Báo cáo hóa học: "AN EXISTENCE THEOREM FOR AN IMPLICIT INTEGRAL EQUATION WITH DISCONTINUOUS RIGHT-HAND SIDE" ppt

5 322 0
Báo cáo hóa học: "AN EXISTENCE THEOREM FOR AN IMPLICIT INTEGRAL EQUATION WITH DISCONTINUOUS RIGHT-HAND SIDE" ppt

Đang tải... (xem toàn văn)

Thông tin tài liệu

EXTENSIONS OF HARDY INEQUALITY JUNYONG ZHANG Received 2 May 2006; Revised 2 August 2006; Accepted 13 August 2006 We study extended Hardy inequalities using Littlewood-Paley theory and nonlinear esti- mates’ method in Besov spaces. Our results improve and extend the well-known results of Cazenave (2003). Copyright © 2006 Junyong Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the orig inal work is properly cited. 1. Introduction A remarkable result of Hardy-type inequality comes from the following proposition, the proofofwhichisgivenbyCazenave[2]. Proposition 1.1. Let 1  p<∞.Ifq<nis such that 0  q  p, then |u(·)| p /|·| q ∈ L 1 (R n ) for every u ∈ W 1,p (R n ).Furthermore,  R n   u(·)   p |·| q dx   p n − q  q u p−q L p ∇u q L p , (1.1) for every u ∈ W 1,p (R n ). It is easy to see that the proposition fails when s>1, where s = q/p. In this paper we are trying to find out what happens if s>1. We show that it does not only become true but obtains better estimates. The described result is stated and proved in Section 3. The method invoked is different from that by Cazenave in [2]; it relies on some Littlewood-Paley theor y and Besov spaces’ theory that are cited in Section 2. 2. Preliminaries In this section we introduce some equivalent definitions and norms for Besov space needed in this paper. The reader is referred to the well-known books of Runst and Sickel [5], Triebel [6], and Miao [4] for details. Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2006, Article ID 69379, Pages 1–5 DOI 10.1155/JIA/2006/69379 2 Extensions of Hardy inequality We first introduce the following equivalent nor ms for the homogeneous Besov spaces ˙ B s p,m : u ˙ B s p,m   |α|=[s]   +∞ 0 t −mσ sup |y|t    y ∂ α u   m p dt t  1/m , (2.1) where  y u  τ y u − u, τ y u(·) = u(· + y), ∂ α = ∂ α 1 1 ∂ α 2 2 ···∂ α n n , ∂ i = ∂ ∂x i , i = 1,2, ,n. (2.2) α = (α 1 ,α 2 , , α n )ands = [s]+σ with 0 <σ<1, namely, σ = s − [s], where [s] denotes the largest integer not larger than s. In the case m =∞,thenormu ˙ B s p, ∞ in the above definition should be modified as follows: u ˙ B s p, ∞   |α|=[s] sup t>0 t −σ sup |y|t    y ∂ α u   p , s ∈ R + . (2.3) We now introduce the Paley-Littlewood definition of Besov spaces. Let ϕ 0 ∈ C ∞ c (R n )with ϕ 0 (ξ) = ⎧ ⎨ ⎩ 1, |ξ|  1, 0, |ξ|  2, (2.4) be the real-valued bump function. It is easy to see that ϕ j (ξ) =  ϕ 0  2 − j ξ  , j ∈ Z,  ψ j (ξ) =  ϕ 0  2 − j ξ  −  ϕ 0  2 − j+1 ξ  , j ∈ Z, (2.5) are also real-valued radial bump functions satisfying that sup ξ∈R n 2 j|α|   ∂ α  ψ j (ξ)   < ∞, j ∈ Z, sup ξ∈R n 2 j|α|   ∂ α ϕ j (ξ)   < ∞, j ∈ Z. (2.6) We have the Littlewood-Paley decomposition: ϕ 0 (ξ)+ ∞  j=0  ψ j (ξ) = 1, ξ ∈ R n ,  j∈Z  ψ j (ξ) = 1, ξ ∈ R n \{0}, lim j→+∞ ϕ j (ξ) = 1, ξ ∈ R n . (2.7) Junyong Zhang 3 For convenience, we introduce the following notations:  j f = Ᏺ −1  ψ j Ᏺ f = ψ j ∗ f , j ∈ Z, S j f = Ᏺ −1 ϕ j Ᏺ f = ϕ j ∗ f , j ∈ Z. (2.8) Then we have the following Littlewood-Paley definition of Besov spaces and Triebel spaces: ˙ B s p,m = ⎧ ⎨ ⎩ f ∈ ᏿   R n  | f  ˙ B s p,m =   j∈Z 2 jsm    j f   m p  1/m =   j∈Z 2 jsm   ψ j ∗ f   m p  1/m < ∞ ⎫ ⎬ ⎭ , ˙ F s p,m = ⎧ ⎨ ⎩ f ∈ ᏿   R n  | f  ˙ F s p,m =        j∈Z 2 jsm    j f   m  1/m      p =        j∈Z 2 jsm   ψ j ∗ f   m  1/m      p < ∞ ⎫ ⎬ ⎭ , ˙ B s p, ∞ =  f ∈ ᏿   R n  | f  ˙ B s p, ∞ = sup j∈Z 2 js    j f   p = sup j∈Z 2 js   ψ j ∗ f   p < ∞  , ˙ F s p, ∞ =  f ∈ ᏿   R n  | f  ˙ F s p, ∞ =     sup j∈Z 2 js    j f       p =     sup j∈Z 2 js   ψ j ∗ f       p < ∞  . (2.9) Remark 2.1. We have the identities (equivalent quasinorms) L p = F 0 p,2 , ˙ H s = ˙ F s 2,2 = ˙ B s 2,2 . 3. Main result Theorem 3.1. Let 1  p<∞.If0  s<n/p, a constant C exits s uch that for any u ∈ ˙ B s p,1 (R n ),  R n   u(x)   p |x| sp dx  Cu p ˙ B s p,1 . (3.1) Remark 3.2. (i) If s = 0, the result will be more precise replacing ˙ B 0 p,1 by ˙ F 0 p,2 . (ii) Noting interpolation inequality in [1]byBerghandL ¨ ofstr ¨ om between ˙ H 0,p and ˙ H 1,p , the theorem implies the proposition when 0 <s<1. (iii) If s = 1, the result will be more precise replacing ˙ B 1 p,1 by ˙ F 1 p,2 = ˙ H 1,p . (iv) If p = 2, we have more precise proposition substituting ˙ F s 2,2 = ˙ B s 2,2 for ˙ B s 2,1 . (v) The Hardy-type inequality w ill be excellent substituting ˙ F s p,2 for ˙ B s p,1 , but it fails using this method, in fact we obtain this estimate:  R n   u(x)   p |x| sp dx  Cu p−1 ˙ F s p,2 u ˙ B s p,1 , (3.2) where ˙ F s p,2 is a Triebel space. 4 Extensions of Hardy inequality In order to prove the theorem, we need the following two lemmas, the first of which was easily proved using Littlewood-Paley theory in Lemari ´ e-Rieusset [3] and the other will be proved here. Lemma 3.3. Let s be in ]0,n[.Thenforanyp in [1, ∞], |·| −s ∈ ˙ B n/p−s p, ∞ . Lemma 3.4. Let 1  p<∞.If0  s<n/p, then u p ∈ ˙ B 0 q  ,1 for every u ∈ ˙ B s p,1 ,whereq  = q/(q − 1) and q = n/sp. Proof of Lemma 3.4. By equivalent definition and norms for Besov space, it is sufficient to establish that   u p   ˙ B 0 q  ,1  u p ˙ B s p,1 . (3.3) Hence F ˙ B 0 q  ,1   +∞ 0 sup |y|≤t    y F   q  dt t . (3.4) Let F(u) =|u(x)| p . Using Newton-Leibniz formula and inequality (|a|+|b|) p  2 p (|a| p + |b| p ), we deduce that   τ y F(u) − F(u)   =      1 0 dF  θτ y |u| +(1− θ)|u|       C    τ y u   p−1 + |u| p−1    τ y u − u   , (3.5) where C is a constant. By definition of  y and thanks to the H ¨ older inequality, we have that    y F   q   Cu p−1 (p −1)χ 1   τ y u − u   χ 2 , (3.6) where 1/χ 1 = (p − 1)(1/p− s/n)and1/χ 2 = 1/p− s/n. Note that ˙ B s p,1  R n  L (p−1)χ 1  R n  , ˙ B s p,1  R n  ˙ B 0 χ 2 ,1  R n  . (3.7) Thus we infer that   u p   ˙ B 0 q  ,1  u p−1 (p −1)χ 1 u ˙ B 0 χ 2 ,1  Cu p ˙ B s p,1 (3.8) implying the lemma.  Proof of Theorem 3.1. Let us define I s,p (u)   R n   u(x)   p |x| sp dx =  |·| −sp ,|u| p  . (3.9) Junyong Zhang 5 Using Littlewood-Paley decomposition, we can write I s,p (u) =  | j− j  |2   j |·| −sp , j  |u| p   C sup j    j |·| −sp   q  j  ∈Z    j  |u| p   q   C   |·| −sp   ˙ B 0 q, ∞   u p   ˙ B 0 q  ,1 , (3.10) where q = n/sp > 1. Lemma 3.3 claims that |·| −sp belongs to ˙ B 0 q, ∞ and Lemma 3.4 claims in particular that u p  ˙ B 0 q  ,1  u p ˙ B s p,1 .ThusI s,p (u)  Cu p ˙ B s p,1 , which implies the theorem.  Acknowledgment The author is grateful to the referees for their valuable suggestions. References [1] J.BerghandJ.L ¨ ofstr ¨ om, Interpolation Spaces. A n Introduction, Springer, Berlin, 1976. [2] T. Cazenave, Semilinear Schr ¨ odinger Equations, Courant Lecture Notes in Mathematics, vol. 10, American Mathematical Society, Rhode Island, 2003. [3] P. G. Lemari ´ e-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, Florida, 2002. [4] C. Miao, Harmonic Analysis and Application to Differential Equations, 2nd ed., Science Press, Beijing, 2004. [5] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, vol. 3, Walter de Gruyter, Berlin, 1996. [6] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathe- matical Library, vol. 18, North-Holland, Amsterdam, 1978. Junyong Zhang: The Graduate School of China Academy of Engineering Physics, P.O. Box 2101, Beijing 100088, China E-mail address: zhangjunyong111@sohu.com . equivalent definitions and norms for Besov space needed in this paper. The reader is referred to the well-known books of Runst and Sickel [5], Triebel [6], and Miao [4] for details. Hindawi Publishing. Mathematics, vol. 431, Chapman & Hall/CRC, Florida, 2002. [4] C. Miao, Harmonic Analysis and Application to Differential Equations, 2nd ed., Science Press, Beijing, 2004. [5] T. Runst and W. Sickel, Sobolev. s be in ]0,n[.Thenforanyp in [1, ∞], |·| −s ∈ ˙ B n/p−s p, ∞ . Lemma 3.4. Let 1  p<∞.If0  s<n/p, then u p ∈ ˙ B 0 q  ,1 for every u ∈ ˙ B s p,1 ,whereq  = q/(q − 1) and q = n/sp. Proof

Ngày đăng: 22/06/2014, 22:20

Từ khóa liên quan

Mục lục

  • 1. Introduction

  • 2. Preliminaries

  • 3. Main result

  • Acknowledgment

  • References

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan