1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo hóa học: " QUADRATIC OPTIMIZATION OF FIXED POINTS FOR A FAMILY OF NONEXPANSIVE MAPPINGS IN HILBERT SPACE" pot

13 239 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 530 KB

Nội dung

QUADRATIC OPTIMIZATION OF FIXED POINTS FOR A FAMILY OF NONEXPANSIVE MAPPINGS IN HILBERT SPACE B. E. RHO ADES Received 10 September 2003 Given a finite family of nonexpansive self-mappings of a Hilbert space, a particular qua- dratic functional, and a strongly positive selfadjoint bounded linear operator, Yamada et al. defined an iteration scheme which converges to the unique minimizer of the qua- dratic functional over the common fixed point set of the mappings. In order to obtain their result, they needed to assume that the maps satisfy a commutative type condition. In this paper, we establish their conclusion without the assumption of any type of com- mutativity. Finding an optimal point in the intersection F of the fixed point sets of a family of nonexpansive maps is one that occurs frequently in various areas of mathematical sci- ences and engineering. For example, the well-known convex feasibility problem reduces to finding a point in the intersection of the fixed point sets of a family of nonexpan- sive maps. (See, e.g., [3, 4].) The problem of finding an optimal point that minimizes a given cost function Θ : Ᏼ → R over F is of wide interdisciplinary interest and practical importance. (See, e.g., [2, 4, 5, 7, 14].) A simple algorithmic solution to the problem of minimizing a quadratic function over F is of extreme value in many applications includ- ing the set-theoretic signal estimation. (See, e.g., [5, 6, 10, 14].) The best approximation problem of finding the projection P F (a) (in the norm induced by the inner product of Ᏼ)fromanygivenpointa in Ᏼ is the simplest case of our problem. Some papers dealing with this best approximation problem are [2, 9, 11]. Let Ᏼ be a Hilbert space, C a closed convex subset of Ᏼ,andT i ,wherei = 1,2, ,N, a finite family of nonexpansive self-maps of C,withF :=∩ n i=1 Fix(T i ) =∅. Define a qua- dratic function Θ : Ᏼ → R by Θ(u):= 1 2 Au,u−b, u∀u ∈ Ᏼ,(1) where b ∈ Ᏼ and A is a selfadjoint strongly positive operator. We will also assume that B := I − A satisfies B < 1, although this is not restrictive, since µA is strongly positive Copyright © 2004 Hindawi Publishing Corporation Fixed Point Theory and Applications 2004:2 (2004) 135–147 2000 Mathematics Subject Classification: 47H10 URL: http://dx.doi.org/10.1155/S1687182004309046 136 Quadratic optimization with I − µA < 1foranyµ ∈ (0,2/A), and minimizing  Θ(u):=(1/2)µAu,u−µb, u over F is equivalent to the original minimization problem. Ya m ada e t a l. [13] show that there exists a unique minimizer u ∗ of Θ over C if and only if u ∗ satisfies  Au ∗ − b,u − u ∗  ≥ 0 ∀u ∈ C. (2) In their solution of this problem, Yamada et al. [13] add the restriction that the T i satisfy Fix  T N ···T 1  = Fix  T 1 T N ···T 3 T 2  = Fix  T N−1 T N−2 ···T 1 T N  . (3) There are many nonexpansive maps, with a common fixed point set, that do not satisfy (3). For example, if X = [0,1] and T 1 and T 2 are defined by T 1 x = x/2+1/4andT 2 x = 3x/4, then Fix(T 1 ,T 2 ) ={2/5},whereasFix(T 2 ,T 1 ) ={3/10}. In our solution, we are able to remove restriction (3). We will take advantage of the modified Wittmann iteration scheme developed by Atsushiba and Takahashi [1]. Let α n1 ,α n2 , ,α nN ∈ (0,1], n = 1,2, Given the mappings T 1 ,T 2 , ,T N ,onecan define, for each n,newmappingsU 1 , ,U N by U n1 = α n1 T 1 +  1 − α n1  I, U n2 = α n2 T 2 U n1 +  1 − α n2  I, . . . U n,N−1 = α n,N−1 T N−1 U n,N−2 +  1 − α n,N−1  I, W n := U nN = α nN T N U n,N−1 +  1 − α nN  I. (4) From [1, Lemmas 3.1 and 3.2], if the T i are n onexpansive, so are the U ni , and both sets of functions have the same fixed point set. The iteration scheme we will use is the following. Let b ∈ C and choose any u 0 ∈ C. Define {u n } by u n+1 = λ n b +  I − λ n A  W n u n ,(5) where the W n are the self-maps of C generated by (4). Theorem 1. Let T i : Ᏼ → Ᏼ (i = 1, , N) be nonexpansive with nonempty common fixed point set F =∅. Assume that {λ n } and {α ni } satisfy (i) 0 ≤ λ n ≤ 1, (ii) lim λ n = 0, (iii)  n≥1 λ n =∞, B. E. Rhoades 137 (iv)  n≥1 |λ n − λ n−1 | < ∞, (v)  n≥1 |α ni − α n−1,i | < ∞ for each i = 1,2, ,N. Then, for any point u 0 ∈ Ᏼ,thesequence{u n } generated by (5) converges strongly to the unique minimizer u ∗ of the function Θ of (1)overF. Proof. From [15], u ∗ exists and is unique. We will first assume that u 0 ∈ C u ∗ :=  x ∈ Ᏼ |   x − u ∗   ≤   b − Au ∗   1 −B  ,(6) where A and B are as previously defined. For any x ∈ Ᏼ and 0 ≤ λ ≤ 1, define T λ (x) = λb +(I − λA)W(x). (7) Then, for any y ∈ Ᏼ, since W is nonexpansive,   T λ (x) − T λ (y)   =   (I − λA)  W(x) − W(y)    ≤  1 − λ  1 −B  x − y. (8) Also, since u ∗ ∈ F,   T λ  u ∗  − u ∗   = λ   b − Au ∗   . (9) Thus,   T λ (x) − u ∗   ≤   T λ (x) − T λ  u ∗    +   T λ  u ∗  − u ∗   ≤  1 − λ  1 −B    x − u ∗   + λ  1 −B    b − Au ∗   1 −B ≤   x − Au ∗   1 −B . (10) If, in (7), we make the substitution λ = λ n , T λ (x) = u n+1 ,andW(x) = W n u n ,thenit follows from (9)and(10)thatu n and W n u n belong to C u ∗ for each n.Thus,{u n } and {W n u n } are bounded. Since B < 1, {BW n u n } is also bounded. Let K denote the diameter of C u ∗ . We may w rite (5)intheform u n+1 = λ n b +  I − λ n (I − B)  W n u n = λ n b +  I − λ n  W n u n + λ n BW n u n . (11) We will first show that lim   u n+1 − u n   = 0. (12) 138 Quadratic optimization Using (11), since each W n is nonexpansive and B < 1,   u n+1 − u n   =   λ n b +  1 − λ n  W n u n + λ n BW n u n − λ n−1 b −  1 − λ n−1  W n−1 u n−1 − λ n−1 BW n−1 u n−1   ≤   λ n − λ n−1   b +  1 − λ n    W n u n − W n−1 u n   +   λ n − λ n−1     W n−1 u n−1   +  1 − λ n    W n−1 u n − W n−1 u n−1   + λ n B   W n u n − W n−1 u n   + λ n B   W n−1 u n − W n−1 u n−1   +   λ n − λ n−1     BW n−1 u n−1   ≤ 3   λ n − λ n−1   K +  1 − λ n + λ n B  ×    W n u n − W n−1 u n   +  1 − λ n + λ n B    W n−1 u n − W n−1 u n−1    . (13) From (4), since T N and U n−1,N−1 are nonexpansive,   W n u n − W n−1 u n   =   α nN T N U n,N−1 u n +  1 − α nN  u n − α n−1,N T N U n−1,N−1 u n −  1 − α n−1,N  u n   ≤   α nN − α n−1,N     u n   +   α nN T N U n,N−1 u n − α n−1,N T N U n−1,N−1 u n   ≤   α nN − α n−1,N     u n   +   α nN  T N U n,N−1 u n − T N U n−1,N−1 u n    +   α nN − α n−1,N     T N U n−1,N−1 u n   ≤   α nN − α n−1,N     u n   + α nN   U n,N−1 u n − U n−1,N−1 u n   +   α nN − α n−1,N   K ≤ 2K   α nN − α n−1,N   + α nN   U n,N−1 u n − U n−1,N−1 u n   . (14) Again, from (4),   U n,N−1 u n − U n−1,N−1 u n   =   α n,N−1 T N−1 U n,N−2 u n +  1 − α n,N−1  u n − α n−1,N−1 T N−1 U n−1,N−2 u n −  1 − α n−1,N−1 u n    ≤   α n,N−1 − α n−1,N−1     u n   +   α n,N−1 T N−1 U n,N−2 u n − α n−1,N−1 T N−1 U n−1,N−2 u n   ≤   α n,N−1 − α n−1,N−1     u n   + α n,N−1   T N−1 U n,N−2 u n − T N−1 U n−1,N−2 u n   +   α n,N−1 − α n−1,N−1   K ≤ 2K   α n,N−1 − α n−1,N−1   + α n,N−1   U n,N−2 u n − U n−1,N−2 u n   ≤ 2K   α n,N−1 − α n−1,N−1   +   U n,N−2 u n − U n−1,N−2 u n   . (15) B. E. Rhoades 139 Therefore,   U n,N−1 u n − U n−1,N−1 u n   ≤ 2K   α n,N−1 − α n−1,N−1   +2K   α n,N−2 − α n−1,N−2   +   U n,N−3 u n − U n−1,N−3 u n   . . . ≤ 2K N−1  i=2   α ni − α n−1,i   +   U n1 u n − U n−1,1 u n   =   α n1 T 1 u n +  1 − α n1  u n − α n−1,1 T 1 u n −  1 − α n−1,1  u n   +2K N−1  i=2   α ni − α n−1,i   ≤   α n1 − α n−1,1     u n   +   α n1 T 1 u n − α n−1,1 T 1 u n   +2K N−1  i=2   α ni − α n−1,i   ≤ 2K N−1  i=1   α ni − α n−1,i   . (16) Substituting (16)into(14),   W n u n − W n−1 u n   ≤ 2K   α nN − α n−1,N   +2α nN K N−1  i=1   α ni − α n−1,i   ≤ 2K N  i=1   α ni − α n−1,i   . (17) Using (17)in(13),   u n+1 − u n   ≤  1 − λ n  1 −B    u n − u n−1   +3K   λ n − λ n−1   +2  1 − λ n  1 −B  K N  i=1   α ni − α n−1,i   . (18) Thus, since 0 < 1− λ n (1 −B) < 1foralln,   u n+m+1 − u n+m   ≤ n+m  i=m  1 − λ i  1 −B    u i+1 − u i    +3K  n+m  i=m   λ i − λ i−1   +2K n+m  i=m N  j=1   α ij − α i−1, j    . (19) 140 Quadratic optimization From (iii), since the product diverges to zero, limsup n   u n+1 − u n   = limsup n   u n+m+1 − u m+n   ≤ 2K ∞  i=m   λ i − λ i−1   +2K ∞  i=m N  j=1   α ij − α i−1, j   . (20) Therefore, taking the limsup m of both sides and using (iv) and (v), limsup n   u n+1 − u n   = 0, (21) and (12)issatisfied. Now, for any nonexpansive self-map T of C u ∗ ,defineG t : C u ∗ → C u ∗ by G t (x) = tb +(1− t)TG t (x)+tBTG t (x) (22) for each t ∈ (0,1]. Using an argument similar to the proof of [8, Theorem 12.2, page 45], we will now show that if T has a fixed point, then, for each x in C u ∗ , the strong limit t→0 G t (x) exists and is a fixed point of T. Define y(t) = G t (x)andletw be a fixed point of T: y(t) − w = t(b − w)+(1− t)  Ty(t) − w  + tBTy(t). (23) Since T is nonexpansive,   y(t) − w   ≤ tb − w +(1− t)   Ty(t) − w   + tB   Ty(t)   ≤ tb − w +(1− t)   y(t) − w   + tB   Ty(t)   , t   y(t) − w   ≤ tb − w +tB   Ty(t) − w   + tBw, (24) or   y(t) − w   ≤b − w + B   y(t) − w   + Bw, (25) which, since B < 1, yields   y(t) − w   ≤ 1 1 −B  b − w + Bw  , (26) and y(t) remains bounded as t → 0. Also,   BTy(t)   <   Ty(t)   ≤   Ty(t) − Tw   + w≤   y(t) − w   + w, (27) and both BTy(t)andTy(t) remain bounded as t → 0. Hence,   y(t) − Ty(t)   = t   b − Ty(t)+BT y(t)   −→ 0ast −→ 0. (28) B. E. Rhoades 141 Define y n = y(t n )andlett n → 0. Let µ n be a Banach limit and f : C u ∗ → R + defined by f (z) = µ n    y n − z   2  . (29) Since f is continuous and convex, f (z) →∞as z→∞.SinceᏴ is reflexive, f attains it infimum over C u ∗ . Let M be the set of minimizers of f over C u ∗ .Ifu ∈ C u ∗ ,then f (Tu) = µ n    y n − Tu   2  = µ n    Ty n − Tu   2  ≤ µ n    y n − u   2  = f (u). (30) Therefore, M is invariant under T. Since it is also bounded, closed, and convex, it must contain a fixed point of T. Denote this fixed point by v.Then,  y n − Ty n , y n − v  =  y n − v, y n − v  +  v − Ty n , y n − v  =   y n − v   2 +  Tv− Ty n , y n − v  . (31) But    Tv− Ty n , y n − v    ≤   Tv− Ty n     y n − v   ≤   y n − v   2 , (32) so that  y n − Ty n , y n − v  ≥ 0. (33) Since y n = t n b +  1 − t n  Ty n + t n BTy n , y n − b =  1 − t n  Ty n − b  + t n BTy n =  1 − t n  Ty n − y n  +  1 − t n  y n − b  + t n BTy n , (34) thus, t  y n − b  =  1 − t n  Ty n − y n  + t n BTy n (35) or y n − b − Bv = 1 − t n t n  Ty n − y n  + BTy n − Bv. (36) Therefore, from (33),  y n − b − Bv, y n − v  = 1 − t n t n  Ty n − y n , y n − v  +  BTy n − Bv, y n − v  ≤  BTy n − Bv, y n − v  . (37) 142 Quadratic optimization For any z ∈ C u ∗ ,   y n − v   2 =   y n −  1 − t n  v − t n z + t n (z − v) − t n b − t n Bv + t n (b + Bv)   2 ≥   y n −  1 − t n  v − t n b − t n Bv   2 +2t n  z − v + b+ Bv, y n −  1 − t n  v − t n z − t n b − t n Bv  . (38) Let  > 0begiven.SinceᏴ is uniformly smooth, there exists a t 0 > 0suchthat,forall t n ≤ t 0 ,    z − v + b+ Bv,  y n − v  −  y n −  1 − t n  v − t n z − t n b − t n Bv    < . (39) Thus, from (38),  z − v + b+ Bv, y n − v  <  +  z − v + b+ Bv, y n −  1 − t n  v − t n z − t n b − t n B  <  + 1 2t    y n − v   2 −   y n −  1 − t n  v − t n b − t n Bv   2  . (40) Since the Gateaux derivative exists in Ᏼ,weobtain µ n  z − v + b+ Bv, y n − v  ≤ 0. (41) Setting z = θ in (41) and adding (37)and(41)yields µ n  y n − v, y n − v  ≤ µ n  BTy n − Bv, y n − v  (42) or µ n    y n − v   2  ≤ µ n    BTy n − Bv     y n − v    ≤ µ n  B   Ty n − Tv     y n − v    ≤ Bµ n    y n − v   2  . (43) Therefore, µ n y n − v 2 = 0. Thus, there is a subsequence of {y n } converging strongly to v. Suppose that lim k→∞ y(t n k ) = v 1 and lim k→∞ y(t m k ) = v 2 .From(37), we have  v 1 − b − Bv 2 ,v 1 − v 2  ≤  BTv 1 − Bv 2 ,v 1 − v 2  ,  v 2 − b − Bv 1 ,v 2 − v 1  ≤  BTv 2 − Bv 1 ,v 2 − v 1  . (44) Adding these inequalitites, we obtain  v 1 − BTv 1 + BTv 2 − v 2 ,v 1 − v 2  ≤ 0 (45) or  v 1 − v 2 ,v 1 − v 2  ≤  BTv 1 − BTv 2 ,v 1 − v 2  ; (46) B. E. Rhoades 143 that is,   v 1 − v 2   2 ≤   BTv 2 − BTv 1     v 1 − v 2   ≤B   Tv 2 − Tv 1     v 1 − v 2   ≤B   v 2 − v 1   2 , (47) which, since B < 1, implies that v 1 = v 2 , and thus lim y n = v. Now, setting z = θ in (41), we obtain µ n  b − (I − B)v, y n − v  ≤ 0 (48) or µ n  b − Av, y n − v  ≤ 0, (49) which, from (2), implies that v = u ∗ . Let u nk denote the unique element of C u ∗ such that u nk = 1 k b +  1 − 1 k  W n u nk + 1 k BW n u nk . (50) From what we have just proved, lim k u nk → u ∗ . Using (11),   u n+1 − W n+1 u n+1,k   =   λ n b +  1 − λ n + λ n B  W n u n − W n+1 u n+1,k   ≤ λ n   b − W n+1 u n+1,k   +  1 − λ n    W n u n − W n+1 u n+1,k   + λ n B   W n u n − W n+1 u n+1,k   + λ n   BW n+1 u n+1,k   < 3Kλ n +  1 − λ n + λ n B    W n u n − W n u nk   +   W n u nk − W n u n+1,k   +   W n u n+1,k − W n+1 u n+1,k    ≤ 3Kλ n +  1 − λ n + λ n B    u n − u nk   +   u nk − u n+1,k   +   W n u n+1,k − W n+1 u n+1,k    . (51) As in (17),   W n u n+1,k − W n+1 u n+1,k   ≤ 2K N  i=1   α n+1,i − α ni   . (52) From the definition of u nk , u nk = 1 k b +  1 − 1 k  W n u nk + 1 k BW n u nk , u n+1,k = 1 k b +  1 − 1 k  W n+1 u n+1,k + 1 k BW n+1 u n+1,k , u n+1,k − u nk =  1 − 1 k   W n+1 u n+1,k − W n u nk  + 1 k B  W n+1 u n+1,k − W n u nk  . (53) 144 Quadratic optimization Therefore, since W n+1 is nonexpansive,   u n+1,k − u nk   ≤  1 − 1 k + 1 k B    W n+1 u n+1,k − W n u nk   ≤  1 − 1 k + 1 k B     W n+1 u n+1,k − W n+1 u nk   +   W n+1 u nk − W n u nk    ≤  1 − 1 k + 1 k B     u n+1,k − u nk   +   W n+1 u nk − W n u nk    . (54) Thus, using (17),  1 −B  k   u n+1,k − u nk   ≤  k − 1+B  k 2K N  i=1   α n+1,i − α n,i   (55) or   u n+1,k − u nk   ≤  k − 1+B  1 −B 2K N  i=1   α n+1,i − α n,i   . (56) Substituting (56)and(52)into(51)yields   u n+1 − W n+1 u n+1,k   ≤ 3Kλ n +  1 − λ n + λ n B    u n − u nk   +  k 1 −B  2K N  i=1   α n+1,i − α n,i   . (57) Thus, using (iii) and (v), we have µ n    u n − W n u nk   2  = µ n    u n+1 − W n+1 u n+1,k   2  ≤ µ n    u n − u nk   2  . (58) From (53), u nk − u n = 1 k  b − u n  +  1 − 1 k   W n u nk − u n  + 1 k BW n u nk . (59) Hence,  1 − 1 k   u n − W n u nk  = u n − u nk − 1 k  u n − b  + 1 k BW n u nk , (60)  1 − 1 k  2   u n − W n u nk   2 ≥   u n − u nk   2 − 2 k  u n − b − BW n u nk ,u n − u nk  =  1 − 2 k    u n − u nk   2 − 2 k  u nk − b − BW n u nk ,u n − u nk  . (61) [...]... divergent sequences, Acta Math 80 (1948), 167– 190 I Yamada, N Ogura, Y Yamashita, and K Sakaniwa, Quadratic optimization of fixed points of nonexpansive mappings in Hilbert space, Numer Funct Anal Optim 19 (1998), no 1-2, 165–190 D C Youla, Mathematical theory of image restoration by the method of convex projections, Image Recovery: Theory and Applications (H Stark, ed.), Academic Press, Florida, 1987, pp 29–... recovery in a product space, Proceedings of the IEEE International Conference on Image Processing (Washington, DC, 1995), IEEE Computer Socitey Press, California, 1995, pp 2025–2028 P L Combettes and P Bondon, Adaptive linear filtering with convex constraints, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Detroit, Mich, 1995), Institute of Electrical and Electronics... Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J Math Anal Appl 202 (1996), no 1, 150–159 H H Bauschke and J M Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev 38 (1996), no 3, 367–426 P L Combettes, The foundations of set theoretic estimation, Proc IEEE 81 (1993), no 2, 182– 208 , Constrained image recovery in. .. Fixed points of nonexpanding maps, Bull Amer Math Soc 73 (1967), 957–961 A N Iusem and A R De Pierro, On the convergence of Han’s method for convex programming with quadratic objective, Math Program 52 (1991), no 2, Ser B, 265–284 P L Lions, Approximation de points fixes de contractions, C R Acad Sci Paris S´ r A- B 284 e (1977), no 21, A1 357 A1 359 (French) G G Lorentz, A contribution to the theory of divergent... Engineers, New Jersey, 1995, pp 1372– 1375 F Deutsch and H Hundal, The rate of convergence of Dykstra’s cyclic projections algorithm: the polyhedral case, Numer Funct Anal Optim 15 (1994), no 5-6, 537–565 K Goebel and S Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, vol 83, Marcel Dekker, New York, 1984 B Halpern, Fixed. .. Applications (H Stark, ed.), Academic Press, Florida, 1987, pp 29– 77 E Zeidler, Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990 B E Rhoades: Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA E-mail address: rhoades@indiana.edu ... Wn sn un − sn By induction, un − sn ≤ u0 − s0 n 1 − λk 1 − B (76) k=1 Therefore, using (iii), lim un − sn = 0 and un − u∗ ≤ un − sn + sn − u∗ so that limun = u∗ B E Rhoades 147 References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] S Atsushiba and W Takahashi, Strong convergence theorems for a finite family of nonexpansive mappings and applications, Indian J Math 41 (1999), no... (12), lim b − u∗ ,un+1 − u∗ − b − u∗ ,un − u∗ = 0 (65) We need the following result from [12] If A is a real number and {a1 ,a2 , } ∈ ∞ such that µn {an } ≤ a for all Banach limits µn and limsupn (an+1 − an ) ≤ 0, then limsupn an ≤ a Consequently, limsup b − u∗ ,un − u∗ ≤ 0 (66) Wn un − u∗ = Wn un − Wn u∗ ≤ un − u ∗ (67) n Since u∗ ∈ F, From (11), un+1 − u∗ = λn b − u∗ + 1 − λn Wn un − u∗ + λn BWn... Therefore, 1 − λn + λn B 2 Wn un − u∗ 2 ≥ un+1 − u∗ 2 − 2λn b − u∗ + Bu∗ ,un+1 − u∗ , (70) 146 Quadratic optimization which implies that un+1 − u∗ 2 2 ≤ 1 − λn + λn B Wn un − u∗ 2 + 2λn b − u∗ ,un+1 − u∗ + 2λn Bu∗ ,un+1 − u∗ (71) From (ii) and the boundedness of Cu∗ , there exists a positive integer N such that, for all n ≥ N, λn b − u∗ ,un+1 − u∗ ≤ , 4 λn Bu∗ ,un+1 − u∗ ≤ 4 (72) Therefore, for n... − u ∗ 2 (73) 2 1 − λi + λi B Using (iii), limsup un − u∗ n 2 = limsup un+m − u∗ n 2 ≤ 0 (74) Thus, {un } converges strongly to u∗ Now let u0 ∈ Ᏼ Let {sn } be another sequence generated by (11) for some s0 ∈ Cu∗ Then, by what we have just proved, lim sn = u∗ Since Wn is nonexpansive for each n, un+1 − sn+1 = λn b + 1 − λn A Wn un − λn b − 1 − λn A Wn sn ≤ 1 − λn A Wn un − Wn sn ≤ 1 − λn + λn B ≤ . QUADRATIC OPTIMIZATION OF FIXED POINTS FOR A FAMILY OF NONEXPANSIVE MAPPINGS IN HILBERT SPACE B. E. RHO ADES Received 10 September 2003 Given a finite family of nonexpansive self -mappings of a. paper, we establish their conclusion without the assumption of any type of com- mutativity. Finding an optimal point in the intersection F of the fixed point sets of a family of nonexpansive maps. u ∗ .  B. E. Rhoades 147 References [1] S. Atsushiba and W. Takahashi, Strong convergence theorems for a finite family of nonexpansive mappings and applications, Indian J. Math. 41 (1999), no.

Ngày đăng: 23/06/2014, 00:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN