Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
813,85 KB
Nội dung
EURASIP Journal on Applied Signal Processing 2004:16, 2522–2532 c 2004 Hindawi Publishing Corporation OptimalDetectorforMultiplicativeWatermarksEmbeddedintheDFTDomainofNon-White Signals Vassilios Solachidis Department of Informatics, University of Thessaloniki, 54124 Thessaloniki, Greece Email: vasilis@zeus.csd.auth.gr Ioannis Pitas Department of Informatics, University of Thessaloniki, 54124 Thessaloniki, Greece Email: pitas@zeus.csd.auth.gr Received 28 September 2003; Revised 10 June 2004 This paper deals with the statistical analysis ofthe behavior of a blind robust watermarking system based on pseudorandom signals embeddedinthe magnitude ofthe Fourier transform ofthe host data. The host data that the watermark is embedded into is one-dimensional and non-white, following a specific probability model. The analysis performed involves theoretical evaluation ofthe statistics ofthe Fourier coefficients and the design of an optimaldetectorformultiplicative watermark embedding. Finally, experimental results are presented in order to show the performance ofthe proposed detector versus that ofthe correlator detector. Keywords and phrases: Fourier transform, watermarking , detector, signal processing. 1. INTRODUCTION The risk of illegal copying, reproduction, and distribution of copyrighted multimedia material is becoming more threat- ening with the all-digital evolving solutions adopted by con- tent providers, system designers, and users. Thus, copy- right watermark protection of digital data is an essential re- quirement for multimedia distribution. Robust watermarks can offer a copyright protection mechanism for digital me- dia. The watermark is a signal that contains information about the copyright owner and it is embedded perma- nently inthe multimedia data. It introduces imperceptible content changes that can be detected by a detection pro- gram. Robustness is a very important property ofthe water- marking scheme. Thewatermarks must be robust to distor- tions, such as those caused by image processing algorithms (in the case of image watermarks). Image processing modi- fies not only the image but also may modify the watermark as well. Thus, the watermark may become undetectable after intentional or unintentional image processing attacks. The watermark must also be imperceptible. The watermark al- terations should not decrease the perceptual media quality. A general watermarking framework for copyright protection has been presented in [1, 2] and it describes all these issues in detail. Watermarking methods can be distinguished in two ma- jor classes, according to the embedding/detection domain. Inthe first class, the embedding is performed directly inthe spatial domain [3, 4, 5]. The second class is referred to as transform domain techniques. In these methods, the water- mark is embeddedin a transform domain, attempting to ex- ploit the transform properties mainly for watermark imper- ceptibility and robustness. The watermark can be embeddedinthe DCT [6, 7, 8, 9], discrete Fourier transform (DFT) [10, 11], Fourier-Mellin [12, 13], DWT [7, 14, 15, 16, 17, 18] or fractal-based coding domains [19, 20]. Many approaches adopt principles from spread spectrum communications in their watermarking system model [1, 2, 8, 21]. Correlation detection of watermarked sig nals is involved inthe majority of watermarking techniques inthe literature. However, the correlator detector is optimal and minimizes the error probability only in cases when the signal follows a Gaussian distribution. There are papers inthe literature that propose detectors, different than the correlator, inthe cases when the host data do not follow a Gaussian distribu- tion [22, 23, 24]. In [22], the embedding domain is DCT. The DCT coefficient distribution is modelled as a general- ized Gaussian one. Then, the maximum likelihood (ML) cri- terion is used in order to derive theoptimaldetector struc- ture. In [24, 25], the watermark is embeddedinthe magni- tude oftheDFT domain. In this case, the authors assume Watermark DetectorEmbeddedintheDFTofNon-White Signal 2523 that the Fourier magnitude does not follow the generalized Gaussian distribution. They propose the Weibull one, due to the facts that its support domain is the set ofthe posi- tive real numbers and that it represents a big probability dis- tribution family. Inthe present paper, the watermark is also assumed to be embeddedinthe magnitude oftheDFT do- main. Moreover, we assume that the signal is not white and that it follows a specific probability model. The novelty ofthe present paper, that is also the main difference from the papers reported above, is that theDFT magnitude distribu- tion is analytically calculated and it is proven to be differ- ent than the Weibull distribution [24]. Finally, we construct theoptimaldetector according to the Neyman-Pearson cri- terion. The paper is organized as follows. The watermarking sys- tem model is presented in Section 2. Inthe next section, the signal model is presented and the distribution ofDFT mag- nitude coefficients is shown. Then, in Section 4, the con- struction oftheoptimaldetector is depicted. In Sections 5 and 6, the experimental results and the conclusions are pre- sented. 2. WATERMARKING SYSTEM MODEL Let s(i), i = 1, 2, , N, be the samples of a host signal s with length N. Let also S(k), k = 1, 2, , N, be theDFT coeffi- cients of s(i)andM(k), P(k) the magnitude ofthe Fourier transform (M(k) =|S(k)|) and its phase, P(k) = arg(S(k)), respectively. Suppose that S R (k)andS I (k) denote the real and the imaginary part of S(k), respectively. As mentioned inthe introduction, the watermark embedding is performed inthe Fourier domain and more specifically in its magnitude. Thus, starting from the magnitude ofthe Fourier transform M,we produce the watermarked transform magnitude. We assume that M is the watermarked magnitude generated by the wa- termark embedding function f , M = f (M, W, p). (1) Inthe previous formula, vector W contains the samples ofthe watermark sequence. This sequence is produced by a ran- dom generator. We assume that W(k), k = 1, 2, , N,isa random signal that consists solely of 1’s and −1’sandthatitis uniformly distributed in its domain {1, −1}. Thus, the mean ofthe watermark sequence samples W(k)isequaltozero. Inthe case that f is of a linear form, it can be easily proven that the mean ofthe watermarked magnitude remains un- altered. This property increases both the watermarked sig- nal imperceptibility as well as its robustness. The parameter p that is employed in (1) is a real number that determines the watermark strength. An increase inthe value of p re- sults in a more robust (and more easily perceptible) water- mark. If the embedding function is multiplicative, the water- marked magnitude is given by M = M + MW p = M(1 + Wp). (2) In order to compute the final watermarked signal s (in the spatial domain), the inverse discrete Fourier transform (IDFT) is applied to the watermarked magnitude M and the initial DFT coefficient phase P, s = IDFT(M , P). (3) Given a possibly watermarked signal y, the watermark detec- tor aims at deciding whether y hosts a certain watermark W. Watermark detection can be expressed as a hypothesis test where two hypotheses are possible: (H 0 ) signal y doesnothostwatermarkW, (H 1 ) signal y hosts watermark W. It should be noted that hypothesis (H 0 )canoccurei- ther inthe case that the signal y is not watermarked (hy- pothesis (H 0a )) or inthe case that the signal y is wa- termarked by another watermark W ,whereW = W (hypothesis (H 0b )). The events (H 0a ), (H 0b )aremutu- ally exclusive a nd their union produces the hypothesis (H 0 ). The performance of a watermarking method depends mainly on the selection ofthe watermark detector d.The correlator detector is the most commonly used watermark detector. It has been employed in many watermarking meth- ods which perform not only spatial domain watermarking but also watermarking in transform domains. Its test statis- tic is the correlation between the watermark and the possibly watermarked signal y, d = 1 N N i=1 y(i)W(i). (4) In order to decide on the valid hypothesis, thedetector out- put d is compared against a suitably selected threshold T.The evaluation ofthe watermarking method can be measured by the false alarm P fa and the false rejection P fr probabilities. False alarm probability is the type I error which is the prob- ability of rejecting hypothesis (H 0 ),eventhoughitistrue.In our case, it is the probability of detecting a watermark W in a signal that is not watermarked by the watermark W.Cor- respondingly, false rejection is the type II error, whose prob- ability is that of not detecting a watermark W in a signal that is actually watermarked by the watermark W (accept (H 0 ) even if it is false). In most ofthe watermarking methods, hypothesis (H 0 )is accepted when thedetector output is greater than a threshold T. Thus, false alarm and false rejection probabilities can be expressed as P fa = P d>T|H 0 , P fr = P d<T|H 1 . (5) The calculation ofthe above probabilities can be performed if thedetector distribution for both hypotheses is known. 2524 EURASIP Journal on Applied Signal Processing 10 −90 10 −100 10 −110 10 −120 10 −130 10 −140 10 −150 p value 0 100 200 300 400 500 600 700 800 900 1000 Coefficient (a) 10 0 10 −50 10 −100 10 −150 10 −200 10 −250 p value 0 100 200 300 400 500 600 700 800 900 1000 Coefficient (b) Figure 1: p values (output of Kolmogorov-Smirnov test) for each coefficient ofthe real part ofthe Fourier transform of a signal (a) a = 0, (b) a = 0.995. Thus, assuming that the f 0 (x), f 1 (x) are the probability den- sity functions (pdfs) forthe hypotheses (H 0 )and(H 1 ), re- spectively, the error probabilities are given by P fa = ∞ T f 1 (x)dx, P fr = T ∞ f 0 (x)dx. (6) According to the above equations, P fa and P fr depend on the threshold T. A possible change of T increases one probabil- ity and decreases the other. Thus, apart from the detector, an appropriate threshold should be selected. In many cases, thedetector is expressed as a sum or a product of almost inde- pendent terms that obey the same distribution. According to the central limit theorem, thedetector (or thedetector loga- rithm in case ofmultiplicative embedding) obey a Gaussian distribution. Thus, in this case, the error probabilities can be written as P fa = f T − µ 1 σ 1 , P fr = 1 − f T − µ 0 σ 0 , f (x) = ∞ x 1 √ 2π exp −x 2 2 , (7) where µ 0 , µ 1 are the mean values and σ 0 , σ 1 the standard de- viations ofthe distributions f 0 , f 1 ,respectively. 3. SIGNAL MODEL AND DISTRIBUTION OFDFT MAGNITUDE COEFFICIENTS A basic step fortheoptimaldetector construction is the com- putation ofthe transform coefficient distribution. Thus, in this section, the distribution oftheDFT magnitude coef- ficients of a signal will be computed, whose model is er- godic and wide-sense stationary stochastic process. The sig- nal statistics are modeled as E s(i) = µ s , ∀i = 0, , N − 1, (8) E s(i)s(i + D) = F s,s (D), ∀i = 0, , N −1, (9) σ 2 s = E s(i) 2 − µ 2 s , (10) where E(·) denotes the expected value. A first-order separable autocorrelation function model will be assumed [26]: F s,s (D) = µ 2 s + σ 2 s a |D| , (11) where a is a real-valued constant. Typically, a is inthe range [a = 0.9, ,0.99] for several classes of 1D signals (e.g., au- dio). It should be noted that if a tends to zero, the autocorre- lation approaches a Dirac distribution. It is obvious from (8)and(11) that the signal correlation F s,s (D) depends only on the absolute difference D ofthe sig- nal indices. TheDFT transform of signal s(i), i = 1, , N is given by the following equation: S(k) = N−1 i=0 s(i)e −j2πik/N = N−1 i=0 s(i)cos −2πik N + js(i)sin −2πik N , k = 1, , N. (12) We can assume that theDFT (12) ofthe signal fol- lows a Gaussian distribution due the central limit theo- rem for random variables with small dependency [27]. This assumption is valid at least for small values of parame- ter a. In order to show this experimentally, we have per- formed the Kolmogorov-Smirnov test for all the coefficients. Watermark DetectorEmbeddedintheDFTofNon-White Signal 2525 10 2 10 1 10 0 10 −1 10 −2 10 −3 10 −4 0 100 200 300 400 500 600 700 800 900 1000 Experimental variance Theoretical variance (a) 10 2 10 1 10 0 10 −1 10 −2 10 −3 10 −4 0 100 200 300 400 500 600 700 800 900 1000 Experimental variance Theoretical variance (b) Figure 2: Theoretical and experimental variances of (a) real and (b) imaginary parts of each discrete Fourier coefficient of 100 signals of length 1000, having a = 0.99. In Figure 1, the p values for each coefficient forthe case of a = 0(Figure 1a)anda = 0.995 (Figure 1b) are illustrated. The statistic parameters used inthe Kolmogorov-Smirnov test (expected value and variance) were theoretically derived from (16), (17), and (A.7). It is shown that the p values are very low, which means that all the coefficients follow the Gaussian distribution. Thus, it is proved that the mean of S(k)isgivenby µ S(k) = E[S(k)] = E N−1 i=0 s(i)e −j2πik/N = 0, k = 0, µ s N, k = 0. (13) The proof of µ S(k) is given inthe appendices. The variance of S(k) will be computed separately for its real part, S R (k), and imaginary, part, S I (k), according to the following formula: σ 2 S R (k) = E S R (k) 2 − E S R (k) 2 = N−1 i=0 N−1 l=0 cos −2πik N cos −2πlk N × E s(i)s(l) − µ 2 S R (k) . (14) By substituting (8)in(14), we get σ 2 S R (k) = N−1 i=0 N−1 l=0 cos −2πik N cos −2πlk N × m 2 + s 2 a |j−m| − µ 2 S R (k) . (15) The fi nal results forthe variances of S R (k)andS I (k)are given below: σ 2 S R (k) =− 1 2 s 2 −2a cos 2(πk/N) 2a N 1+a 2 + a 2 (N −2) − N −2 −N + a 4 N −6a 2 +6a 2 a N +2a 2 cos 4(πk/N) a N − 1 2a 2 cos 4(πk/N) +4a 2 − 4a cos(2(πk/N)) 1+a 2 +1+a 4 , (16) σ 2 S I (k) =− 1 2 s 2 −2a 2 cos 4(πk/N) a N − 1 − 2aN cos 2(πk/N) a 2 − 1 + N a 4 − 1 +2a 2 a N − 1 2a 2 cos 4(πk/N) +4a 2 − 4a cos 2(πk/N) 1+a 2 +1+a 4 . (17) The proof ofthe above equations is given inthe appendices. In Figure 2, the theoretical variances and experimental of real and imaginary parts oftheDFT coefficients are shown. In this example, 100 signals of length 1000 obeying the model (11)wereusedfora = 0.99. The next step is to calculate the distribution ofthe 2526 EURASIP Journal on Applied Signal Processing Fourier magnitude |S(k)|. By observing (14), we conclude that al l but the DC term have zero mean. If the variances of S R (k)andS I (k) were equal, then we could conclude that the distribution of |S(k)|= S R (k) 2 + S I (k) 2 is the Rayleigh one [28]: S(k) ∼ f s (s) = s σ 2 exp − s 2 2σ 2 , x>0. (18) However, the variances ofthe real and the imaginary parts of S(k) are equal only inthe case of signals whose samples can be modeled as independent identically distributed (i.i.d) random variables (a = 0). Thus, for any other case we have to use the pdf of a signal z = x 2 + y 2 , (19) where x ∼ N(0,σ 2 1 ), y ∼ N(0, σ 2 2 ), and σ 1 = σ 2 .Itisproved inthe appendices that the pdf of such a random variable z is given by f z (z) = z σ 1 σ 2 exp − σ 2 1 + σ 2 2 4σ 2 1 σ 2 2 z 2 I 0 0, σ 2 2 − σ 2 1 4σ 2 1 σ 2 2 z 2 , (20) where I 0 denotes the modified Bessel function and σ 1 , σ 2 are the standard deviations ofthe real and imaginary parts of S(k). Thus, the discrete Fourier magnitude distribution is given by S(k) ∼ f z (z) = z 2σ S R(k) σ S I(k) exp − σ 2 S R(k) + σ 2 S I(k) 4σ 2 S R(k) σ 2 S I(k) z 2 I 0 0, σ 2 S I(k) − σ 2 S R(k) 4σ 2 S R(k) σ 2 S I(k) z 2 . (21) For ease of notation, σ S R(k) and σ S I(k) will be replaced by σ 1 and σ 2 , respectively, forthe remainder ofthe paper. 4. OPTIMAL WATERMARK DETECTORInthe next section, theoptimal watermark detectorfor mul- tiplicative watermarks will be evaluated by using the like- lihood ratio test (LRT). According to the Neyman-Pearson theorem, in order to maximize the probability of detection P D for a given P fa = e,wedecidefor(H 1 )if L(M ) = p M ; H 1 p M ; H 0 >T, (22) where the threshold T can be found from P fa = M :L(M )>T p M ; H 0 dM = e. (23) The test of (22) is called LRT. Inthe sequel, the pdfs ofthe watermarked signal P(M ; H 0 ), P(M ; H 1 )willbecom- puted for watermarked signals with a known and an un- known (random) watermark. For P(M ; H 0 ), we assume that the watermark is a random one whose pdf is modeled by f w (w) = 0.5, w = 1, 0.5, w =−1, 0, otherwise. (24) According to the embedding formula (2), it can be easily proved that the pdf ofthe watermarked signal is equal to f M (x) = 1 2 1 1+p f M x 1+p + 1 1 − p f M x 1 − p . (25) By substituting f M with the pdf ofthe distribution in (20), we find P M (k); H 0 = M (k) 4σ 1 σ 2 · 1 (1 + p) 2 exp − σ 2 1 + σ 2 2 4σ 2 1 σ 2 2 M (k) 2 (1 + p) 2 × I 0 0, σ 2 2 − σ 2 1 4σ 2 1 σ 2 2 M (k) 2 (1 + p) 2 + 1 (1−p) 2 exp − σ 2 1 + σ 2 2 4σ 2 1 σ 2 2 M (k) 2 (1−p) 2 × I 0 0, σ 2 2 − σ 2 1 4σ 2 1 σ 2 2 M (k) 2 (1 − p) 2 . (26) Inthe case of hypothesis (H 1 ), the signal is watermarked by the known watermark W. Thus, the probability is given by (20), p M (k); H 1 = M (k) 2σ 1 σ 2 1+W( k)p 2 exp − σ 2 1 + σ 2 2 4σ 2 1 σ 2 2 M (k) 2 1+W(k)p 2 × I 0 0, σ 2 2 − σ 2 1 4σ 2 1 σ 2 2 M (k) 2 1+W( k)p 2 . (27) Assuming independence between the transform coeffi- cients of S, we conclude that p M ; H j = N−1 k=0 p M (k); H j , j = 0, 1. (28) By combining (20), (27), and (22) we get theoptimal de- tector scheme Watermark DetectorEmbeddedintheDFTofNon-White Signal 2527 L(M ) = N−1 k=1 2 1+W(k)p 2 I 0 0, σ 2 2 − σ 2 1 4σ 2 1 σ 2 2 M (k) 2 1+W(k)p 2 × 1 (1 + p) 2 exp − σ 2 1 + σ 2 2 4σ 2 1 σ 2 2 2p W(k) − 1 M (k) 2 1+W(k)p 2 (1 + p) 2 I 0 0, σ 2 2 − σ 2 1 4σ 2 1 σ 2 2 M (k) 2 (1 + p) 2 + 1 (1 − p) 2 exp − σ 2 1 + σ 2 2 4σ 2 1 σ 2 2 2p W(k)+1 M (k) 2 1+W(k)p 2 (1 − p) 2 I 0 0, σ 2 2 − σ 2 1 4σ 2 1 σ 2 2 M (k) 2 (1 − p) 2 −1 >T. (29) 4.1. Threshold estimation The threshold is selected in such a way so that a predefined false alarm error probability can be achieved. In order to calculate the false alarm error probability, we firstly have to know thedetector distribution inthe case of erroneous wa- termark detection. We assume that the distribution is Gaus- sian. Then, we estimate the distribution parameters from the statistics ofthe empirical distribution. The latter is calculated by detecting erroneous watermarks from the (possibly) wa- termarked signal. From the empirical distribution statistics and the desired false alarm error probability, we calculate the threshold ac- cording to the equation P fa = +∞ T 1 σ √ 2 exp − (x − µ) 2 2σ 2 dx, (30) where µ and σ are the expected value and the standard devia- tion ofthedetector output set, respectively. Thus, according to the equation above, the threshold T is given by T = µ − σ √ 2erf −1 (2P fa − 0.5). (31) The total number of such detections needed is not prede- fined but should be sufficiently large if we want to accurately approximate this distribution. The minimal number of ex- periments required in order to sufficiently approximate the distribution is found through the following procedure. We estimate the distribution parameters, µ, σ, using the empir- ical distribution produced from L detector outputs, for an increasing L in a certain range of L,[L min , L max ]. Then, ac- cording to these statistics, we calculate the threshold in or- der to achieve a false alarm probability, for example, equal to 10 −10 .WestopforanL ∗ that leads a rather stable estimation of T. This procedure is illustrated in Figure 3 for L min = 5and L max = 1000. According to this figure, the threshold value is stabilized when the number of experiments becomes greater than L ∗ = 100. Of course, L ∗ depends on the watermark embedding power, the signal length, and the signal charac- teristics. For this reason, we propose to execute the above procedure for representative signal sets and forthe chosen embedding power in a particular application. −90 −100 −110 −120 −130 −140 −150 Threshold estimation 0 100 200 300 400 500 600 700 800 900 1000 Number of experiments L ∗ Figure 3: Threshold estimation versus number of experiments. 5. EXPERIMENTAL RESULTS In this section, experiments are performed in order to verify the superiority ofthe proposed detector against the classi- cal correlator one. The experiments are performed on one- dimensional digital signals. In order to construct signals with the desired autocor- relation properties (11), we filter a random white normally distributed signal S of zero mean value with a n IIR filter, H(z) = 1 − a 1 − az −1 . (32) This filtering creates a signal having an autocorrelation function ofthe form R SS (k) = 1 − b 1+b σ 2 s a k (33) that is identical to (11)forµ 2 s = 0. The variance ofthe fil- tered signal equals to (1 − a)/(1 + a)σ 2 s . Watermark embed- ding is performed according to (2). Then, the watermarked signal is fed to both the correlator (4) and the proposed de- tectors (29). In order to estimate false alarm and false rejec- tion probabilities, both correct and erroneous keys have been used during detection. 2528 EURASIP Journal on Applied Signal Processing 90 80 70 60 50 40 30 20 10 0 Frequency of occurrence −300 −280 −260 −240 −220 −200 −180 −160 −140 Detector output (a) 80 70 60 50 40 30 20 10 0 Frequency of occurrence 120 140 160 180 200 220 240 260 Detector output (b) Figure 4: Empirical detector output distribution: (a) erroneous key and (b) correct key. Theaboveprocedureisexecutedforalargenumberof different keys. Due to the central limit theorem for products [29], the distribution of L(x) is lognormal. Consequently, the distribution of ln(L(x)) is normal, where ln(x) is the natu- ral logarithm of x. In order to show the very good approxi- mation ofthedetector output by the Gaussian distribution, we depict its empirical distribution in Figure 4. In Figures 4a and 4b, thedetector distribution for detection using an er- roneous and correct key, respectively, is shown. The fitting is very good since the Kolmogorov-Smirnov null hypoth- esis has not been rejected for a level of significance equal to 0.01. Inthe following, the proposed detector will be the ln(L(x)) instead of L(x). Let dr(x)andde(x) be the distri- butions ofthedetector outputs for detecting correct and er- roneous watermarks, respectively. The calculation ofthe em- pirical mean and standard deviation, by approximating the empirical pdf with a nor mal one, can be used to produce re- ceiver operator characteristic (ROC) curves for both detec- tor outputs. ROC curves will be used for comparing detector performance. Theaboveprocedureisperformedforseveralvaluesof parameter a. The detection was performed using the follow- ing: (i) the correlator detector, (ii) the proposed detector considering the parameter a known, (iii) the proposed detector by estimating the (unknown) parameter a from the watermark sequence, (iv) the normalized correlator. In Figures 5, 6, 7,and8, the performance ofthe proposed detector against the correlator one is shown for several values of parameter a inthe range [0, 1]. In Figure 5, the value ofthe parameter a iszero.Thisisa special case for white signals, that is, no filtering is performed 10 0 10 −2 10 −4 10 −6 10 −8 10 −10 10 −12 10 −14 10 −16 10 −80 10 −60 10 −40 10 −20 10 0 Correlator Proposed detector using a = 0 Proposed detector using estimated a = 0.014146 Figure 5: ROC curves ofthe normalized correlator, the proposed detector by using the known parameter a, and the proposed detec- tor after estimating the parameter a, a = 0. by (33). Inthe subsequent figures, the parameter a increases, reaching the value a = 0.995 inthe last figure (Figure 8). By observing figures 5, 6, 7,and8, we can conclude the follow- ing. (i) The proposed detector performance is by far better that the correlator detector one. (ii) The performance ofthe proposed detector using the estimated parameter a is almost the same with that us- ing the known parameter a, since their ROC cur ves are very close to each other. Watermark DetectorEmbeddedintheDFTofNon-White Signal 2529 10 0 10 −2 10 −4 10 −6 10 −8 10 −10 10 −12 10 −14 10 −16 10 −90 10 −70 10 −50 10 −30 10 −10 Correlator Proposed detector using a = 0.9 Proposed detector using estimated a = 0.90919 Proposed detector using normalized correlation Figure 6: ROC curves of correlator, the normalized correlator, the proposed detector by using the known parameter a, and the pro- posed detector after estimating the parameter a, a = 0.9. 10 0 10 −2 10 −4 10 −6 10 −8 10 −10 10 −12 10 −14 10 −16 10 −90 10 −70 10 −50 10 −30 10 −10 Correlator Proposed detector using a = 0.97 Proposed detector using estimated a = 0.97236 Proposed detector using normalized correlation Figure 7: ROC curves of correlator, the normalized correlator, the proposed detector by using the known parameter a, and the pro- posed detector after estimating the parameter a, a = 0.97. (iii) The ROC curves that correspond to the proposed de- tector are not affected significantly by the value param- eter a contrary to the correlator detector ROC curves that show very decreased detection perfor mance for highly correlated signals, that is, as parameter a tends to one. 10 0 10 −2 10 −4 10 −6 10 −8 10 −10 10 −12 10 −14 10 −16 10 −18 10 −100 10 −80 10 −60 10 −40 10 −20 10 0 Correlator Proposed detector using a = 0.995 Proposed detector using estimated a = 0.9954 Proposed detector using normalized correlation Figure 8: ROC curves of correlator, the normalized correlator, the proposed detector by using the known parameter a, and the pro- posed detector after estimating the parameter a, a = 0.995. 6. CONCLUSIONS AND FUTURE WORK This paper deals with the statistical analysis ofthe behav- ior of a blind robust watermarking system based on one- dimensional pseudorandom signals embeddedinthe mag- nitude ofthe Fourier transform ofthe data and the design of an optimum detector. A multiplicative embedding method is examined and experiments are performed in order to show the proposed detector’s improved efficiency against the cor- relator one. APPENDICES A. CALCULATION OF DISCRETE FOURIER COEFFICIENT MEAN The mean of S(k)isgivenby E S(k) = E N−1 i=0 s(i)cos −2πik N + js(i)sin −2πik N =E s(i) N−1 i=0 cos −2πik N + jE s(i) N−1 i=0 sin −2πik N . (A.1) Replacing na by 2πkj/N inthe following equation [30]: N n=1 cos(na) = sin N +1/2 a 2sin(a/2) − 1 2 , a = 2lπ, N, a = 2lπ, (A.2) 2530 EURASIP Journal on Applied Signal Processing results in N−1 j=0 cos 2πkj N = 1+ N−1 j=1 cos 2πkj N = 1+ sin (N −1+1/2 (2πk/N) 2 sin(πk/N) − 1 2 , k = 0, N −1, k = 0. (A.3) Taking into account that 0 ≤ k<Nthe inequality ofthe constraint a = 2lπ can be written as 2πk/N = 2lπ ⇒ k = 0. Finally, N−1 j=0 cos 2πkj N = 0, k = 0, N, k = 0. (A.4) Using the equation N n=1 sin(na) = sin 1/2(N +1)a sin[Na/2] sin(a/2) , a = 2lπ, 0, a = 2lπ, (A.5) and following the same procedure, we end up inthe follow- ing equation: N−1 j=0 sin 2πkj N = 0. (A.6) Thus, the mean is equal to µ S(x) = E S(x) = 0, k = 0, E s(i) N, k = 0. (A.7) B. CALCULATION OF DISCRETE FOURIER COEFFICIENT VARIANCE S(k) is a complex signal, thus the variances ofthe real and imaginary parts will be calculated separately. B.1. Variance ofthe real part The variance ofthe real part of S(k)isgivenby var S R (k) = E S 2 R (k) − E S R (k) 2 = E N−1 i=0 s(i)cos −2πik N 2 − E N−1 i=0 s(i)cos −2πik N 2 . (B.1) Thesecondsumhasbeencalculatedin(A.7). The first sum equals to E N−1 i=0 s(i)cos −2πik N 2 = N−1 i=0 N−1 m=0 cos 2πik N cos 2πmk N E s(i)s(m) = N−1 i=0 N −1 m=0 cos 2πik N cos 2πmk N µ 2 s + σ 2 s a |i−m| . (B.2) Using [31,1.353] n−1 k=0 p k cos(ks) = 1 − p cos(s) − p n cos(ns)+p n+1 cos(n − 1)s 1 − 2p cos(s)+p 2 (B.3) and splitting the sum N−1 m=0 cos(2πik/N)cos(2πmk/N)(µ 2 s + σ 2 s a |i−m| )intwosums, N−1 m=0 cos 2πik N cos 2πmk N µ 2 s + σ 2 s a |i−m| = i m=0 cos 2πik N cos 2πmk N µ 2 s + σ 2 s a i−m + N−1 m=i+1 cos 2πik N cos 2πmk N µ 2 s + σ 2 s a m−i , (B.4) we derive (16). B.2. Variance ofthe imaginary part The variance ofthe imaginary part of S(k)isgivenby var S I (k) = E S 2 I (k) − E S I (k) 2 = E N−1 i=0 s(i)sin −2πik N 2 − E N−1 i=0 s(i)sin −2πik N 2 . (B.5) By splitting the above equation as in (B.4) and using [31, 1.353] that has the form n−1 k=1 p k sin(kx) = p sin(x) − p n sin(nx)+p n+1 sin(n − 1)x 1 − 2p sin(x)+p 2 , (B.6) we conclude in (17). Watermark DetectorEmbeddedintheDFTofNon-White Signal 2531 C. CALCULATION OFTHE f z (z) DISTRIBUTION In this section, the distribution of f z (z) = x 2 + y 2 ,where x ∼ N(0, σ 2 1 ), y ∼ N(0, σ 2 2 ), and σ 1 = σ 2 , will the calculated. By substituting x by z cos(t)andy by z sin(t) the above dis- tribution equals f (z) = 2π 0 z 2πσ 1 σ 2 exp − z 2 cos 2 (t) 2σ 2 1 + z 2 sin 2 (t) 2σ 2 2 dt = 2π 0 z 2πσ 1 σ 2 exp − z 2 cos 2 (t) 2σ 2 1 + σ 2 /σ 1 2 z 2 sin 2 (t) 2σ 2 2 + 1 − σ 2 /σ 1 2 z 2 sin 2 (t) 2σ 2 2 dt = 2π 0 z 2πσ 1 σ 2 exp − z 2 2σ 2 1 × exp − 1 − σ 2 /σ 1 2 z 2 sin 2 (t) 2σ 2 2 dt. (C.1) By substituting the quantit y −[1 −(σ 2 /σ 1 ) 2 ]/2σ 2 2 = (σ 2 2 − σ 2 1 )/2σ 2 1 σ 2 2 by the par ameter q (C.1) has the form f (z) = z 2πσ 1 σ 2 exp − z 2 2σ 2 1 2π 0 exp qz 2 sin 2 (t) dt. (C.2) After taking into account the periodicit y ofthe sin function and its symmetry inthe integral [0, 2π] ( 2π 0 exp(a sin 2 (t))dt = 2 π 0 exp(a((1 − cos(2t))/2))dt = exp(a/2) 2π 0 exp((−a/2) cos(t))dt = 2exp(a/2) π 0 exp((−a/ 2) cos(t))dt), the integral in (C.2)canbewrittenas 2π 0 exp qz 2 sin 2 (t) dt = 2exp qz 2 2 π 0 exp − qz 2 2 cos(t) dt. (C.3) Using [31,3.339] π 0 exp z cos(x) dx = πI 0 (z), (C.4) where I 0 (z) is the modified Bessel function of z, the integral in (C.3)equals 2π 0 exp − qz 2 2 cos(t) dt = 2π exp qz 2 2 I 0 − qz 2 2 . (C.5) Finally, substituting q and using (C.5), (C.2) has the form f (z) = z σ 1 σ 2 exp − z 2 σ 2 1 + σ 2 2 4σ 2 1 σ 2 2 I 0 z 2 σ 2 1 − σ 2 2 4σ 2 1 σ 2 2 . (C.6) Inthe special case that σ 1 = σ 2 , the pdf f (z) is the Rayleigh function. ACKNOWLEDGMENTS Theworkdescribedinthispaperhasbeensupportedin part by the European Commission through the IST Pro- gram under Contract IST-2002-507932 ECRYPT. The infor- mation in this document reflects only the author’s views, is provided as it is and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at his sole risk and liabil- ity. REFERENCES [1] G. Voyatzis and I. Pitas, “Protecting digital-image copyrights: Aframework,”IEEE Computer Graphics and Applications, vol. 19, no. 1, pp. 18–24, 1999. [2] G. Voyatzis and I. Pitas, “The use ofwatermarksinthe protec- tion of digital multimedia products,” Proceedings ofthe IEEE, vol. 87, no. 7, pp. 1197–1207, 1999, special issue on identifi- cation and protection of multimedia information. [3] M. D. Swanson, B. Zhu, A. H. Tewfik, and L. Boney, “Ro- bust audio watermarking using perceptual masking,” Signal Processing, vol. 66, no. 3, pp. 337–355, 1998, special issue on copyright protection and access control. [4] N. Nikolaidis and I. Pitas, “Robust image watermarking inthe spatial domain,” Signal Processing, vol. 66, no. 3, pp. 385–403, 1998, special issue on copyright protection and access control. [5] I. Pitas, “A m ethod for watermark casting on digital image,” IEEE Trans. Circuits and Systems for Video Technology, vol. 8, no. 6, pp. 775–780, 1998. [6] M. Barni, F. Bartolini, V. Cappelini, and A. Piva, “A DCT- domain system for robust image watermarking,” Signal Pro- cessing, vol. 66, no. 3, pp. 357–372, 1998. [7] R. B. Wolfgang, C. I. Podilchuk, and E. J. Delp, “Perceptual watermarksfor digital images and video,” Proceedings ofthe IEEE, vol. 87, no. 7, pp. 1108–1126, 1999. [8] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Se- cure spread spectrum watermarking for multimedia,” IEEE Trans. Image Processing, vol. 6, no. 12, pp. 1673–1687, 1997. [9] A. G. Bors and I. Pitas, “Image watermarking using block site selection and DCT domain constraints,” Optics Express, vol. 3, no. 12, pp. 512–523, 1998. [10] M. Kutter, F. Jordan, and F. Bossen, “Digital watermarking of color images using amplitude modulation,” SPIE Journal of Electronic Imaging, vol. 7, no. 2, pp. 326–332, 1998. [11] V. Solachidis and I. Pitas, “Circularly symmetric watermark embedding in 2-d DFT domain,” IEEE Trans. Image Process- ing, vol. 10, no. 11, pp. 1741–1753, 2001. [12] J. K. O’Ruanaidh and T. Pun, “Rotation, scale and translation invariant spread spectrum digital image watermarking,” Sig- nal Processing, vol. 66, no. 3, pp. 303–317, 1998, special issue on copyright protection and access control. [13] S. Pereira, J. K. O’Ruanaidh, F. Deguillaume, G. Csurka, and T. Pun, “Template based recovery of Fourier-based water- marks using log-polar and log-log maps,” in Proc. Inter- national Conference on Multimedia Computing and Systems (ICMCS ’99), vol. 1, pp. 870–874, Florence, Italy, June 1999. [14] M. D. Swanson, B. Zhu, and A. H. Tewfik, “Multiresolution scene-based video watermarking using perceptual models,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 4, pp. 540–550, 1998. [15] C. I. Podilchuk and W. Zeng , “Image-adaptive watermarking using visual models,” IEEE Journal on Selected Areas in Com- munications, vol. 16, no. 4, pp. 525–539, 1998. [...]... Table of Integrals, Series, and Products, Academic Press, San Diego, Calif, USA, 2000 Vassilios Solachidis was born in Thessaloniki, Greece, in 1974 He received the Diploma in Mathematics in 1996 and the Ph.D degree in informatics in 2004, both from the Aristotle University of Thessaloniki, Greece He is currently a Senior Researcher inthe Artificial Intelligence and Information Analysis Group at the. .. Department of Informatics at Aristotle University of Thessaloniki His research interests include image and signal processing and analysis and copyright protection of multimedia content EURASIP Journal on Applied Signal Processing Ioannis Pitas is presently a Professor inthe Department of Informatics, Aristotle University of Thessaloniki His research interests are inthe areas of digital image processing,... Bartolini, V Cappellini, A Lippi, and A Piva, “A DWT-based technique for spatio-frequency masking of digital signatures,” in Security and Watermarking of Multimedia Contents (Electronic Imaging ’99), vol 3657 of Proceedings of SPIE, pp 31–39, San Jose, Calif, USA, April 1999 [17] D Kundur and D Hatzinakos, “Digital watermarking for telltale tamper proofing and authentication,” Proceedings ofthe IEEE,... forthe optimum recovery of nonadditive watermarks, ” IEEE Trans Image Processing, vol 10, no 5, pp 755–766, 2001 [25] Q Cheng and T S Huang, “Robust optimum detection of transform domainmultiplicative watermarks, ” IEEE Trans Signal Processing, vol 51, no 4, pp 906–924, 2003 [26] J.-P Linnartz, T Kalker, and G Depovere, “Modelling the false alarm and missed detection rate for electronic watermarks, ” in. .. “DCTdomain watermarking techniques for still images: Detector performance analysis and a new structure,” IEEE Trans Image Processing, vol 9, no 1, pp 55–68, 2000 [23] M Barni, F Bartolini, A De Rosa, and A Piva, “Optimum decoding and detection ofmultiplicative watermarks, ” IEEE Trans Signal Processing, vol 51, no 4, pp 1118–1123, 2003 [24] M Barni, F Bartolini, A De Rosa, and A Piva, “A new decoder for. .. Chassery, and F Davoine, “Using the fractal code to watermark images,” in Proceedings of IEEE International Conference on Image Processing (ICIP ’98), vol 1, pp 469–473, Chicago, Ill, USA, October 1998 [21] F Hartung, J K Su, and B Girod, “Spread spectrum watermarking: Malicious attacks and counter-attacks,” in Security and Watermarking of Multimedia Contents, vol 3657 of Proceedings of SPIE, pp 469–473,... 1999 [18] S Tsekeridou and I Pitas, “Embedding self-similar watermarksinthe wavelet domain, ” in Proc IEEE Int Conf Acoustics, Speech, Signal Processing (ICASSP ’00), pp 1967–1970, Istanbul, Turkey, June 2000 [19] J Puate and F Jordan, “Using fractal compression scheme to embed a digital signature into an image,” in Photonics East Symposium, Proceedings of SPIE, pp 108–118, Boston, Mass, USA, November... multidimensional signal processing, and computer vision He has published over 135 journal papers and 350 conference papers He is also the coauthor ofthe book Nonlinear Digital Filters: Principles and Applications (Kluwer, 1990) and the author of Digital Image Processing Algorithms (Prentice Hall, 1993) He is the Editor ofthe book Parallel Algorithms and Architectures for Digital Image Processing, Computer Vision... a member ofthe European Community ESPRIT Parallel Action Committee He has also been an invited speaker and/or member ofthe program committee of several scientific conferences and workshops He has also served as an Associate Editor ofthe IEEE Transactions on Circuits and Systems and Coeditor of Multidimensional Systems and Signal Processing He is currently serving as an Associate Editor ofthe IEEE... as an Associate Editor ofthe IEEE Transactions on Neural Networks He has been Chair ofthe 1995 IEEE Workshop on Nonlinear Signal and Image Processing (NSIP95) He was the Technical Chair ofthe 1998 European Signal Processing Conference and the General Chair of 2001 IEEE International Conference on Image Processing in Halkidiki, Greece . Processing 2004:16, 2522–2532 c 2004 Hindawi Publishing Corporation Optimal Detector for Multiplicative Watermarks Embedded in the DFT Domain of Non-White Signals Vassilios Solachidis Department of. methods can be distinguished in two ma- jor classes, according to the embedding/detection domain. In the first class, the embedding is performed directly in the spatial domain [3, 4, 5]. The second class. one. Then, the maximum likelihood (ML) cri- terion is used in order to derive the optimal detector struc- ture. In [24, 25], the watermark is embedded in the magni- tude of the DFT domain. In this