1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo hóa học: "GEOMETRIC AND APPROXIMATION PROPERTIES OF SOME SINGULAR INTEGRALS IN THE UNIT DISK" doc

19 286 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 582,7 KB

Nội dung

GEOMETRIC AND APPROXIMATION PROPERTIES OF SOME SINGULAR INTEGRALS IN THE UNIT DISK GEORGE A. ANASTASSIOU AND SORIN G. GAL Received 23 January 2006; Revised 19 April 2006; Accepted 20 April 2006 The purpose of this paper is to prove several results in approximation by complex Pi- card, Poisson-Cauchy, and Gauss-Weierstrass singular integrals with Jackson-type rate, having the quality of preservation of some properties in geometric function theory, like the preservation of coefficients’ bounds, positive real part, bounded turn, starlikeness, and convexity. Also, some sufficient conditions for starlikeness and univalence of analytic functions are preserved. Copyright © 2006 G. A. Anastassiou and S. G. Gal. This is an open access article distrib- uted under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the orig i nal work is properly cited. 1. Introduction Let us consider the open unit disk D ={z ∈ C; |z| < 1} and A(D) ={f : D → C; f is an- alytic on D,continuouson D, f (0) = 0, f  (0) = 1}. Therefore, if f ∈ A(D), we have f (z) = z +  ∞ k=2 a k z k ,forallz ∈ D. For f ∈ A(D)andξ ∈ R, ξ>0, let us consider the complex singular integrals P ξ ( f )(z) = 1 2ξ  +∞ −∞ f  ze iu  e −|u|/ξ du, z ∈ D, Q ξ ( f )(z) = ξ π  π −π f  ze iu  u 2 + ξ 2 du, z ∈ D, Q ∗ ξ ( f )(z) = ξ π  +∞ −∞ f  ze −iu  u 2 + ξ 2 du, z ∈ D, R ξ ( f )(z) = 2ξ 3 π  +∞ −∞ f  ze iu   u 2 + ξ 2  2 du, z ∈ D, W ξ ( f )(z) = 1  πξ  π −π f  ze iu  e −u 2 /ξ du, z ∈ D, W ∗ ξ ( f )(z) = 1  πξ  +∞ −∞ f  ze −iu  e −u 2 /ξ du, z ∈ D. (1.1) Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2006, Article ID 17231, Pages 1–19 DOI 10.1155/JIA/2006/17231 2 Geometric and approximation properties Here P ξ ( f ) is said to be of Picard type, Q ξ ( f ), Q ∗ ξ ( f ), and R ξ ( f ) are said to be of Poisson- Cauchy t ype, and W ξ ( f )andW ∗ ξ ( f ) are said to be of Gauss-Weierstrass type. In the very recent papers [3–5], classes of convolution complex polynomials were in- troduced and their approximation properties regarding rates, global smoothness preser- vation properties, and some geometric properties like the preservation of coefficients’ bounds, positivity of real part, bounded turn, starlikeness, convexity, and univalence were proved. The aim of this paper is to obtain similar properties for the above-defined complex singular integrals. 2. Complex Picard integrals In this section, we study the properties of P ξ ( f )(z). Firstly, we present the approximation properties. Theorem 2.1. Let f ∈ A(D) and ξ ∈R, ξ>0. Then (i) P ξ ( f )(z) is continuous on D, analytic on D,andP ξ ( f )(0) =0; (ii) ω 1 (P ξ ( f ); δ) D ≤ ω 1 ( f ; δ) D ,forallδ ≥ 0,whereω 1 ( f ; δ) D = sup{|f (z 1 ) − f (z 2 )|; z 1 ,z 2 ∈ D, |z 1 −z 2 |≤δ}; (iii) |P ξ ( f )(z) − f (z)|≤Cω 2 ( f ; ξ) ∂D ,forallz ∈ D, ξ>0,where ω 2 ( f ; ξ) ∂D = sup    f  e i(x+u)  − 2 f  e iu  + f  e i(x−u)    ; x ∈ R, |u|≤ξ  . (2.1) Proof. (i) Let z 0 ,z n ∈ D be with lim n→∞ z n = z 0 .Weget   P ξ ( f )  z n  − P ξ ( f )  z 0    ≤ 1 2ξ  +∞ −∞   f  z n e iu  − f  z 0 e iu    e −|u|/ξ du ≤ 1 2ξ  +∞ −∞ ω 1  f ;   z n e iu −z 0 e iu    D e −|u|/ξ du = 1 2ξ  +∞ −∞ ω 1  f ;   z n −z 0    D e −|u|/ξ du = ω 1  f ;   z n −z 0    D . (2.2) Passing to limit with n →∞, it follows that P ξ ( f )(z)iscontinuousatz 0 ∈ D, since f is continuous on D.ItremainstoprovethatP ξ ( f )(z)isanalyticonD.For f ∈ A(D), we can write f (z) =  ∞ k=0 a k z k , z ∈ D.Forfixedz ∈ D,weget f (ze iu ) =  ∞ k=0 a k e iku z k and since |a k e iku |=|a k |,forallu ∈ R, and the series  ∞ k=0 a k z k is absolutely convergent, it follows that the series  ∞ k=0 a k e iku z k is uniformly convergent with respect to u ∈ R. This immediately implies that the series can be integrated term by term, that is, P ξ ( f )(z) = 1 2ξ ∞  k=0 a k z k   ∞ −∞ e iku e −|u|/ξ du  . (2.3) Also, since a 0 = 0, we get P ξ ( f )(0) =0. G. A. Anastassiou and S. G. Gal 3 (ii) Let z 1 ,z 2 ∈ D, |z 1 −z 2 |≤δ.Weget   P ξ ( f )  z 1  − P ξ ( f )  z 2    ≤ 1 2ξ  +∞ −∞   f  z 1 e iu  − f  z 2 e iu    e −|u|/ξ du ≤ ω 1  f ;   z 1 −z 2    D ≤ ω 1 ( f ; δ) D . (2.4) Passing to sup with |z 1 −z 2 | <δ, the desired inequality fol lows. (iii) We have P ξ ( f )(z) − f (z) = 1 2ξ  +∞ −∞  f  ze iu  − f (z)  e −|u|/ξ du = 1 2ξ  ∞ 0  f  ze iu  − 2 f (z)+ f  ze −iu  e −u/ξ du, (2.5) which implies   P ξ ( f )(z) − f (z)   ≤ 1 2ξ  ∞ 0   f  ze iu  − 2 f (z)+ f  ze −iu    e −u/ξ du, (2.6) for all z ∈ D. By the maximum modulus principle (see, e.g ., [3, page 421]), we can take |z|=1, case when   f  ze iu  − 2 f (z)+ f  ze −iu    ≤ ω 2 ( f ; u) ∂D , (2.7) which implies that for all z ∈ D we have   P ξ ( f )(z) − f (z)   ≤ 1 2ξ  +∞ 0 ω 2 ( f ; u) ∂D e −u/ξ du = 1 2ξ  +∞ 0 ω 2  f ; u ξ ·ξ  ∂D e −u/ξ du ≤  1 2ξ  +∞ 0  1+ u ξ  2 e −u/ξ du  ω 2 ( f ; ξ) ∂D ≤ Cω 2 ( f ; ξ) ∂D (2.8) (for the last inequalities, see, e.g., [2, proof of Theorem 2.1(i), page 252]).  Remark 2.2. Theorem 2.1(ii) and (iii) remain valid for f only continuous on D. In what follows, we present some geometric properties of P ξ ( f )(z). Theorem 2.3. If f (z) =  ∞ k=0 a k z k ,forallz ∈ D, then P ξ ( f )(z) = ∞  k=0 a k 1+ξ 2 k 2 z k , (2.9) 4 Geometric and approximation properties for all z ∈ D,thatis,if f (0) = 0, then P ξ ( f )(0) = 0 and if f  (0) = 1, then P  ξ ( f )(0) = 1/(1 + ξ 2 ) =1,forallξ>0.Also,   a k  P ξ ( f )    =     a k ( f ) 1+ξ 2 k 2     ≤   a k ( f )   , ∀k = 0,1, (2.10) Proof. In the proof of Theorem 2.1(i), we can write P ξ ( f )(z) = ∞  k=0 a k z k  1 2ξ  +∞ −∞ e iku e −|u|/ξ du  , ∀z ∈ D. (2.11) But 1 2ξ  +∞ −∞ e iku e −|u|/ξ du = 1 2ξ  +∞ −∞ cos(ku) ·e −|u|/ξ du = 1 ξ  +∞ 0 cos(ku)e −u/ξ du = 1 ξ · e −u/ξ  − (1/ξ)cos(ku)+k sin(ku)  1/ξ 2 + k 2     ∞ 0 = 1 1+k 2 ξ 2 , (2.12) which proves the theorem.  Now, recall that a function f ∈ A(D) is starlike if it is univalent and f (D)isastarlike plane domain with respect to 0, and is convex if it is univalent on D and f (D)isaconvex plane domain. Also, let us introduce the following classes of analytic functions: S 1 =  f ∈ A(D); f (z) = z + ∞  k=2 a k z k , ∞  k=2 k   a k   ≤ 1  , S 2 =  f analytic in D, f (z) = ∞  k=1 a k z k , z ∈D,   a 1   ≥ ∞  k=2   a k    , S 3 =  f ∈ A(D);   f  (z)   ≤ 1, ∀z ∈D  , ᏼ =  f : D −→ C; f is analytic on D, f (0) =1, Re  f (z)  > 0, ∀z ∈ D  , ᏾ =  f ∈ A(D); Re  f  (z)  > 0, ∀z ∈ D  , S M =  f ∈ A(D);   f  (z)   <M, ∀z ∈ D  , M>1. (2.13) According to, for example, [6, Exercise 4.9.1, page 97], if f ∈ S 1 ,then|zf  (z)/f(z) −1   < 1, for all z ∈ D, and therefore f is starlike (and univalent) on D. According to [1,page22],if f ∈ S 2 ,then f is starlike (and univalent) on D. By [7], if f ∈ S 3 ,then f is starlike (and univalent) on D. Also, it is well known that ᏾ is the class of functions with bounded turn (i.e., |arg f  (z)| <π/2, for all z ∈ D) and that f ∈ ᏾ implies the univalency of f on D. According to, for example, [6, Exercise 5.4.1, page 111], f ∈ S M implies that f is uni- valent in {z ∈ C; |z|< 1/M}. G. A. Anastassiou and S. G. Gal 5 We present the following. Theorem 2.4. For all ξ>0, P ξ  S 2  ⊂ S 2 , P ξ (ᏼ) ⊂ᏼ. (2.14) Proof. By Theorem 2.3,for f (z) =  ∞ k=1 a k z k ∈ S 2 ,weget ∞  k=2     a k 1+ξ 2 k 2     = ∞  k=2   a k   1+ξ 2 · 1+ξ 2 1+ξ 2 k 2 ≤ 1 1+ξ 2 ∞  k=2   a k   ≤   a 1   1+ξ 2 (2.15) and since P ξ ( f )(z) =  ∞ k=0 (a k /(1 + ξ 2 k 2 ))z k , it follows that P ξ ( f ) ∈S 2 . Let f (z) =  ∞ k=0 a k z k ∈ ᏼ, that is, a 0 =1andif f (z)=U(x, y)+iV(x, y), z =x + iy∈D, then U(x, y) > 0, for all z = x + iy ∈ D. We get P ξ ( f )(0) =a 0 = 1and P ξ ( f )(z) = 1 2ξ  +∞ −∞ U  r cos(u + t),r sin(u + t)  e −|u|/ξ du + i · 1 2ξ  +∞ −∞ V  r cos(u + t),r sin(u + t)  e −|u|/ξ du, ∀z = re it ∈ D, (2.16) which immediately implies Re  P ξ ( f )(z)  = 1 2ξ  +∞ −∞ U  r cos(u + t),r sin(u + t)  e −|u|/ξ du > 0, (2.17) that is, P ξ ( f ) ∈ᏼ.  Theorem 2.5. For all ξ>0, (1 + ξ 2 )P ξ (S 1 ) ⊂ S 1 , (1 + ξ 2 )P ξ (S M ) ⊂ S M(1+ξ 2 ) ,and(1 + ξ 2 )P ξ (S 3,ξ ) ⊂S 3 ,where S 3,ξ =  f ∈ S 3 ;   f  (z)   ≤ 1 1+ξ 2 , ∀z ∈D  ⊂ S 3 . (2.18) Proof. Let f ∈ S 1 .ByTheorem 2.3,weobtain  1+ξ 2  P ξ ( f )(z) = ∞  k=1 a k 1+ξ 2 1+ξ 2 k 2 z k , (2.19) if f (z) =  ∞ k=1 a k z k ∈ S 1 . It follows that (1 + ξ 2 )P  ξ ( f )(0) =a 1 = 1, that is,  1+ξ 2  P ξ ( f )(z) = z + ∞  k=2 a k · 1+ξ 2 1+ξ 2 k 2 z k , ∞  k=2 k   a k   1+ξ 2 1+ξ 2 k 2 ≤ ∞  k=2 k   a k   ≤ 1, (2.20) that is, (1 + ξ 2 )P ξ ( f ) ∈S 1 . 6 Geometric and approximation properties Let f ∈ S M .Weget    1+ξ 2  P  ξ ( f )(z)   =  1+ξ 2  ·     1 2ξ  +∞ −∞ f   ze iu  e iu e −|u|/ξ du     ≤  1+ξ 2  1 2ξ  +∞ −∞   f   ze iu    e −|u|/ξ du < M  1+ξ 2  , z ∈ D. (2.21) Also, P ξ ( f )(0) =0and(1+ξ 2 )P  ξ ( f )(0) =1, which implies that (1 + ξ 2 )P ξ ( f ) ∈S M(1+ξ 2 ) . Now, let f ∈ S 3,ξ .Wehave  1+ξ 2  P  ξ ( f )(z) =  1+ξ 2  · 1 2ξ  +∞ −∞ f   ze iu  e 2iu e −|u|/ξ du, (2.22) which implies    1+ξ 2  P ξ  ( f )(z)   ≤  1+ξ 2  1 2ξ ·  +∞ −∞   f   ze iu    e −|u|/ξ du ≤ 1, (2.23) that is, (1 + ξ 2 )P ξ ( f ) ∈S 3 .  Remarks 2.6. (1) Since the constant (1 + ξ 2 ) does not influence the geometric properties of P ξ ( f ), it follows that for all ξ>0wehavethefollowing: (i) if f ∈ S 1 ,thenP ξ ( f ) is starlike (and univalent) in D; (ii) if f ∈ S M ,thenP ξ ( f ) is univalent in {z ∈ C; |z| < 1/M(1 + ξ 2 )}; (iii) if f ∈ S 3,ξ ⊂ S 3 ,thenP ξ ( f ) is starlike and univalent in D. (2) Since P  ξ ( f )(z) = 1 2ξ  +∞ −∞ f   ze iu  e iu e −|u|/ξ du, (2.24) it is obvious that the condition Re[ f  (z)] > 0, for all z ∈ D, does not imply Re[P  ξ ( f )(z)] > 0onD. In this case, we may follow the idea in, for example, [5, Theorem 3.4] to construct another singular integral as follows: for f ∈ A(D), we define S ξ ( f )(z) =  z 0 Q n (u)du with Q n (z) = 1 2ξ  +∞ −∞ f   ze it  e −|t|/ξ dt. (2.25) Then,itisaneasytasktoshowthat(1+ξ 2 )S ξ (᏾) ⊂ ᏾,forallξ>0, and the following estimate holds:   S ξ ( f )(z) − f (z)   ≤ Cω 2 ( f  ; ξ) ∂D , ∀z ∈ D, ξ>0. (2.26) Since inf {1/(1 + ξ 2 ); ξ ∈ [0,1]}=1/2, by Theorem 2.5, the following is immediate. Corollary 2.7. P ξ (S 3,1/2 ) ⊂S 3 and f ∈ S M implies that P ξ ( f ) is univalent in {z ∈ C; |z| < 1/2M },forallξ ∈ [0,1]. G. A. Anastassiou and S. G. Gal 7 Remark 2.8. Of course, if we consider, for example, ξ ∈ [0,1/2], then inf{1/(1 + ξ 2 ); x ∈ [0,1/2]}=4/5andbyTheorem 2.5 we get P ξ (S 3 ,4/5) ⊂ S 3 and f ∈S M implies that P ξ ( f ) is univalent in {z ∈ C; |z|< 4/5M},forallξ ∈ [0,1/2]. Obviously S 3,1/2 ⊂ S 3,5/4 and {z ∈ C; |z|< 1/2M}⊂{z ∈C; |z| < 4/5M}. 3. Complex Poisson-Cauchy integrals In this section, we study the properties of Q ξ ( f ), Q ∗ ξ ( f ), and R ξ ( f ). Firstly, we present the approximation properties. Theorem 3.1. (i) If f (z) =  ∞ k=0 a k z k is analytic in D, then for all ξ>0, Q ξ ( f )(z), Q ∗ ξ ( f )(z),andR ξ ( f )(z) are analytic in D andthefollowingholdinD: Q ξ ( f )(z) = ∞  k=0 a k b k (ξ)z k , with b k (ξ) = 2ξ π  π 0 cos ku u 2 + ξ 2 du, Q ∗ ξ ( f )(z) = ∞  k=0 a k b ∗ k (ξ)z k , with b ∗ k (ξ) = 2ξ π  +∞ 0 cos ku u 2 + ξ 2 du, R ξ ( f )(z) = ∞  k=0 a k c k (ξ)z k , with c k (ξ) = 4ξ 3 π  ∞ 0 cos ku  u 2 + ξ 2  2 du. (3.1) Also, if f is continuous on D, then Q ξ ( f ), Q ∗ ξ ( f ),andR ξ ( f ) are also conti nuous on D. Here b 1 (ξ) > 0,forallξ>0, b ∗ 1 (ξ) = e −ξ , c 1 (ξ) = (1 + ξ)e −ξ ,forallξ>0. (ii)   Q ξ ( f )(z) − f (z)   ≤ C ω 2 ( f ; ξ) ∂D ξ , ∀x ∈ D, ξ ∈ (0,1],   Q ∗ ξ ( f )(z) − f (z)   ≤ C ω 2 ( f ; ξ) ∂D ξ , ∀z ∈ D, ξ ∈ (0,1],   R ξ ( f )(z) − f (z)   ≤ Cω 1 ( f ; ξ) D , ∀z ∈ D, ξ ∈ (0,1]. (3.2) (iii) ω 1  Q ∗ ξ ( f ); δ  D ≤ ω 1 ( f ; δ) D , ∀ξ ∈ (0,1], δ>0, ω 1  Q ξ ( f ); δ  D ≤ ω 1 ( f ; δ) D , ∀ξ ∈ (0,1], ∀δ>0, ω 1  R ξ ( f ); δ  D ≤ ω 1 ( f ; δ) D , ∀ξ ∈ (0,1], δ>0. (3.3) Proof. (i) Let f (z) =  ∞ k=0 a k z k , z ∈ D. Reasoning as for the case of Picard-type integ ral in Theorem 2.1(i), we obtain Q ξ ( f )(z) = ∞  k=0 a k z k  ξ π  π −π e iku · 1 u 2 + ξ 2 du  , (3.4) 8 Geometric and approximation properties where ξ π  π −π e iku · 1 u 2 + ξ 2 du = ξ π  π −π cos ku u 2 + ξ 2 du+ i ξ π  π −π sinku u 2 + ξ 2 du = 2ξ π  π 0 cos ku u 2 + ξ 2 du = b k (ξ), Q ∗ ξ ( f )(z) = ∞  k=0 a k z k  ξ π  +∞ −∞ e iku · 1 u 2 + ξ 2 du  , (3.5) where ξ π  +∞ −∞ e iku · 1 u 2 + ξ 2 du = 2ξ π  ∞ 0 cos ku u 2 + ξ 2 du = b ∗ k (ξ), R ξ ( f )(z) = ∞  k=0 a k z k  2ξ 3 π  +∞ −∞ e iku  u 2 + ξ 2  2 du  , (3.6) where 2ξ 3 π  +∞ −∞ e iku · 1  u 2 + ξ 2  2 du = 4ξ 3 π  ∞ 0 cos ku  u 2 + ξ 2  2 du. (3.7) The continuity of f on D implies the continuity of Q ξ ( f ), Q ∗ ξ ( f ), and R ξ ( f )asinthe proof of Theorem 2.1(i) for P ξ ( f ). It remains to show that b 1 (ξ) > 0andb ∗ 1 (ξ) = e −ξ , c 1 (ξ) = (1 + ξ)e −ξ ,forallξ>0. Indeed, firstly we have b 1 (ξ) = 2ξ π  π 0 cos u u 2 + ξ 2 du = 2ξ π   π/2 0 cos u u 2 + ξ 2 du+  π π/2 cos u u 2 + ξ 2 du  = 2ξ π   π/2 0 cos u u 2 + ξ 2 du−  π/2 0 sinu (u + π/2) 2 + ξ 2 du  > 2ξ π  π/2 0 cos u−sinu u 2 + ξ 2 du = 2ξ π   π/4 0 cos u−sinu u 2 + ξ 2 du+  π/2 π/4 cos u−sinu u 2 + ξ 2 du  := 2ξ π  I 1 + I 2  . (3.8) Here 0 <I 1 =  π/4 0 cos u−sinu u 2 + ξ 2 du >  π/4 0 cos u−sinu  π 2 /16  + ξ 2 du = 16 π 2 +16ξ 2 [sinu +cosu] π/4 0 = 16( √ 2 −1) π 2 +16ξ 2 . (3.9) G. A. Anastassiou and S. G. Gal 9 Also, I 2 < 0and   I 2   =− I 2 =  π/2 π/4 sinu −cosu u 2 + ξ 2 du ≤ 1  π 2 /16  + ξ 2 ·  π/2 π/4 [sinu −cosu]du = 16 π 2 +16ξ 2 [−cos u−sinu] π/2 π/4 = 16( √ 2 −1) π 2 +16ξ 2 , (3.10) which implies I 1 + I 2 ≥ 0. Therefore, it follows that b 1 (ξ) > (2ξ/π)[I 1 + I 2 ] ≥ 0, for all ξ>0. Now let b ∗ 1 (ξ) = 2ξ π  ∞ 0 cos u u 2 + ξ 2 du =  by v = u ξ  = 2 π ·  ∞ 0 cos(uξ) u 2 +1 du. (3.11) Applying now the classical residue theorem to f (z) = e iz /(z 2 + 1), it is immediate that  ∞ 0 (cos(uξ)/(u 2 +1))du =(π/2)e −ξ , which implies b ∗ 1 (ξ) = (2/π) ·(π/2)e −ξ = e −ξ ,forall ξ>0. For c 1 (ξ)=(4ξ 3 /π) ·  ∞ 0 (cosu/(u 2 + ξ 2 ) 2 )du, applying the residue theorem to f (z)= e iz /(z 2 + ξ 2 ) 2 , we immediately get  ∞ 0 cos u  u 2 + ξ 2  2 du = π 4ξ 3 (1 + ξ)e −ξ , (3.12) that is, c 1 (ξ) = (1 + ξ)e −ξ ,forallξ>0. (ii) We can write Q ξ ( f )(z) − f (z) = ξ π  π 0 f  ze iu  − 2 f (z)+ f  ze −iu  u 2 + ξ 2 du− f (z)E(ξ), (3.13) where   E(ξ)   = E(ξ) =1 − 2ξ π  π 0 du u 2 + ξ 2 = 1 − 2 π arctg π ξ ≤ 2 π 2 ξ (3.14) (for the last estimate |E(ξ)|≤(2/π 2 )ξ, see, e.g., [2, page 257]). Passing to modulus, it follows that   Q ξ ( f )(z) − f (z)   ≤ ξ π  π 0   f  ze iu  − 2 f (z)+ f  ze −iu    u 2 + ξ 2 du+ f  D   E(ξ)   ≤ ξ π  π 0 ω 2 ( f ; u) ∂D u 2 + ξ 2 du+ f  D ·   E(ξ)   ≤ C ξ π ·ω 2 ( f ; ξ) ∂D ·  π 0  1+ u ξ  2 1 u 2 + ξ 2 du. (3.15) Reasoning as in the proof of Theorem 3.1 [2, pages 257-258], we arrive at the desired estimate. For Q ∗ ξ ( f )(z), we have Q ∗ ξ ( f )(z) − f (z) = ξ π  ∞ 0  f  ze iu  − 2 f (z)+ f  ze −iu  u 2 + ξ 2 du, (3.16) 10 Geometric and approximation properties which implies   Q ∗ ξ ( f )(z) − f (z)   ≤ ξ π  ∞ 0   f  ze iu  − 2 f (z)+ f  ze −iu    u 2 + ξ 2 du ≤ C ξ π  ∞ 0 ω 2 ( f ; u) ∂D u 2 + ξ 2 du = C ξ π  ∞ 0 ω 2  f ;(u/ξ)·ξ  ∂D u 2 + ξ 2 du ≤ Cω 2 ( f ; ξ) ∂D · ξ π  ∞ 0  1+ u ξ  2 · 1 u 2 + ξ 2 du ≤ C ω 2 ( f ; ξ) ∂D ξ . (3.17) For R ξ ( f )(z), we obtain   R ξ ( f )(z) − f (z)   ≤ 2ξ 3 π  +∞ −∞   f  ze iu  − f (z)    u 2 + ξ 2  2 du ≤ 2ξ 3 π  +∞ −∞ ω 1  f ; |z|·   e iu −1    D  u 2 + ξ 2  2 du ≤ C 2ξ 3 π  +∞ −∞ ω 1  f ; |u|  D  u 2 + ξ 2  2 du ≤ C 2ξ 3 π  ∞ 0 ω 1  f ; u ξ ·ξ  D · 1  u 2 + ξ 2  2 du ≤ Cω 1 ( f ; ξ) D 2ξ 3 π  ∞ 0  1+ u ξ  · 1  u 2 + ξ 2  2 du = Cω 1 ( f ; ξ) D  1+ 2ξ 2 π  ∞ 0 u  u 2 + ξ 2  2 du  , (3.18) where 2ξ 2 π  ∞ 0 udu  u 2 + ξ 2  2 = 2ξ 2 π · 1 2  ∞ ξ 2 dv v 2 = ξ 2 π ·  − 1 v      ∞ ξ 2 = 1 π , (3.19) which proves the estimate for R ξ ( f )(z)too. (iii) Let z 1 ,z 2 ∈ D be with |z 1 −z 2 |≤δ.Weget   Q ∗ ξ ( f )  z 1  − Q ∗ ξ ( f )  z 2    ≤ ξ π  +∞ −∞   f  z 1 e iu  − f  z 2 e iu    u 2 + ξ 2 du ≤ ω 1  f ;   z 1 −z 2    D ξ π  +∞ −∞ du u 2 + ξ 2 ≤ ω 1 ( f ; δ) D , (3.20) where from passing to supremum after z 1 , z 2 it follows that ω 1 (Q ∗ ξ ( f ); δ) D ≤ ω 1 ( f ; δ) D . [...]... e e , Convolution-type integral operators in complex approximation, Computational Methods [3] and Function Theory 1 (2001), no 2, 417–432 , On the Beatson convolution operators in the unit disk, Journal of Analysis 10 (2002), [4] 101–106 , Geometric and approximate properties of convolution polynomials in the unit disk, Bul[5] letin of the Institute of Mathematics Academia Sinica 1 (2006), no 2, 307–336... Department of Mathematical Sciences, University of Memphis, Tenn, USA G A Anastassiou and S G Gal 19 References [1] J W Alexander, Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics Second Series 17 (1915), no 1, 12–22 [2] S G Gal, Degree of approximation of continuous functions by some singular integrals, Revue d’Analyse Num´ rique et de Th´ orie de l Approximation. .. reasoning with those in [8, Lemma 5 and Corollary 5, page 321], it follows that Wξ ( f )(z) preserves the starlikeness of f (z) (with respect to origin) too (iii) The proofs are similar to the proofs in Theorem 3.2(iii), which proves Theorem 4.2 too Remarks 4.3 (1) From the results presented above, it follows that Wξ ( f )(z) has the best preservation property among the classes of complex singular integrals. .. the theorem Concerning the geometric properties of complex Gauss-Weierstrass singular integrals, we present the following Theorem 4.2 (i) If f (z) = Wξ ( f )(z) and Wξ∗ ( f )(z), then ∞ k k =0 a k z , z ∈ D, and Tξ ( f )(z) = Ak ≤ ak , ∞ k k=0 Ak z ∀k = 0,1, is any from (4.20) (ii) If f (z) = ∞ 1 ak zk , z ∈ D, is univalent in D and f (D) is convex, then for any ξ > 0, k= Wξ ( f )(z) is univalent in. .. −∞ cos(ku) + isin(ku) e−u /ξ du = 2 ∞ (4.6) ∗ ak dk (ξ)zk , k =0 where ∗ dk (ξ) = 1 +∞ πξ −∞ cos(ku)e−u /ξ du 2 (4.7) The reasonings in the case of Wξ ( f )(z) are similar The proof of continuity on D of Wξ ( f ) and Wξ∗ ( f ) is similar to that for Pξ ( f ) in the proof of Theorem 2.1(i) ∗ It remains to prove that d1 (ξ) > 0, for all ξ > 0, and that d1 (ξ) = (1/π)e−ξ/4 , for all ξ > 0 Indeed, firstly... applying now Theorems 4.1(i) and 4.2(iii) ∗ to Wξ ( f )(z), we immediately get the following Corollary 4.4 If f ∈ S3,1/πe1/4 , then Wξ∗ ( f ) ∈ S3 , for all ξ ∈ (0,1], and if f ∈ SM (M > 1), then Wξ∗ ( f ) is univalent in {z ∈ C; |z| < 1/πMe1/4 }, for all ξ ∈ (0,1] Acknowledgment This paper was written during the 2005 Spring Semester when the second author was a Visiting Professor at the Department of. .. the complex integrals Wξ ( f )(z) and Wξ∗ ( f )(z) Concerning the approximation properties, we present the following Theorem 4.1 (i) If f (z) = ∞ 0 ak zk is analytic in D, then for all ξ > 0, Wξ ( f )(z) and k= Wξ∗ ( f )(z) are analytic in D and the following holds on D: ∞ ak dk (ξ)zk , Wξ ( f )(z) = k =0 (4.1) 14 Geometric and approximation properties with 1 dk (ξ) = · πξ π e−u /ξ coskudu, 2 −π (4.2)... univalent in {|z| < B/M }, for all ξ ∈ (0,1] Therefore it remains to calculate B, to check if B > 0, problems which are left to the reader as open questions ∗ Now, since inf {|b1 (ξ)|; ξ ∈ (0,1]} = inf {e−ξ ; ξ ∈ (0,1]} = 1/e and inf {|c1 (ξ)|; ξ ∈ −ξ (0,1]} = inf {(1 + ξ)e ; ξ ∈ (0,1]} = 2/e (since h(ξ) = (1 + ξ)e−ξ is decreasing on [0,1]), from Theorems 3.1(i) and 3.2(iii), we immediately get the following... , then Qξ ( f ) ∈ S3 , for all ξ ∈ (0,1], and if f ∈ SM (M > 1), ∗ then Qξ ( f ) is univalent in {z ∈ C; |z| < 1/eM }, for all ξ ∈ (0,1] (ii) If f ∈ S3,2/e , then Rξ ( f ) ∈ S3 , for all ξ ∈ (0,1], and if f ∈ SM , then Rξ ( f ) is univalent in {|z| < 2/eM }, for all ξ ∈ (0,1] 4 Complex Gauss-Weierstrass integrals In this section, we study the complex integrals Wξ ( f )(z) and Wξ∗ ( f )(z) Concerning... periodicity on the whole R, such that the extension, denoted by h(u), is continuous on R It is easy to check that log |h (u)| is concave in each interval [kπ,(k + 1)π], h (u) = 0 if and only if u = 2kπ, k ∈ Z, and in uk = kπ, k ∈ Z, h takes its minimum and maximum values Then, applying [9, Theorem, page 130], we get that h is PMP as in [9], which implies that Wξ ( f ) preserves the convexity of f Also, . (4.7) The reasonings in the case of W ξ ( f )(z) are similar. The proof of continuity on D of W ξ ( f ) and W ∗ ξ ( f ) i s similar to that for P ξ ( f )intheproofofTheorem 2.1(i). It remains to. complex singular integrals. 2. Complex Picard integrals In this section, we study the properties of P ξ ( f )(z). Firstly, we present the approximation properties. Theorem 2.1. Let f ∈ A(D) and ξ. GEOMETRIC AND APPROXIMATION PROPERTIES OF SOME SINGULAR INTEGRALS IN THE UNIT DISK GEORGE A. ANASTASSIOU AND SORIN G. GAL Received 23 January 2006; Revised 19 April 2006; Accepted 20 April 2006 The

Ngày đăng: 22/06/2014, 21:20