Báo cáo hóa học: " Research Article Improvement of Aczél’s Inequality and Popoviciu’s Inequality" pdf

9 194 0
Báo cáo hóa học: " Research Article Improvement of Aczél’s Inequality and Popoviciu’s Inequality" pdf

Đang tải... (xem toàn văn)

Thông tin tài liệu

Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2007, Article ID 72173, 9 pages doi:10.1155/2007/72173 Research Article Improvement of Aczél’s Inequality and Popoviciu’s Inequality Shanhe Wu Received 30 December 2006; Accepted 24 April 2007 Recommended by Laszlo I. Losonczi We generalize and sharpen Acz ´ el’s inequality and Popoviciu’s inequality by means of two classical inequalities, a unified improvement of Acz ´ el’s inequality and Popoviciu’s inequality is given. As application, an integral inequality of Acz ´ el-Popoviciu type is es- tablished. Copyright © 2007 Shanhe Wu. This is an open access article distributed under the Cre- ative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction In 1956, Acz ´ el [1] proved the following result:  a 2 1 − n  i=2 a 2 i  b 2 1 − n  i=2 b 2 i  ≤  a 1 b 1 − n  i=2 a i b i  2 , (1.1) where a i , b i (i=1,2, ,n) are positive numbers such that a 2 1 −  n i =2 a 2 i >0orb 2 1 −  n i =2 b 2 i > 0. This inequality is called Acz ´ el’s inequality. It is well known that Acz ´ el’s inequality has important applications in the theory of functional equations in non-Euclidean geometry. In recent years, this inequality has at- tracted the interest of many mathematicians and has motivated a large number of re- search papers involving different proofs, various generalizations, improvements, and ap- plications (see [2–11] and references therein). We state here a brief history on improve- ment of Acz ´ el’s inequality. Popoviciu [12] first presented an exponential extension of Acz ´ el’s inequality, as fol- lows. 2 Journal of Inequalities and Applications Theorem 1.1. Let p>0, q>0, 1/p+1/q = 1,andleta i , b i (i = 1,2, ,n) be positive numbers such that a p 1 −  n i =2 a p i > 0 and b q 1 −  n i =2 b q i > 0. Then  a p 1 − n  i=2 a p i  1/p  b q 1 − n  i=2 b q i  1/q ≤ a 1 b 1 − n  i=2 a i b i . (1.2) Wu and Debnath [13] generalized inequality (1.2) in the following form. Theorem 1.2. Let p>0, q>0,andleta i , b i (i = 1,2, ,n) be positive numbers such that a p 1 −  n i =2 a p i > 0 and b q 1 −  n i =2 b q i > 0. Then  a p 1 − n  i=2 a p i  1/p  b q 1 − n  i=2 b q i  1/q ≤ n 1−min{p −1 +q −1 ,1} a 1 b 1 − n  i=2 a i b i . (1.3) In a recent paper [14], Wu established a sharp and generalized version of Popoviciu’s inequality as follows. Theorem 1.3. Let p>0, q>0, 1/p+1/q ≥ 1,andleta i , b i (i = 1,2, ,n) be positive numbers such that a p 1 −  n i =2 a p i > 0 and b q 1 −  n i =2 b q i > 0. Then  a p 1 − n  i=2 a p i  1/p  b q 1 − n  i=2 b q i  1/q ≤ a 1 b 1 −  n  i=2 a i b i  − a 1 b 1 max{p,q,1}  n  i=2  a p i a p 1 − b q i b q 1  2 . (1.4) In this paper, we show a new sharp and generalized version of Popoviciu’s inequal- ity, which is a unified improvement of Acz ´ el’s inequality and Popoviciu’s inequality. In Section 4, the obtained result will be used to establish an integr al inequality of Acz ´ el- Popoviciu type. 2. Lemmas In order to prove the theorem in Section 3, we first introduce the following lemmas. Lemma 2.1 (generalized H ¨ older inequality [15, page 20]). Let a ij > 0, λ j ≥ 0(i = 1,2, , n, j = 1,2, ,m),andletλ 1 + λ 2 + ···+ λ m = 1. Then m  j=1  n  i=1 a ij  λ j ≥ n  i=1 m  j=1 a λ j ij (2.1) with equality holding if and only if a 11 /a 1j = a 21 /a 2j = ··· = a n1 /a nj ( j = 2, 3, , m) for λ 1 λ 2 ···λ n = 0. Lemma 2.2 (mean value inequality [16, page 17]). Let x i > 0, λ i > 0(i = 1,2, ,n) and let λ 1 + λ 2 + ···+ λ n = 1. Then n  i=1 λ i x i ≥ n  i=1 x λ i i (2.2) with equality holding if and only if x 1 = x 2 =···=x n . Shanhe Wu 3 Lemma 2.3. Le t p 1 ≥ p 2 ≥ ··· ≥ p m > 0, 1/p 1 +1/p 2 + ···+1/p m = 1, 0 <x j < 1(j = 1,2, ,m),andletx m+1 = x 1 , p m+1 = p 1 . Then m  j=1 x j + m  j=1  1 − x p j j  1/p j ≤ 1 − 1 2p 1 m  j=1  x p j j − x p j+1 j+1  2 (2.3) with equality holding if and only if x p 1 1 = x p 2 2 =···=x p m m . Proof. From hypotheses in Lemma 2.3,itiseasytoverifythat 1 p m ≥ 1 p m−1 ≥···≥ 1 p 2 ≥ 1 p 1 > 0, 1 2p 2 − 1 2p 1 ≥ 0, 1 2p 3 − 1 2p 2 ≥ 0, , 1 2p m − 1 2p m−1 ≥ 0, 1 2p m − 1 2p 1 ≥ 0, 1 2p 1 + 1 2p 1 +  1 2p 2 − 1 2p 1  + 1 2p 2 + 1 2p 2 +  1 2p 3 − 1 2p 2  + ···+ 1 2p m−2 + 1 2p m−2 +  1 2p m−1 − 1 2p m−2  + 1 2p m−1 + 1 2p m−1 +  1 2p m − 1 2p m−1  + 1 2p 1 + 1 2p 1 +  1 2p m − 1 2p 1  = 1 p 1 + 1 p 2 + ···+ 1 p m = 1. (2.4) Hence, by using Lemma 2.1 we obtain  x p 1 1 +  1 − x p 2 2  1/2p 1  x p 2 2 +  1 − x p 1 1  1/2p 1  x p 2 2 +  1 − x p 2 2  1/2p 2 −1/2p 1 ×  x p 2 2 +  1 − x p 3 3  1/2p 2  x p 3 3 +  1 − x p 2 2  1/2p 2  x p 3 3 +  1 − x p 3 3  1/2p 3 −1/2p 2 . . . ×  x p m−2 m−2 +  1 − x p m−1 m−1  1/2p m−2 ×  x p m−1 m−1 +  1 − x p m−2 m−2  1/2p m−2  x p m−1 m−1 +  1 − x p m−1 m−1  1/2p m−1 −1/2p m−2 ×  x p m−1 m−1 +  1 − x p m m  1/2p m−1  x p m m +  1 − x p m−1 m−1  1/2p m−1  x p m m +  1 − x p m m  1/2p m −1/2p m−1 ×  x p m m +  1 − x p 1 1  1/2p 1  x p 1 1 +  1 − x p m m  1/2p 1  x p m m +  1 − x p m m  1/2p m −1/2p 1 ≥ x p 1 /2p 1 1 x p 2 /2p 1 2 x p 2 /2p 2 −p 2 /2p 1 2 x p 2 /2p 2 2 ···x p m−1 /2p m−2 m−1 x p m−1 /2p m−1 −p m−1 /2p m−2 m−1 x p m−1 /2p m−1 m−1 × x p m /2p m−1 m x p m /2p m −p m /2p m−1 m x p m /2p 1 m x p m /2p m −p m /2p 1 m x p 1 /2p 1 1 +  1 − x p 1 1  1/2p 1  1 − x p 2 2  1/2p 1  1 − x p 2 2  1/2p 2 −1/2p 1  1 − x p 2 2  1/2p 2 ···  1 − x p m−1 m−1  1/2p m−2  1 − x p m−1 m−1  1/2p m−1 −1/2p m−2  1 − x p m−1 m−1  1/2p m−1 ×  1 − x p m m  1/2p m−1  1 − x p m m  1/2p m −1/2p m−1  1 − x p m m  1/2p 1  1 − x p m m  1/2p m −1/2p 1 ×  1 − x p 1 1  1/2p 1 , (2.5) 4 Journal of Inequalities and Applications which is equivalent to  1 −  x p 1 1 − x p 2 2  2  1/2p 1  1 −  x p 2 2 − x p 3 3  2  1/2p 2 ···  1 − (x p m−1 m−1 − x p m m  2  1/2p m−1  1 −  x p m m − x p 1 1  2  1/2p 1 ≥ x 1 x 2 ···x m +  1 − x p 1 1  1/p 1  1 − x p 2 2  1/p 2 ···  1 − x p m m  1/p m . (2.6) On the other hand, it follows from Lemma 2.2 that 1 2p 1  1 −  x p 1 1 − x p 2 2  2  + 1 2p 2  1 −  x p 2 2 − x p 3 3  2  + ···+ 1 2p m−1  1 −  x p m−1 m−1 − x p m m  2  + 1 2p 1  1 −  x p m m − x p 1 1  2  +  1 2p 2 + 1 2p 3 + ···+ 1 2p m−1 + 1 p m  · 1 ≥  1 −  x p 1 1 − x p 2 2  2  1/2p 1  1 −  x p 2 2 − x p 3 3  2  1/2p 2 ···  1 −  x p m−1 m−1 − x p m m  2  1/2p m−1  1 −  x p m m − x p 1 1  2  1/2p 1 , (2.7) this y ields  1−  x p 1 1 −x p 2 2  2  1/2p 1  1−  x p 2 2 −x p 3 3  2  1/2p 2 ···  1−  x p m−1 m−1 −x p m m  2  1/2p m−1  1−  x p m m −x p 1 1  2  1/2p 1 ≤  1 p 1 + 1 p 2 + ···+ 1 p m  − 1 2p 1  x p 1 1 − x p 2 2  2 − 1 2p 2  x p 2 2 − x p 3 3  2 −···− 1 2p m−1  x p m−1 m−1 − x p m m  2 − 1 2p 1  x p m m − x p 1 1  2 ≤ 1 − 1 2p 1  x p 1 1 − x p 2 2  2 +  x p 2 2 − x p 3 3  2 + ···+  x p m−1 m−1 + x p m m  2 +  x p m m − x p 1 1  2  . (2.8) Combining inequalities (2.6)and(2.8) leads to inequality (2.3). In addition, from Lemmas 2.1 and 2.2, we can easily deduce that the equality holds in both (2.6)and(2.8) if and only if x p 1 1 = x p 2 2 =···=x p m m , and thus we obtain the condition of equality in (2.3). The proof of Lemma 2.3 is complete.  3. Improvement of Acz ´ el’s inequality and Popov i ciu’s inequality Theorem 3.1. Let p 1 ≥ p 2 ≥ ··· ≥ p m > 0, 1/p 1 +1/p 2 + ···+1/p m = 1, a ij > 0, a p j 1j −  n i =2 a p j ij > 0(i = 1, 2, , n, j = 1, 2, , m),andletp m+1 = p 1 , a im+1 = a i1 (i = 1,2, ,n). Then one has the following inequality: m  j=1  a p j 1j − n  i=2 a p j ij  1/p j ≤ m  j=1 a 1j − n  i=2 m  j=1 a ij − a 11 a 12 ···a 1m 2p 1 m  j=1  n  i=2  a p j ij a p j 1j − a p j+1 ij+1 a p j+1 1j+1  2 . (3.1) Equality holds in (3.1)ifandonlyifa p 1 11 /a p j 1j = a p 1 21 /a p j 2j =···=a p 1 n1 /a p j nj ( j = 2,3, ,m). Shanhe Wu 5 Proof. Since by hypotheses in Theorem 3.1 we have 0 <  a p j 1j −  n i =2 a p j ij  1/p j  a p j 1j  1/p j < 1(j = 1,2, ,m), (3.2) it follows from Lemma 2.3, with a substitution x j = (a p j 1j −  n i =2 a p j ij ) 1/p j /(a p j 1j ) 1/p j ( j = 1,2, ,m)in(2.3), that m  j=1  a p j 1j −  n i =2 a p j ij a p j 1j  1/p j + m  j=1   n i =2 a p j ij a p j 1j  1/p j ≤ 1 − 1 2p 1 m  j=1  a p j 1j −  n i =2 a p j ij a p j 1j − a p j+1 1j+1 −  n i =2 a p j+1 ij+1 a p j+1 1j+1  2 , (3.3) which is equivalent to m  j=1  a p j 1j − n  i=2 a p j ij  1/p j ≤ m  j=1 a 1j − m  j=1  n  i=2 a p j ij  1/p j − a 11 a 12 ···a 1m 2p 1 m  j=1  n  i=2  a p j ij a p j 1j − a p j+1 ij+1 a p j+1 1j+1  2 , (3.4) where equality holds if and only if (  n i =2 a p j ij )/a p j 1j = (  n i =2 a p j+1 ij+1 )/a p j+1 1j+1 ( j = 1,2, ,m), that is, if and only if a p 1 11 /a p j 1j = (  n i =2 a p 1 i1 )/(  n i =2 a p j ij )(j = 2, 3, ,m). On the other hand, using Lemma 2.1 gives m  j=1  n  i=2 a p j ij  1/p j ≥ n  i=2 m  j=1 a ij , (3.5) where equality holds if and only if a p 1 21 /a p j 2j = a p 1 31 /a p j 3j =···=a p 1 n1 /a p j nj ( j = 2,3, ,m). Combining inequalities (3.4)and(3.5) leads to the desired inequality (3.1). By means of the conditions of equality in (3.4)and(3.5), it is easy to conclude that there is equality in (3.1)ifandonlyifa p 1 11 /a p j 1j = a p 1 21 /a p j 2j = ··· = a p 1 n1 /a p j nj ( j = 2,3, ,m). This completes the proof of Theorem 3.1.  As a consequence of Theorem 3.1,puttingm = 2, p 1 = p, p 2 = q, a i1 = a i , a i2 = b i (i = 1,2, ,n)in(3.1), we get the fol low ing. Corollary 3.2. Let p ≥ q>0, 1/p+1/q = 1,andleta i , b i (i = 1,2, ,n) be positive num- bers such that a p 1 −  n i =2 a p i > 0 and b q 1 −  n i =2 b q i > 0. Then  a p 1 − n  i=2 a p i  1/p  b q 1 − n  i=2 b q i  1/q ≤ a 1 b 1 −  n  i=2 a i b i  − a 1 b 1 p  n  i=2  a p i a p 1 − b q i b q 1  2 (3.6) with equality holding if and only if a p 1 /b q 1 = a p 2 /b q 2 =···=a p n /b q n . 6 Journal of Inequalities and Applications A simple application of Corollary 3.2 yields the following sharp version of Popoviciu’s inequality. Corollary 3.3. Let p>0, q>0, 1/p+1/q = 1,andleta i , b i (i = 1, 2, , n) be positive numbers such that a p 1 −  n i =2 a p i > 0 and b q 1 −  n i =2 b q i > 0. Then  a p 1 − n  i=2 a p i  1/p  b q 1 − n  i=2 b q i  1/q ≤ a 1 b 1 −  n  i=2 a i b i  − a 1 b 1 max{p,q}  n  i=2  a p i a p 1 − b q i b q 1  2 , (3.7) with equality holding if and only if a p 1 /b q 1 = a p 2 /b q 2 =···=a p n /b q n . Obviously, inequalities (3.1), (3.6), and (3.7) are the improvement of Acz ´ el’s inequality and Popoviciu’s inequality. 4. Integral version of Acz ´ el-Popoviciu-type inequality As application of Theorem 3.1, we establish here an interesting integral inequality of Acz ´ el-Popoviciu type. Theorem 4.1. Let p 1 ≥ p 2 ≥ ··· ≥ p m > 0, 1/p 1 +1/p 2 + ··· +1/p m = 1, B j > 0(j = 1,2, ,m),let f j be positive Riemann integrable functions on [a,b] such that B p j j −  b a f p j j (x) dx > 0 for all j = 1,2, ,m,andletB m+1 = B 1 , p m+1 = p 1 , f m+1 = f 1 .Thenone has the following inequality: m  j=1  B p j j −  b a f p j j (x)dx  1/p j ≤ m  j=1 B j −  b a  m  j=1 f j (x)  dx − B 1 B 2 ···B m 2p 1 m  j=1   b a  f p j j (x) B p j j − f p j+1 j+1 (x) B p j+1 j+1  dx  2 . (4.1) Proof. For any positive integer n, we choose an equidistant partition of [a,b]as a<a+ b − a n < ···<a+ b − a n i< ···<a+ b − a n (n − 1) <b, Δx i = b − a n , i = 1,2, ,n. (4.2) Since the hypothesis B p j j −  b a f p j j (x) dx > 0(j = 1,2, ,m) implies that B p j j − lim n→∞ n  i=1 f p j j  a + i(b − a) n  b − a n > 0(j = 1,2, ,m), (4.3) there exists a positive integer N such that B p j j − n  i=1 f p j j  a + i(b − a) n  b − a n > 0 ∀n>N, j = 1,2, ,m. (4.4) Shanhe Wu 7 Applying Theorem 3.1, one obtains for any n>N the following inequalit y: m  j=1  B p j j − n  i=1 f p j j  a + i(b − a) n  b − a n  1/p j ≤ m  j=1 B j − n  i=1  m  j=1 f j  a + i(b − a) n    b − a n  1/p 1 +1/p 2 +···+1/p m − B 1 B 2 ···B m 2p 1 m  j=1  n  i=1  1 B p j j f p j j  a + i(b − a) n  b − a n − 1 B p j+1 j+1 f p j+1 j+1  a + i(b − a) n  b − a n  2 . (4.5) Note that 1/p 1 +1/p 2 + ···+1/p m = 1, the above inequality can be transformed to m  j=1  B p j j − n  i=1 f p j j  a + i(b − a) n  b − a n  1/p j ≤ m  j=1 B j − n  i=1  m  j=1 f j  a + i(b − a) n    b − a n  − B 1 B 2 ···B m 2p 1 m  j=1  n  i=1  1 B p j j f p j j  a + i(b − a) n  − 1 B p j+1 j+1 f p j+1 j+1  a + i(b − a) n   b − a n  2 , (4.6) where equality holds if and only if f p j j (a + i(b − a)/n)/B p j j = f p j+1 j+1 (a + i(b − a)/n)/B p j+1 j+1 for all i = 1,2, ,n ( j = 1,2, ,m). In view of the hypotheses that f j are positive Riemann integ rable functions on [a,b] and p j > 0(j = 1,2, ,m), we conclude that  m j =1 f j and f p j j ( j = 1,2, ,m)arealso integrable on [a,b]. Passing the limit as n →∞in both sides of inequality (4.6), we obtain the inequality (4.1). The proof of Theorem 4.1 is complete.  Remark 4.2. Motivated by the proof of Theorem 4.1, we propose here a conjecture. Conjecture 4.3. Suppose that p 1 ≥ p 2 ≥··· ≥ p m > 0, 1/p 1 +1/p 2 + ···+1/p m = 1, B j > 0(j = 1,2, ,m), suppose also that f j ∈ L p j [a,b], B p j j −  b a | f j (x)| p j dx > 0forallj = 1,2, ,m,letB m+1 = B 1 , p m+1 = p 1 , f m+1 = f 1 . Then the following inequality holds true: m  j=1  B p j j −  b a   f j (x)   p j dx  1/p j ≤ m  j=1 B j −  b a  m  j=1   f j (x)    dx− B 1 B 2 ···B m 2p 1 m  j=1   b a    f j (x)   p j B p j j −   f j+1 (x)   p j+1 B p j+1 j+1  dx  2 (4.7) 8 Journal of Inequalities and Applications with equality holding if and only if | f j (x)| p j /B p j j =|f j+1 (x)| p j+1 /B p j+1 j+1 ( j = 1,2, ,m)al- most everywhere on [a,b]. As a consequence of Theorem 4.1,puttingm = 2, p 1 = p, p 2 = q, B 1 = A, B 2 = B, f 1 = f , f 2 = g in (4.1), we obtain the following. Corollary 4.4. Let p ≥ q>0, 1/p+1/q = 1, A>0, B>0,andlet f , g be positive Riemann integrable functions on [a,b] such that A p −  b a f p (x)dx > 0 and B q −  b a g q (x)dx > 0. Then  A p −  b a f p (x) dx  1/p  B q −  b a g q (x) dx  1/q ≤ AB −  b a f (x)g(x)dx − AB p   b a  f p (x) A p − g q (x) B q  dx  2 . (4.8) Further , from Corollary 4.4 we have the following. Corollary 4.5. Let p>0, q>0, 1/p +1/q = 1, A>0, B>0,andlet f , g be positive Riemann integrable functions on [a, b] such that A p −  b a f p (x)dx > 0 and B q −  b a g q (x) dx > 0. Then  A p −  b a f p (x) dx  1/p  B q −  b a g q (x) dx  1/q ≤ AB −  b a f (x)g(x)dx − AB max{p,q}   b a  f p (x) A p − g q (x) B q  dx  2 . (4.9) Acknowledgment The author would like to express hearty thanks to the anonymous referees for valuable comments on this paper. References [1] J. Acz ´ el, “Some general methods in the theory of functional equations in one variable. New applications of functional equations,” Uspekhi Matematicheskikh Nauk (N.S.), vol. 11, no. 3(69), pp. 3–68, 1956 (Russian). [2] Y.J.Cho,M.Mati ´ c, and J. Pe ˇ cari ´ c, “Improvements of some inequalities of Acz ´ el’s type,” Journal of Mathematical Analysis and Applications, vol. 259, no. 1, pp. 226–240, 2001. [3] X H. Sun, “Acz ´ el-Chebyshev type inequality for positive linear functions,” Journal of Mathe- matical Analysis and Applications, vol. 245, no. 2, pp. 393–403, 2000. [4] L.LosoncziandZ.P ´ ales, “Inequalities for indefinite forms,” Journal of Mathematical Analysis and Applications, vol. 205, no. 1, pp. 148–156, 1997. [5] A. M. Mercer, “Extensions of Popoviciu’s inequality using a general method,” Journal of Inequal- ities in Pure and Applied Mathematic s , vol. 4, no. 1, Article 11, pp. 4 pages, 2003. [6] V. Mascioni, “A note on Acz ´ el type inequalities,” Journal of Inequalities in Pure and Applied Math- ematic s, vol. 3, no. 5, Article 69, pp. 5 pages, 2002. [7] S. S. Dragomir and B. Mond, “Some inequalities of Acz ´ el type for Gramians in inner product spaces,” Nonlinear Functional Analysis and Applications, vol. 6, no. 3, pp. 411–424, 2001. [8] R. Bellman, “On an inequality concerning an indefinite form,” The American Mathematical Monthly, vol. 63, no. 2, pp. 108–109, 1956. Shanhe Wu 9 [9] P. M. Vasi ´ candJ.E.Pe ˇ cari ´ c, “On the Jensen inequality for monotone functions,” Analele Uni- versit ˘ at¸ii din Timis¸oara. Seria Matematic ˘ a-Informatic ˘ a, vol. 17, no. 1, pp. 95–104, 1979. [10] J. C. Kuang, Applied Inequalities, Hunan Education Press, Changsha, China, 2nd edition, 1993. [11] D. S. Mitrinovi ´ c, J. E. Pe ˇ cari ´ c,andA.M.Fink,Classical and New Inequalities in Analysis, vol. 61, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993. [12] T. Popoviciu, “On an inequality,” Gazeta Matematica si Fizica. Seria A, vol. 11 (64), pp. 451–461, 1959 (Romanian). [13] S. Wu and L. Debnath, “Generalizations of Acz ´ el’s inequality and Popoviciu’s inequality,” Indian Journal of Pure and Applied Mathematics, vol. 36, no. 2, pp. 49–62, 2005. [14] S. Wu, “A further generalization of Acz ´ el’s inequality and Popoviciu’s inequality,” Mathematical Inequalities and Application, vol. 10, no. 3, 2007. [15] E. F. Beckenbach and R. Bellman, Inequalities, Springer, New York, NY, USA, 1983. [16] G. H. Hardy, J. E. Littlewood, and G. P ´ olya, Inequalities, Cambridge University Press, Cam- bridge, UK, 2nd edition, 1952. Shanhe Wu: Department of Mathematics, Longyan College, Longyan, Fujian 364012, China Email address: wushanhe@yahoo.com.cn . Corporation Journal of Inequalities and Applications Volume 2007, Article ID 72173, 9 pages doi:10.1155/2007/72173 Research Article Improvement of Aczél’s Inequality and Popoviciu’s Inequality Shanhe. Losonczi We generalize and sharpen Acz ´ el’s inequality and Popoviciu’s inequality by means of two classical inequalities, a unified improvement of Acz ´ el’s inequality and Popoviciu’s inequality is. a 1 b 1 −  n  i=2 a i b i  − a 1 b 1 max{p,q,1}  n  i=2  a p i a p 1 − b q i b q 1  2 . (1.4) In this paper, we show a new sharp and generalized version of Popoviciu’s inequal- ity, which is a unified improvement of Acz ´ el’s inequality and Popoviciu’s inequality. In Section 4, the obtained

Ngày đăng: 22/06/2014, 18:20

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan