tt tt y, qu y y qu

– Standard load capacity (Rtc) of the subsoil under the conventional foundation

With: Looking up the standard TCVN 9362-2012, we get the following values: ktc = 1

The tip of the pile is in soil layer 7 which is dust layer:

=> A = 1.14; B = 5.57; D = 7.93 γ * : Specific gravity of soil layer on pile tip: i i 3 i γ* = γ h = 11.16 (kN/m ) h

132 γ: Specific gravity of soil layer under pile tip γ = 11 (kN/m 3 ) c: The soil adhesion force under the pile tip: c = 1.7 (kN/m 2 )

8.7.4 Checking for settlement of conventional foundation blocks

 Self stress at the pile tip: bt i i σ =γ h = 540.85×

 The stress causing settlement at the pile tip: gl c 2 bt σ = Pt - σ = 878.50 - 540.85 = 337.65 (kN/m ) Divide the soil layers under the pile tip into elemental layers according to the height condition: hi = 0.5 (m)

Table 8 19: Calculation results of elevator foundation settlement

Layer Point hi z (m) z/b k0 σbt (kN/m 2 ) σgl (kN/m 2 ) E (kN/m 2 ) Si (cm) Ghi chú

Total settlement: S = 7.2 (cm) ≤ [S] = 8 cm => OK

Figure 8 12: Conventional footing pressure chart

According to Section 8.1.6.3.1 of TCVN 5574-2018: x y b,u bx,u by,u

 F, Mx and My are concentrated force and concentrated bending moments in the X and Y axes, respectively

 Fb,u, Mbx,u and Mby,u are the limited concentrated force and the limited concentrated bending moments in the X and Y directions, respectively,

 Calculated perimeter of cross section c c 0 u = 2b + 2h + 4h  2 9900 2 3750 4 1850    34700mm

375  – Maximum distance from failure contour to foundation center of gravity: c 0 max c 0 max b + h 9900 1850 x = = 5875 (mm)

– Moment of inertia of the calculated contour with respect to the axis passing through the center of gravity of the calculated contour

– Check the condition of anti-piercing (TCVN 5574:2018): x y b,u bx,u by,u

8.7.6 Calculation of the reinforcement of the foundation

Figure 8 13: Internal force results in 2 directions – Based on Appendix 8 Price of reinforced concrete 1 – PHAN QUANG MINH with steel CB400-V and Concrete B40:

A = M ξ h R Table 8 20: Results of reinforcement of MTM-pile cap

DESIGN FORMWORK

Formwork work

9.1.1 Requirements when erecting formwork scaffolding

Formwork and scaffolding must be designed and accepted according to TCVN 4453-1995 standard before proceeding with the next work

Choose standard reinforcement of Hoa Phat company to calculate columns and foundations and only use TEKCOM film-coated formwork plywood to design the floor, advantages of fast construction

Figure 9 1: Parameters of Hoa Phat steel formwork

Table 9 1: Tekcom film faced plywood specification sheet (PlyCORE P type)

Water-resistant glue 100% WBP – Phenolic

Plank surface Pine type AA

The core of the board Dynee, brown

Boiling time without delamination 0.85 – 2 (MPa)

Horizontal: ≥ 5.5×10 6 (kN/m 2 ) Elastic Module E Vertical: ≥ 2.6×10 4 (kN/m 2 )

The force of pressing the board 7 – 15 (time)

When calculating, take flexural strength and transverse elastic modulus to check:

Design formwork for pile cap

Horizontal loads acting on the foundation formwork include:P ngang   H

Where H is the radius of influence of the cantilever: H = 0.7m

Table 9 2: Load acting on the formwork

Load q tc (kN/m 2 ) n q tt (kN/m 2 )

Concussion load due to concrete pouring 4.0 1.3 5.20

 The distance between the braces is L mm apart, so the calculated span of the formwork is L mm

Figure 9 3: Diagram of calculating the formwork of the pile cap

Maximum moment at mid span: 1 2

Check the stress in the formwork:

 Moment of intertia of formwork:

1250 23.5 tc tc tc q L L EI EI f f L L

 the distance between the vertical stiffener L = 30 (cm)

9.2.2 Check vertical stiffener (50x50x2 mm box steel)

 Vertical Stiffener use rectangular steel box 50×50×2mm

 Calculation load distributed acting on vertical stiffener: q tt = 30.55×0.3= 9.16 kN/m

 Standard load evenly distributed on vertical stiffener: q tc = 23.5×0.3 = 7.05 kN/m

 Spacing of horizontal rib is L

Figure 9 4: Diagram of calculating horizontal ribs

 Test of transverse stiffener strength:

10 Check the stress in the formwork:

250 7.05 tc tc tc q L L EI EI f f L L

 the distance between the vertical stiffener L = 60 (cm)

9.2.3 Check horizontal stiffener (2x50x100x2 steel box)

 Consider the horizontal stiffeners to work as simple beams, to bear the concentrated load transmitted by the vertical stiffeners

 Choose the distance between the two anti-skewers to be 0.6 (m)

Figure 9 5: Internal force diagram of horizontal stiffener

Figure 9 6: Deflection of horizontal stiffener

9.2.4 Check thread rod (steel d12 mm)

Design of corewall formwork

 Each column uses Hoa Phat steel formwork panels: Where panels 1500x600x55mm, Corner V bar, Tyren D16mm

+ Flexural strength: [σ] = 210 Mpa = 210 (kN/cm 2 )

Figure 9 7: Corner V bar – bracing – dowel- tyren D17

Figure 9 9: Section of front location of the wall choose

Table 9 3: Load acting on retaining wall formwork

(kN/m 2 ) n Design load q tt (kN/m 2 )

Concussion load due to concrete pouring 4.0 1.3 5.20

 The load acting on the formwork plate is the uniformly distributed load due to the horizontal pressure of the concrete and the vertical ribs are considered as supports working as continuous beams

 Choose b = 1 (m) the bearing direction is the plank horizontal

 Standard applied load Applied: q tc 23.5 1 23.5 (kN/m)

 Distance between vertical stiffener: L = 30cm

Figure 9 10: Diagram of calculating formwork for retaining wall

 Condition of strength of formwork plate:

 Horizontal stiffener use 2x50x100x2(mm) box steel which is joined together by thread rod at boundary and scaffolding Spacing of scaffolding L = 0.6 m

 The load acting on the horizontal stiffener is the concentrated force transmitted from the vertical stiffenr

Figure 9 11: Internal force diagram of horizontal stiffener

Figure 9 12: Deflection of horizontal stiffener

 The force acting on the thread rod is the force transmitted by the reaction forces supporting the horizontal stiffener

Figure 9 13: Internal force acting thread rod

 Internal of thread rod: N = 5.5 kN

  5.5 3.5(kN/cm ) 2   210(kN/cm ) 2 bn 1.57

 Choose 2mm thick pipe 49 steel rod,

 Wind load in the area: W0 = 55 daN/m 2

 Maximum horizontal pressure caused by horizontal load

 Internal force caused by wind load: wind

 Internal force P in the scaffoding:

Design of column formwork

– Column cross section is: 1200x700mm 5m high column,

 Uses Hoa Phat steel formwork panels: 1500x600x55mm and ranges 1500x350x55m Tyren D16mm

Figure 9 14: Detail of column formwork

Table 9 4: Load acting on retaining wall formwork

(kN/m 2 ) n Design load q tt (kN/m 2 )

Concussion load due to concrete pouring 4.0 1.3 5.20

 The load acting on the formwork plate is the uniformly distributed load due to the horizontal pressure of the concrete and the vertical ribs are supports working as continuous beams

 Standard active load: q tc 23.5 1 23.5 (kN/m)

 Distance between vertical stiffener: L = 30cm

Figure 9 15: Diagram of calculating formwork for retaining wall

 Condition of strength of formwork plate:

 Use steel box 2x50x100x2(mm) linked together by thread rod at edge and scaffolding Scaffolding distance L = 0.6 m

 The load acting on the horizontal stiffener is the concentrated force transmitted from the vertical stiffener

Figure 9 16: Internal force diagram of horizontal stiffener

Figure 9 17: Deflection of horizontal stiffener

 The force acting on the thread rod is the force transmitted by the reaction forces supporting the horizontal stiffener

Figure 9 18: Internal force acting thread rod

 Internal of thread rod: N = 5.5 kN

  5.5 3.5(kN/cm ) 2   210(kN/cm ) 2 bn 1.57

 Choose 2mm thick pipe 49 steel rod

 Wind load in the area: W0 = 55 daN/m 2

 Maximum horizontal pressure caused by horizontal load

 Internal force caused by wind load: wind

 Internal force P in the scaffoding:

Design slab formwork

Table 9 5: Load applied slab formwork

Weight of equipment, people, machines 1.3 1.3 1.69

Concussion load due to concrete pouring 0.4 1.3 0.52

– Standard load distributed on the plank: q tc 6.95 1 6.95(  kN m/ )

– Calculated load distributed on the plate: q tt 9.04 1 9.04(  kN m/ )

– Distance between two upper beams: L

Figure 9 20: Diagram of calculating the formwork

 Moment of intertia of formwork:

– Consider the lower beam as supports, the force acting on the upper layer scaffolding is distributed and works like a continuous beam

– Lower layer purlins receive concentrated load from upper layer momentum, consider supports as supports

– The distance between two lower beam is equal to the distance of the struts: L – Evenly distributed load acting on upper beam:

– The force distributed over a 0.5 m wide strip, evenly distributed along the long side of the board is: q tt 9.04 0.5 4.52(kN m/ )

– Consider the struts as support, the load applied to the lower beam is concentrated and the lower beam acts as a continous

– Concentrated load from upper layer momentum:

Figure 9 22: Deflection of lower beam

– Choose Ringlock D49 2mm thick with A = 2,953 (cm2), I = 8,321 (cm4) – The support strust is subjected to a compressive force equal to the magnitude of the reaction force of the support, one support must bear the load is: tt tt

– Length calculated according to the distance between brace points: l= 1.5m

– Radius of rotation of the circle: 8.321 i 1.679(

– Two plugs are considered to be mounts:  0.7

→ So the support struts enough bearing capacity.

Ngày đăng: 23/02/2024, 15:47

w