Hindawi Publishing Corporation Fixed Point Theory and Applications Volume 2007, Article ID 64363, 12 pages doi:10.1155/2007/64363 Research Article Convergence Theorem for Equilibrium Problems and Fixed Point Problems of Infinite Family of Nonexpansive Mappings Yonghong Yao, Yeong-Cheng Liou, and Jen-Chih Yao Received 17 March 2007; Accepted 20 August 2007 Recommended by Billy E. Rhoades We introduce an iterative scheme for finding a common element of the set of solutions of an equilibrium problem and the set of common fixed points of infinite nonexpan- sive mappings in a Hilbert space. We prove a strong-convergence theorem under mild assumptions on parameters. Copyright © 2007 Yong hong Yao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction Let H be a real Hilbert space and let C be a nonempty closed convex subset of H.Let h : C × C→R be an equilibr ium bifunction, that is, h(u,u) = 0foreveryu ∈ C.Thenone can define the equilibrium problem that is to find an element u ∈ C such that EP(h):h(u,v) ≥ 0 ∀v ∈ C. (1.1) Denote the set of solutions of EP(h)bySEP(h). This problem contains fixed point problems, optimization problems, variational inequality problems, and Nash equilibrium problems as special cases, see [1]. Some methods have been proposed to solve the equi- librium problem, please consult [2–4]. Recently, Combettes and Hirstoaga [2] introduced an iterative scheme of finding the best approximation to the initial data when SEP(h) =∅ and proved a strong convergence theorem. Motivated by the idea of Combettes and Hirstoaga, very recently, Takahashi and Takahashi [4] introduced a new iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. Their results extend and 2 Fixed Point Theory and Applications improve the corresponding results announced by Combettes and Hirstoaga [2], Moudafi [5], Wittmann [6], and Tada and Takahashi [7]. In this paper, motivated and inspired by Combettes and Hirstoaga [2] and Takahashi and Takahashi [4], we introduce an iterative scheme for finding a common element of the set of solutions of EP(h) and the set of fixed points of infinite nonexpansive mappings in a Hilbert space. We obtain a strong convergence theorem which improves and extends the corresponding results of [2, 4]. 2. Preliminaries Let H be a real Hilbert space with inner product ·,· and norm ·.LetC be a nonempty closed conv ex subset of H.Thenforanyx ∈ H, there exists a unique nearest point in C, denoted by P C (x), such that x − P C (x)≤x − y for all y ∈ C.SuchaP C is called the metric projection of H onto C.WeknowthatP C is nonexpansive. Further, for x ∈ H and x ∗ ∈ C, x ∗ = P C (x) ⇐⇒ x − x ∗ ,x ∗ − y ≥ 0 ∀y ∈ C. (2.1) Recall that a mapping T : C →H is called nonexpansive if Tx− Ty≤x − y for all x, y ∈ C. Denote the set of fixed p oints of T by F(T). It is well known that if C is a bounded closed convex and T : C →C is nonexpansive, then F(T)=∅; see, for instance, [8]. We call a mapping f : H →H contractive if there exists a constant α ∈ (0,1)suchthat f (x) − f (y)≤αx − y for all x, y ∈ H. For an equilibrium bifunction h : C × C → R,wecallh satisfying condition (A) if h satisfies the following three conditions: (i) h is monotone, that is, h(x, y)+h(y,x) ≤ 0forallx, y ∈ C; (ii) for each x, y, z ∈ C,lim t↓0 h(tz +(1− t)x, y) ≤ h(x, y); (iii) for each x ∈ C, y → h(x, y) is convex and lower semicontinuous. If an equilibr ium bifunction h : C × C→R satisfies condition (A), then we have the fol- lowing two important results. You can find the first lemma in [1] and the second one in [2]. Lemma 2.1. Let C be a nonempty closed convex subset of H and let h be an equilibrium bifunction of C × C into R, satisfying condition (A). Let r>0 and x ∈ H. Then there exists y ∈ C such that h(y, z)+ 1 r z − y, y − x≥0 ∀z ∈ C. (2.2) Lemma 2.2. Assume that h satisfies the same assumptions as Lemma 2.1.Forr>0 and x ∈ H, define a mapping S r : H→C as follows: S r (x) = y ∈ C : h(y,z)+ 1 r z − y, y − x≥0, ∀z ∈ C (2.3) for all y ∈ H.Thenthefollowingholds: Yonghong Yao et al. 3 (1) S r is single-valued and S r is fir mly nonexpansive, that is, for any x, y ∈ H, S r x − S r y 2 ≤ S r x − S r y,x − y ; (2.4) (2) F(S r ) = SEP(h) and SEP(h) is closed and c onvex. We also need the following lemmas for proving our main results. Lemma 2.3 (see [9]). Let {x n } and {y n } be bounded sequences in a Banach space X and let {β n } beasequencein[0, 1] with 0 < liminf n→∞ β n ≤ limsup n→∞ β n < 1.Supposex n+1 = (1 − β n )y n + β n x n for all integers n ≥ 0 and limsup n→∞ (y n+1 − y n −x n+1 − x n ) ≤ 0. Then lim n→∞ y n − x n =0. Lemma 2.4 (see [10]). Assume {a n } is a sequence of nonnegative real numbers such that a n+1 ≤ (1 − γ n )a n + δ n ,where{γ n } is a sequence in (0,1) and {δ n } is a sequence such that ∞ n=1 γ n =∞and limsup n→∞ δ n /γ n ≤ 0. Then lim n→∞ a n = 0. 3. Iterative scheme and strong convergence theorems In this section, we first introduce our iterative scheme. Consequently, we will establish strong convergence theorems for this iteration scheme. To be more specific, let T 1 ,T 2 , be infinite mappings of C into C and let λ 1 ,λ 2 , be real numbers such that 0 ≤ λ i ≤ 1for every i ∈ N.Foranyn ∈ N, define a mapping W n of C into C as foll ows: U n,n+1 = I, U n,n = λ n T n U n,n+1 + 1 − λ n I, U n,n−1 = λ n−1 T n−1 U n,n + 1 − λ n−1 I, . . . U n,k = λ k T k U n,k+1 + 1 − λ k I, . . . U n,2 = λ 2 T 2 U n,3 + 1 − λ 2 I, W n = U n,1 = λ 1 T 1 U n,2 + 1 − λ 1 I. (3.1) SuchamappingW n is called the W-mapping generated by T n ,T n−1 , ,T 1 and λ n , λ n−1 , ,λ 1 ;see[11]. Now we introduce the following iteration scheme: Let f be a contraction of H into it- self with coefficient α ∈ (0,1) and given x 0 ∈ H arbitrarily. Suppose the sequences {x n } ∞ n=1 4 Fixed Point Theory and Applications and {y n } ∞ n=1 are generated iteratively by h y n ,x + 1 r n x − y n , y n − x n ≥ 0, ∀x ∈ C, x n+1 = α n f x n + β n x n + γ n W n y n , (3.2) where {α n }, {β n },and{γ n } are three sequences in (0,1) such that α n + β n + γ n = 1, {r n } is a real sequence in (0,∞), h is an equilibrium bifunction, and W n is the W-mapping defined by (3.1). We have the following cr ucial conclusions concerning W n . You can find them in [12, 13]. Now we only need the following similar version in Hilber t spaces. Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.LetT 1 , T 2 , be nonexpansive mappings of C into C such that ∞ i=1 F(T i ) is nonempty, and let λ 1 ,λ 2 , be real numbers such that 0 <λ i ≤ b<1 for any i ∈ N. Then for every x ∈ C and k ∈ N, the limit lim n→∞ U n,k x exists. Remark 3.2. From Lemma 3.1,wehavethatifC is bounded, then for all ε>0, there exists a common positive integer number N 0 such that for n>N 0 , U n,k x − U k (x) <ε for all x ∈ C. Indeed, by the similar argument to Lemma 3.2 in [13], let w ∈ ∞ n=1 F(T n ). Since C is bounded, there exists a constant M>0suchthat x − w≤M for all x ∈ C. Fix k ∈ N.Thenforallx ∈ C and any n ∈ N with n ≥ k,wehaveU n+1,k x − U n,k x≤ 2( n+1 i =k λ i )x − w≤2M( n+1 i =k λ i ). Let ε>0. Then there exists n 0 ∈ N with n 0 ≥ k such that for all x ∈ C, b n 0 −k+2 < ε(1 − b)/2M.Soforallx ∈ C and every m, n with m>n>n 0 ,wehave U m,k x − U n,k x ≤ m−1 j=n U j+1,k x − U j,k x ≤ m−1 j=n 2 j+1 i=k λ i x − w ≤ 2M m−1 j=n b j−k+2 ≤ 2Mb n−k+2 1 − b <ε. (3.3) Remark 3.3. Using Lemma 3.1, one can define a mapping W of C into C as Wx = lim n→∞ W n x = lim n→∞ U n,1 x for every x ∈ C.SuchaW is called the W-mapping gen- erated by T 1 ,T 2 , and λ 1 ,λ 2 , Weobservethatif{x n } is a bounded sequence in C, then we have lim n→∞ Wx n − W n x n = 0. (3.4) Indeed, from Remark 3.1,wehave:foranyε>0, there is n 0 such that Wx− W n x≤ ε for all x ∈{x n } and for all n ≥ n 0 .Inparticular,Wx n − W n x n ≤ε for all n ≥ n 0 . Consequently, lim n→∞ Wx n − W n x n =0, as claimed. Throughout this paper, we will assume that 0 <λ i ≤ b<1foreveryi ∈ N. Yonghong Yao et al. 5 Lemma 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H.LetT 1 , T 2 , be nonexpansive mappings of C into C such that ∞ i=1 F(T i ) is nonempt y, and let λ 1 ,λ 2 , be real numbers such that 0 <λ i ≤ b<1 for any i ∈ N. Then F(W) = ∞ i=1 F(T i ). Now we state and prove our main results. Theorem 3.5. Let C beanonemptyclosedconvexsubsetofarealHilbertspaceH.Let h : C × C→R be an equilibrium bifunction satisfying condition (A) and let {T i } ∞ i=1 be an infinite family of nonexpansive mappings of C into C such that ∞ i=1 F(T i )∩SEP(h)=∅. Suppose {α n }, {β n },and{γ n } are three seque nces in (0,1) such that α n + β n + γ n = 1 and {r n }⊂(0,∞). Suppose the following conditions are satis fied: (i) lim n→∞ α n = 0 and ∞ n=0 α n =∞; (ii) 0 < liminf n→∞ β n ≤ limsup n→∞ β n < 1; (iii) liminf n→∞ r n > 0 and lim n→∞ (r n+1 − r n ) = 0. Let f be a contraction of H into itself and given x 0 ∈ H arbitrarily. Then the sequences {x n } and {y n } generated iteratively by (3.2) converge strongly to x ∗ ∈ ∞ i=1 F(T i ) ∩ SEP(h),where x ∗ = P ∞ i=1 F(T i )∩SEP(h) f (x ∗ ). Proof. Let Q = P ∞ i=1 F(T i )∩SEP(h) .Notethat f is a contraction mapping with coefficient α ∈ (0,1). Then Qf(x) − Qf(y)≤f (x) − f (y)≤αx − y for all x, y ∈ H. Therefore, Qf is a contraction of H into itself, which implies that there exists a unique element x ∗ ∈ H such that x ∗ = Qf(x ∗ ). At the same time, we note that x ∗ ∈ C. Let p ∈ ∞ i=1 F(T i )∩SEP(h). From the definition of S r , we note that y n = S r n x n .Itfol- lows that y n − p=S r n x n − S r n p≤x n − p.Next,weprovethat{x n } and {y n } are bounded. From ( 3.1)and(3.2), we obtain x n+1 − p ≤ α n f x n − p + β n x n − p + γ n W n y n − p ≤ α n f x n − f (p) + f (p) − p + β n x n − p + γ n y n − p ≤ α n α x n − p + f (p) − p + 1 − α n x n − p ≤ max x 0 − p , 1 1 − α f (p) − p . (3.5) Therefore, {x n } is bounded. We also obtain that {y n }, {W n x n },and{ f (x n )} are all bounded. We shall use M to denote the possible different constants appearing in the fol- lowing reasoning. Setting x n+1 = β n x n +(1− β n )z n for all n ≥ 0, we have that z n+1 − z n = x n+2 − β n+1 x n+1 1 − β n+1 − x n+1 − β n x n 1 − β n = α n+1 1 − β n+1 f x n+1 − f x n + α n+1 1 − β n+1 − α n 1 − β n f x n + γ n+1 1 − β n+1 W n+1 y n+1 − W n y n + γ n+1 1 − β n+1 − γ n 1 − β n W n y n . (3.6) 6 Fixed Point Theory and Applications So we have z n+1 − z n ≤ αα n+1 1 − β n+1 x n+1 − x n + α n+1 1 − β n+1 − α n 1 − β n f x n + W n y n + γ n+1 1 − β n+1 W n+1 y n+1 − W n y n . (3.7) Since T i and U n,i are nonexpansive from (3.1), we have W n+1 y n − W n y n = λ 1 T 1 U n+1,2 y n − λ 1 T 1 U n,2 y n ≤ λ 1 U n+1,2 y n − U n,2 y n ≤ λ 1 λ 2 U n+1,3 y n − U n,3 y n ≤··· ≤ λ 1 λ 2 ···λ n U n+1,n+1 y n − U n,n+1 y n ≤ M n i=1 λ i , (3.8) and hence W n+1 y n+1 − W n y n ≤ W n+1 y n+1 − W n+1 y n + W n+1 y n − W n y n ≤ y n+1 − y n + M n i=1 λ i . (3.9) Substituting (3.9)into(3.7), we have z n+1 − z n ≤ αα n+1 1 − β n+1 x n+1 − x n + α n+1 1 − β n+1 − α n 1 − β n f x n + W n y n + γ n+1 1 − β n+1 y n+1 − y n + Mγ n+1 1 − β n+1 n i=1 λ i . (3.10) On the other hand, from y n = S r n x n and y n+1 = S r n+1 x n+1 ,wehave h y n ,x + 1 r n x − y n , y n − x n ≥ 0 ∀x ∈ C, (3.11) h y n+1 ,x + 1 r n+1 x − y n+1 , y n+1 − x n+1 ≥ 0 ∀x ∈ C. (3.12) Yonghong Yao et al. 7 Putting x = y n+1 in (3.11)andx = y n in (3.12), we have h y n , y n+1 + 1 r n y n+1 − y n , y n − x n ≥ 0, (3.13) h y n+1 , y n + 1 r n+1 y n − y n+1 , y n+1 − x n+1 ≥ 0. (3.14) From the monotonicity of h,wehave h y n , y n+1 + h y n+1 , y n ≤ 0. (3.15) So from (3.13), we can conclude that y n+1 − y n , y n − x n r n − y n+1 − x n+1 r n+1 ≥ 0, (3.16) and hence y n+1 − y n , y n − y n+1 + y n+1 − x n − r n r n+1 y n+1 − x n+1 ≥ 0. (3.17) Since liminf n→∞ r n > 0, without loss of generality, we may assume that there exists a real number τ such that r n >τ>0foralln ∈ N.Thenwehave y n+1 − y n 2 ≤ y n+1 − y n ,x n+1 − x n + 1 − r n r n+1 y n+1 − x n+1 ≤ y n+1 − y n x n+1 − x n + 1 − r n r n+1 y n+1 − x n+1 , (3.18) and hence y n+1 − y n ≤ x n+1 − x n + M τ r n+1 − r n . (3.19) Substituting (3.19)into(3.10), we have z n+1 − z n ≤ αα n+1 1 − β n+1 x n+1 − x n + α n+1 1 − β n+1 − α n 1 − β n f x n + W n y n + γ n+1 1 − β n+1 x n+1 − x n + γ n+1 1 − β n+1 × M τ r n+1 − r n + Mγ n+1 1 − β n+1 n i=1 λ i ≤ x n+1 − x n + α n+1 1 − β n+1 − α n 1 − β n f x n + W n y n + γ n+1 1 − β n+1 × M τ r n+1 − r n + Mγ n+1 1 − β n+1 n i=1 λ i . (3.20) This together with α n →0andr n+1 − r n →0 imply that limsup n→∞ (z n+1 − z n −x n+1 − x n ) ≤ 0. Hence by Lemma 2.3,weobtainz n − x n →0asn→∞. Consequently, lim n→∞ x n+1 − x n = lim n→∞ 1 − β n z n − x n = 0. (3.21) 8 Fixed Point Theory and Applications From (3.19)andlim n→∞ (r n+1 − r n ) = 0, we have lim n→∞ y n+1 − y n =0. Since x n+1 = α n f (x n )+β n x n + γ n W n y n ,wehave x n − W n y n ≤ x n − x n+1 + x n+1 − W n y n ≤ x n − x n+1 + α n f x n − W n y n + β n x n − W n y n , (3.22) that is, x n − W n y n ≤ 1 1 − β n x n − x n+1 + α n 1 − β n f x n − W n y n . (3.23) Hencewehavelim n→∞ x n − W n y n =0. For p ∈ ∞ i=1 F(T i )∩SEP(h), note that S r is firmly nonexpansive. Then we have y n − p 2 = S r n x n − S r n p 2 ≤ S r n x n − S r n p,x n − p = y n − p,x n − p = 1 2 y n − p 2 + x n − p 2 − x n − y n 2 , (3.24) and hence y n − p 2 ≤ x n − p 2 − x n − y n 2 . (3.25) Therefore, we have x n+1 − p 2 ≤ α n f x n − p 2 + β n x n − p 2 + γ n W n y n − p 2 ≤ α n f x n − p 2 + β n x n − p 2 + γ n y n − p 2 ≤ α n f x n − p 2 + β n x n − p 2 + γ n x n − p 2 − x n − y n 2 ≤ α n f x n − p 2 + x n − p 2 − γ n x n − y n 2 . (3.26) Then we have γ n x n − y n 2 ≤ α n f x n − p 2 + x n − p + x n+1 − p × x n − p − x n+1 − p ≤ α n f x n − p 2 + x n − x n+1 x n − p + x n+1 − p . (3.27) It is easily seen that lim inf n→∞ γ n > 0. So we have lim n→∞ x n − y n = 0. (3.28) From W n y n − y n ≤W n y n − x n + x n − y n ,wealsohaveW n y n − y n →0. At that same time, we note that Wy n − y n ≤ Wy n − W n y n + W n y n − y n . (3.29) Yonghong Yao et al. 9 It follows from (3.29)andRemark 3.2 that lim n→∞ Wy n − y n =0. Next, we show that limsup n→∞ f x ∗ − x ∗ ,x n − x ∗ ≤ 0, (3.30) where x ∗ = P F(W)∩SEP(h) f (x ∗ ). First, we can choose a subsequence {y n j } of {y n } such that lim j→∞ f x ∗ − x ∗ , y n j − x ∗ = limsup n→∞ f x ∗ − x ∗ , y n − x ∗ . (3.31) Since {y n j } is bounded, there exists a subsequence {y n ji } of {y n j }, which converges weakly to w. Without loss of generality, we can assume that y n j →w weakly. From Wy n − y n →0, we obtain Wy n j →w weakly. Now we show w ∈ SEP(h). By y n = S r n x n ,wehaveh(y n ,x)+(1/r n )x − y n , y n − x n ≥0forallx ∈ C.Fromthe monotonicity of h,wehave(1/r n )x − y n , y n − x n ≥−h(y n ,x) ≥ h(x, y n ), and h ence x − y n j , y n j − x n j r n j ≥ h x, y n j . (3.32) Since (y n j − x n j )/r n j →0andy n j →w weakly, from the lower semicontinuity of h(x, y)on the second variable y,wehaveh(x,w) ≤ 0forallx ∈ C.Fort with 0 <t≤ 1andx ∈ C, let x t = tx +(1− t)w.Sincex ∈ C and w ∈ C,wehavex t ∈ C, and hence h(x t ,w) ≤ 0. So from the convexity of equilibrium bifunction h(x, y) on the second variable y,wehave 0 = h x t ,x t ≤ th x t ,x +(1− t)h x t ,w ≤ th x t ,x . (3.33) Hence h(x t ,x) ≥ 0. Therefore, we have h(w,x) ≥ 0forallx ∈ C, and hence w ∈ SEP( h). We will show w ∈ F(W). Assume w ∈ F(W). Since y n j →w weakly and w=Ww,from Opial’s condition, we have liminf j→∞ y n j − w < liminf j→∞ y n j − Ww ≤ liminf j→∞ y n j − Wy n j + Wy n j − Ww ≤ liminf j→∞ y n j − w . (3.34) This is a contradiction. So we get w ∈ F(W) = ∞ i=1 F(T i ). Therefore, w ∈ ∞ i=1 F(T i )∩ SEP(h). Since x ∗ = P ∞ i=1 F(T i )∩SEP(h) f (x ∗ ), we have limsup n→∞ f x ∗ − x ∗ ,x n − x ∗ = lim j→∞ f x ∗ − x ∗ ,x n j − x ∗ = lim j→∞ f x ∗ − x ∗ , y n j − x ∗ = f x ∗ − x ∗ ,w − x ∗ ≤ 0. (3.35) 10 Fixed Point Theory and Applications First, we prove that {x n } converges strongly to x ∗ ∈ ∞ i=1 F(T i )∩SEP(h). From (3.2), we have x n+1 − x ∗ 2 ≤ β n x n − x ∗ + γ n W n y n − x ∗ 2 +2α n f x n − x ∗ ,x n+1 − x ∗ ≤ β n x n − x ∗ + γ n W n y n − x ∗ 2 +2α n f x ∗ − x ∗ ,x n+1 − x ∗ +2α n f x n − f x ∗ ,x n+1 − x ∗ ≤ β n x n − x ∗ + γ n y n − x ∗ 2 +2αα n x n − x ∗ x n+1 − x ∗ +2α n f x ∗ − x ∗ ,x n+1 − x ∗ ≤ 1 − α n 2 x n − x ∗ 2 + αα n x n+1 − x ∗ 2 + x n − x ∗ 2 +2α n f x ∗ − x ∗ ,x n+1 − x ∗ , (3.36) which implies that x n+1 − x ∗ 2 ≤ 1 − α n 2 + αα n 1 − αα n x n − x ∗ 2 + 2α n 1 − αα n f x ∗ − x ∗ ,x n+1 − x ∗ = 1 − 2α n + αα n 1 − αα n x n − x ∗ 2 + α 2 n 1 − αα n x n − x ∗ 2 + 2α n 1 − αα n f x ∗ − x ∗ ,x n+1 − x ∗ ≤ 1 − 2(1 − α)α n 1 − αα n x n − x ∗ 2 + 2(1 − α)α n 1 − αα n × Mα n 2(1 − α) + 1 1 − α f x ∗ − x ∗ ,x n+1 − x ∗ = 1 − ϕ n x n − x ∗ 2 + φ n ϕ n , (3.37) where ϕ n = 2(1 − α)α n /(1 − αα n )andφ n = Mα n /2(1 − α)+1/(1 − α) f (x ∗ ) − x ∗ ,x n+1 − x ∗ . It is easily seen that ∞ n=0 ϕ n =∞and limsup n→∞ φ n ≤ 0. Now applying Lemma 2.4 and (3.35)to(3.37), we conclude that x n →x ∗ (n→∞). Consequently, from (3.28), we have y n →x ∗ (n→∞). This completes the proof. Corollar y 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H.Let h : C × C→R be an equilibrium bifunction satisfying condition (A) such that SEP(h)=∅. Let {α n }, {β n },and{γ n } be three sequences in (0,1) such that α n + β n + γ n = 1 and {r n }⊂ (0,∞) is a real sequence. Suppose the following conditions are sat isfied: (i) lim n→∞ α n = 0 and ∞ n=0 α n =∞; (ii) 0 < liminf n→∞ β n ≤ limsup n→∞ β n < 1; (iii) liminf n→∞ r n > 0 and lim n→∞ (r n+1 − r n ) = 0. [...]... Takahashi and K Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, ” Mathematical and Computer Modelling, vol 32, no 11–13, pp 1463–1471, 2000 [13] K Shimoji and W Takahashi, “Strong convergence to common fixed points of infinite nonexpansive mappings and applications,” Taiwanese Journal of Mathematics, vol 5, no 2, pp 387– 404, 2001 Yonghong Yao: Department of Mathematics,... Tada and W Takahashi, “Strong convergence theorem for an equilibrium problem and a nonexpansive mapping,” in Nonlinear Analysis and Convex Analysis, W Takahashi and T Tanaka, Eds., pp 609–617, Yokohama, Yokohama, Japan, 2007 [8] W Takahashi, Nonlinear Functional Analysis, Yokohama, Yokohama, Japan, 2000 [9] T Suzuki, “Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive. .. point problems in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol 331, no 1, pp 506–515, 2007 12 Fixed Point Theory and Applications [5] A Moudafi, “Viscosity approximation methods for fixed-points problems, ” Journal of Mathematical Analysis and Applications, vol 241, no 1, pp 46–55, 2000 [6] R Wittmann, “Approximation of fixed points of nonexpansive mappings,” Archiv der Mathematik,... semigroups without Bochner integrals,” Journal of Mathematical Analysis and Applications, vol 305, no 1, pp 227–239, 2005 [10] H.-K Xu, “Viscosity approximation methods for nonexpansive mappings,” Journal of Mathematical Analysis and Applications, vol 298, no 1, pp 279–291, 2004 [11] W Takahashi, “Weak and strong convergence theorems for families of nonexpansive mappings and their applications,” Annales Universitatis... Combettes and S A Hirstoaga, Equilibrium programming in Hilbert spaces,” Journal of Nonlinear and Convex Analysis, vol 6, no 1, pp 117–136, 2005 [3] S D Fl˚ m and A S Antipin, Equilibrium programming using proximal-like algorithms,” a Mathematical Programming, vol 78, no 1, pp 29–41, 1997 [4] S Takahashi and W Takahashi, “Viscosity approximation methods for equilibrium problems and fixed point problems. .. the conclusion follows from Theorem 3.5 This completes the proof Acknowledgments The authors thank the referee for his/her helpful comments and suggestions, which improved the presentation of this manuscript The research was partially supported by the Grant NSC 96-2221-E-230-003 References [1] E Blum and W Oettli, “From optimization and variational inequalities to equilibrium problems, ” The Mathematics... contraction of H into itself and given x0 ∈ H arbitrarily Let {xn } and { yn } be sequences generated iteratively by 1 x − yn , yn − xn ≥ 0, ∀x ∈ C, rn xn+1 = αn f xn + βn xn + γn yn h yn ,x + (3.38) Then the sequences {xn } and { yn } generated by (3.38) converge strongly to x∗ ∈ SEP(h), where x∗ = PSEP(h) f (x∗ ) Proof Take Ti x = x for all i = 1,2, and for all x ∈ C in (3.1) Then Wn x = x for all... conclusion follows from Theorem 3.1 This completes the proof Corollary 3.7 Let C be a nonempty closed convex subset of a real Hilbert space H Let ∞ {Ti }∞ 1 be an infinite family of nonexpansive mappings of C into C such that i=1 F(Ti )=∅ i= Let {αn }, {βn }, and {γn } be three sequences in (0,1) such that αn + βn + γn = 1 Suppose the following conditions are satisfied: (i) lim n→∞ αn = 0 and ∞ 0 αn = ∞; n=... n= (ii) 0 < liminf n→∞ βn ≤ limsup n→∞ βn < 1 Let f be a contraction of H into itself and given x0 ∈ H arbitrarily Let {xn } be a sequence generated iteratively by xn+1 = αn f xn + βn xn + γn Wn PC xn Then the sequence {xn } converges strongly to x∗ = P ∞ i=1 F(Ti ) (3.39) f (x∗ ) Proof Set h(x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N Then we have yn = PC xn From (3.2), we have xn+1 = αn... Mathematics, Tianjin Polytechnic University, Tianjin 300160, China Email address: yuyanrong@tjpu.edu.cn Yeong-Cheng Liou: Department of Information Management, Cheng Shiu University, Kaohsiung 833, Taiwan Email address: simplex liou@hotmail.com Jen-Chih Yao: Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan Email address: yaojc@math.nsysu.edu.tw . Corporation Fixed Point Theory and Applications Volume 2007, Article ID 64363, 12 pages doi:10.1155/2007/64363 Research Article Convergence Theorem for Equilibrium Problems and Fixed Point Problems of Infinite. iterative scheme for finding a common element of the set of solutions of EP(h) and the set of fixed points of infinite nonexpansive mappings in a Hilbert space. We obtain a strong convergence theorem which. scheme for finding a common element of the set of solutions of an equilibrium problem and the set of common fixed points of infinite nonexpan- sive mappings in a Hilbert space. We prove a strong-convergence