Báo cáo hóa học: "Research Article A Multidimensional Functional Equation Having Quadratic Forms as Solutions" pptx

8 239 0
Báo cáo hóa học: "Research Article A Multidimensional Functional Equation Having Quadratic Forms as Solutions" pptx

Đang tải... (xem toàn văn)

Thông tin tài liệu

Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2007, Article ID 24716, 8 pages doi:10.1155/2007/24716 Research Article A Multidimensional Functional Equation Having Quadratic Forms as Solutions Won-Gil Park and Jae-Hyeong Bae Received 7 July 2007; Accepted 3 September 2007 Recommended by Vijay Gupta We obtain the general solution and the stability of the m-variable quadratic functional equation f (x 1 + y 1 , ,x m + y m )+ f (x 1 − y 1 , ,x m − y m ) = 2 f (x 1 , ,x m )+2f (y 1 , , y m ). The quadratic form f (x 1 , ,x m ) =  1≤i≤ j≤m a ij x i x j is a solution of the given func- tional equation. Copyright © 2007 W G. Park and J H. Bae. This is an open access article distributed un- der the Creative Commons Attribution License, which permits unrestricted use, dist ribu- tion, and reproduction in any medium, provided the original work is properly cited. 1. Introduction In this paper, let X and Y be real vector spaces. A mapping f is called a quadratic form if there exist a ij ∈ R (1 ≤ i ≤ j ≤ m)suchthat f  x 1 , ,x m  =  1≤i≤ j≤m a ij x i x j (1.1) for all x 1 , ,x m ∈ X. For a mapping f : X m →Y, consider the m-variable quadratic functional equation f  x 1 + y 1 , ,x m + y m  + f  x 1 − y 1 , ,x m − y m  = 2 f  x 1 , ,x m  +2f  y 1 , , y m  . (1.2) When X = Y = R ,thequadraticform f : R m →R given by f  x 1 , ,x m  =  1≤i≤ j≤m a ij x i x j (1.3) is a solution of (1.2). 2 Journal of Inequalities and Applications For a mapping g : X →Y, consider the quadratic functional equation g(x + y)+g(x − y) = 2g(x)+2g(y). (1.4) In 1989, Acz ´ el [1] proposed the solution of (1.4). Later, many different quadratic func- tional equations were solved by numerous authors [2–6]. In this paper, we investigate the relation between (1.2)and(1.4). And we find out the general solution and the generalized Hyers-Ulam stability of (1.2). 2. Results The m-variable quadratic functional equation (1.2) induces the quadratic functional equation (1.4)asfollows. Theorem 2.1. Let f : X m →Y be a mapping satisfying (1.2)andletg : X→Y be the mapping given by g(x): = f (x, ,x) (2.1) for all x ∈ X, then g satisfies (1.4). Proof. By (1.2)and(2.1), g(x + y)+g(x − y) = f (x + y, ,x + y)+ f (x − y, ,x − y) = 2 f (x, ,x)+2f (y, , y) = 2g(x)+2g(y) (2.2) for all x, y ∈ X.  The quadratic functional equation (1.4) induces the m-variable quadratic functional equation (1.2) with a n additional condition. Theorem 2.2. Let a ij ∈ R (1 ≤ i ≤ j ≤ m) and g : X→Y be a mapping satisfying (1.4). If f : X m →Y is the mapping given by f  x 1 , ,x m  := m  i=1 a ii g  x i  + 1 4  1≤i<j≤m a ij  g  x i + x j  − g  x i − x j  (2.3) for all x 1 , ,x m ∈ X, then f satisfies (1.2). Furthermore, (2.1)holdsif  1≤i≤ j≤m a ij = 1. (2.4) W G. Park and J H. Bae 3 Proof. By (1.4)and(2.3), f  x 1 + y 1 , ,x m + y m  + f  x 1 − y 1 , ,x m − y m  = m  i=1 a ii  g  x i + y i  + g  x i − y i  + 1 4  1≤i<j≤m a ij  g  x i + y i + x j + y j  − g  x i + y i − x j − y j  + 1 4  1≤i<j≤m a ij  g  x i − y i + x j − y j  − g  x i − y i − x j + y j  = 2 m  i=1 a ii  g  x i  + g  y i  + 1 4  1≤i<j≤m a ij  g  x i + y i + x j + y j  + g  x i − y i + x j − y j  − 1 4  1≤i<j≤m a ij  g  x i + y i − x j − y j  + g  x i − y i − x j + y j  = 2 m  i=1 a ii  g  x i  + g  y i  + 1 2  1≤i<j≤m a ij  g  x i + x j  + g  y i + y j  − g  x i − x j  − g  y i − y j  = 2 f  x 1 , ,x m  +2f  y 1 , , y m  (2.5) for all x 1 , ,x m , y 1 , , y m ∈ X. Letting x = y = 0andy = x in (1.4), respectively, g(0) = 0, g(2x) = 4g(x) (2.6) for all x ∈ X.By(2.3) and the above two equalities, f (x, ,x) = m  i=1 a ii g(x)+ 1 4  1≤i<j≤m a ij  g(2x) − g(0)  =  1≤i≤ j≤m a ij g(x) = g(x) (2.7) for all x ∈ X.  Example 2.3. The function g : R→R given by g(x) = x 2 satisfies (1.4). By Theorem 2.2 , the quadratic form f : R m →R given by f  x 1 , ,x m  =  1≤i≤ j≤m a ij x i y j (2.8) satisfies (1.2). 4 Journal of Inequalities and Applications Example 2.4. Let g : C→C be the function given by g(z) = zz. Then, it satisfies the qua- dratic functional equation (1.4). If f : C m → C is the mapping given by (2.3), that is, f  z 1 , ,z m  = m  i=1 z i z i  i  j=1 a ji + 1 2 m  j=i+1 a ij  , (2.9) then f satisfies the m-variable quadratic functional equation (1.2). Example 2.5. Let M 2 (R) be the real vector space of all 2×2 real matrices and g : M 2 (R)→R the determinant function given by g(A) = det(A) (2.10) for all A ∈ M 2 (R). Then, it satisfies (1.4). Using (2.3), f : M 2 (R) × M 2 (R)→R is given by f (A, B) = (a 11 +(1/2)a 12 )det(A)+(a 22 +(1/2)a 12 )det(B)(a 11 ,a 12 ,a 21 ,a 22 ∈ R ). Also, f satisfies (1.2). In the following theorem, we find out the general solution of the m-variable quadratic functional equation (1.2). Theorem 2.6. A mapping f : X m →Y satisfies (1.2)ifandonlyifthereexistsymmetric biadditive mappings S 1 , ,S m : X 2 →Y and biadditive mappings M ij : X 2 →Y (1 ≤ i< j≤ m) such that f  x 1 , ,x m  = m  i=1 S i  x i ,x i  +  1≤i<j≤m M ij  x i ,x j  (2.11) for all x 1 , ,x m ∈ X. Proof. We first assume that f is a solution of (1.2). Define f 1 , , f m : X→Y by f 1 (x):= f (x,0, ,0), , f m (x):= f (0, ,0,x)forallx ∈ X. One can easily verify that f 1 , , f m are quadratic. By [1], there exist symmetric biadditive mappings S 1 , ,S m : X 2 →Y such that f 1 (x) = S 1 (x, x), , f m (x) = S m (x, x)forallx ∈ X.DefineM ij : X 2 →Y by M ij (x, y):= f (0, ,0,x,0, ,0,y,0, ,0)− f (0, ,0,x,0, ,0,0,0, ,0) − f (0, ,0,0,0, ,0,y,0, ,0) (2.12) for all i, j with 1 ≤ i<j≤ m and all x, y ∈ X. On the rig ht-hand side of (2.12), x and y are the ith and the jth components, respectively. Then, M ij are biadditive for all i, j with W G. Park and J H. Bae 5 1 ≤ i< j≤ m. Indeed, by (1.2)and(2.12), we obtain M ij  x 1 + x 2 , y  = f  0, ,0,x 1 + x 2 ,0, ,0,y,0, ,0  − f  0, ,0,x 1 + x 2 ,0, ,0,0,0, ,0  − f (0, ,0,0,0, ,0, y,0, ,0) = f  0, ,0,x 1 + x 2 ,0, ,0,y,0, ,0  − 1 2  f  0, ,0,x 1 + x 2 ,0, ,0,y,0, ,0  + f  0, ,0,x 1 + x 2 ,0, ,0,−y,0, ,0  = 1 2  f  0, ,0,x 1 + x 2 ,0, ,0,y,0, ,0  − f  0, ,0,x 1 + x 2 ,0, ,0,−y,0, ,0  = f (0, ,0,x 1 + x 2 ,0, ,0,y,0, ,0) − 1 2  f  0, ,0,x 1 + x 2 ,0, ,0,y,0, ,0  + f  0, ,0,x 1 + x 2 ,0, ,0,−y,0, ,0  = f  0, ,0,x 1 + x 2 ,0, ,0,y,0, ,0  − f  0, ,0,x 1 + x 2 ,0, ,0,0,0, ,0  − f (0, ,0,0,0, ,0, y,0, ,0) = 1 2  2 f  0, ,0,x 1 + x 2 ,0, ,0,y,0, ,0  +2f (0, ,0,0,0, ,0,y,0, ,0) − 2f  0, ,0,x 1 + x 2 ,0, ,0,0,0, ,0  − 2 f (0, ,0,0,0, ,0,y,0, ,0) = 1 2  f  0, ,0,x 1 + x 2 ,0, ,0,2y,0, ,0  − f  0, ,0,x 1 + x 2 ,0, ,0,0,0, ,0  − 2 f (0, ,0,0,0, ,0,y,0, ,0) = 1 2  f  0, ,0,x 1 + x 2 ,0, ,0,2y,0, ,0  + f  0, ,0,x 1 − x 2 ,0, ,0,0,0, ,0  − 1 2  f  0, ,0,x 1 + x 2 ,0, ,0,0,0, ,0  + f  0, ,0,x 1 − x 2 ,0, ,0,0,0, ,0  − 2 f (0, ,0,0,0, ,0,y,0, ,0) = f  0, ,0,x 1 ,0, ,0,y,0, ,0  + f  0, ,0,x 2 ,0, ,0,y,0, ,0  − f  0, ,0,x 1 ,0, ,0,0,0, ,0  − f  0, ,0,x 2 ,0, ,0,0,0, ,0  − 2 f (0, ,0,0,0, ,0,y,0, ,0) = f  0, ,0,x 1 ,0, ,0,y,0, ,0  −  f  0, ,0,x 1 ,0, ,0,0,0, ,0  + f (0, ,0,0,0, ,0,y,0, ,0)  + f  0, ,0,x 2 ,0, ,0,y,0, ,0  −  f  0, ,0,x 2 ,0, ,0,0,0, ,0  + f (0, ,0,0,0, ,0,y,0, ,0  = M ij  0, ,0,x 1 ,0, ,0,y,0, ,0  + M ij  0, ,0,x 2 ,0, ,0,y,0, ,0  (2.13) 6 Journal of Inequalities and Applications for all x 1 ,x 2 , y ∈ X. Similarly, M ij  0, ,0,x,0, ,0,y 1 + y 2 ,0, ,0  = M ij  0, ,0,x,0, ,0,y 1 ,0, ,0  + M ij  0, ,0,x,0, ,0,y 2 ,0, ,0  (2.14) for all x, y 1 , y 2 ∈ X. Conversely, we assume that there exist symmetric biadditive mappings S 1 , ,S m :X 2 →Y and biadditive mappings M ij : X 2 →Y (1 ≤ i< j≤ m)suchthat f  x 1 , ,x m  = m  i=1 S i  x i ,x i  +  1≤i<j≤m M ij  x i ,x j  (2.15) for all x 1 , ,x m ∈ X.SinceM ij (1 ≤ i< j≤ m) are biadditive and S 1 , ,S m are symmetric biadditive, f  x 1 + y 1 , ,x m + y m  + f  x 1 − y 1 , ,x m − y m  = m  i=1 S i  x i + y i ,x i + y i  +  1≤i<j≤m M ij  x i + y i ,x j + y j  + m  i=1 S i  x i − y i ,x i − y i  +  1≤i<j≤m M ij  x i − y i ,x j − y j  = m  i=1  S i  x i ,x i  +2S i  x i , y i )+S i  y i , y i  +  1≤i<j≤m  M ij  x i ,x j  + M ij  x i , y j  + M ij  y i ,x j  + M ij  y i , y j  + m  i=1  S i  x i ,x i  − 2S i  x i , y i  + S i  y i , y i  +  1≤i<j≤m  M ij  x i ,x j  − M ij  x i , y j  − M ij  y i ,x j  + M ij  y i , y j  = 2  m  i=1 S i  x i ,x i  +  1≤i<j≤m M ij  x i ,x j   +2  m  i=1 S i  y i , y i  +  1≤i<j≤m M ij  y i , y j   = 2 f  x 1 , ,x m  +2f  y 1 , , y m  (2.16) for all x 1 , ,x m , y 1 , , y m ∈ X.  Let Y be complete and let ϕ : X 2m →[0,∞) be a function satisfying ϕ  x 1 , ,x m , y 1 , , y m  := ∞  j=0 1 4 j+1 ϕ  2 j x 1 , ,2 j x m ,2 j y 1 , ,2 j y m  < ∞ (2.17) for all x 1 , ,x m , y 1 , , y m ∈ X. W G. Park and J H. Bae 7 Theorem 2.7. Let f : X m →Y be a mapping such that   f  x 1 + y 1 , ,x m + y m  + f  x 1 − y 1 , ,x m − y m  − 2 f  x 1 , ,x m  − 2 f  y 1 , , y m    ≤ ϕ  x 1 , ,x m , y 1 , , y m  (2.18) for all x 1 , ,x m , y 1 , , y m ∈ X. Then, there exists a unique m-variable quadratic mapping F : X m →Y such that   f  x 1 , ,x m  − F  x 1 , ,x m    ≤  ϕ  x 1 , ,x m ,x 1 , ,x m  (2.19) for all x 1 , ,x m ∈ X. The mapping F is given by F  x 1 , ,x m  := lim j→∞ 1 4 j f  2 j x 1 , ,2 j x m  (2.20) for all x 1 , ,x m ∈ X. Proof. Letting y 1 = x 1 , , y m = x m in (2.18), we have     f  x 1 , ,x m  − 1 4  f (0, ,0)+ f  2x 1 , ,2x m      ≤ 1 4 ϕ  x 1 , ,x m ,x 1 , ,x m  (2.21) for all x 1 , ,x m ∈ X. T hus, we obtain     1 4 j f  2 j x 1 , ,2 j x m  − 1 4 j+1  f (0, ,0)+ f  2 j+1 x 1 , ,2 j+1 x m      ≤ 1 4 j+1 ϕ  2 j x 1 , ,2 j x m ,2 j x 1 , ,2 j x m  (2.22) for all x 1 , ,x m ∈ X and all j.Forgivenintegersl, n (0 ≤ l<n), we get     1 4 l f  2 l x 1 , ,2 l x m  − 1 4 n  f (0, ,0)+ f  2 n x 1 , ,2 n x m      n−1  j=l 1 4 j+1 ϕ  2 j x 1 , ,2 j x m ,2 j x 1 , ,2 j x m  (2.23) for all x 1 , ,x m ∈ X.By(2.23), the sequence {(1/4 j ) f (2 j x 1 , ,2 j x m )} is a Cauchy se- quence for all x 1 , ,x m ∈ X.SinceY is complete, the sequence {(1/4 j ) f (2 j x 1 , ,2 j x m )} converges for all x 1 , ,x m ∈ X.DefineF : X m →Y by F  x 1 , ,x m  := lim j→∞ 1 4 j f  2 j x 1 , ,2 j x m  (2.24) 8 Journal of Inequalities and Applications for all x 1 , ,x m ∈ X.By(2.18), we have     1 4 j f  2 j  x 1 + y 1  , ,2 j  x m + y m  + 1 4 j f  2 j  x 1 − y 1  , ,2 j  x m − y m  − 2 4 j f  2 j x 1 , ,2 j x m  − 2 4 j f  2 j y 1 , ,2 j y m      ≤ 1 4 j ϕ  2 j x 1 , ,2 j x m ,2 j y 1 , ,2 j y m  (2.25) for all x 1 , ,x m , y 1 , , y m ∈ X and all j. Letting j→∞ and using (2.17), we see that F sat- isfies (1.2). Setting l = 0 and taking n→∞ in (2.23), one can obtain the inequality (2.19). If G : X m →Y is another m-variable quadratic mapping satisfying (2.19), we obtain   F  x 1 , ,x m  − G  x 1 , ,x m    = 1 4 n   F  2 n x 1 , ,2 n x m  − G  2 n x 1 , ,2 n x m    ≤ 1 4 n   F  2 n x 1 , ,2 n x m  − f  2 n x 1 , ,2 n x m    + 1 4 n   f  2 n x 1 , ,2 n x m  − G  2 n x 1 , ,2 n x m    ≤ 2 4 n ϕ  2 n x 1 , ,2 n x m ,2 n x 1 , ,2 n x m  −→ 0asn −→ ∞ (2.26) for all x 1 , ,x m ∈ X. Hence, the mapping F is the unique m-variable quadratic mapping, as desired.  References [1] J. Acz ´ el and J. Dhombres, Functional Equations in Several Variables, vol. 31 of Encyclopedia of MathematicsandItsApplications, Cambridge University Press, Cambridge, UK, 1989. [2] J H. Bae and K W. Jun, “On the generalized Hyers-Ulam-Rassias stability of an n-dimensional quadratic functional equation,” Journal of Mathematical Analysis and Applications, vol. 258, no. 1, pp. 183–193, 2001. [3] J H. Bae and W G. Park, “On the generalized Hyers-Ulam-Rassias stability in Banach modules over a C ∗ -algebra,” Journal of Mathematical Analysis and Applications, vol. 294, no. 1, pp. 196– 205, 2004. [4] J H. Bae and W G. Park, “On stability of a functional equation with n-variables,” Nonlinear Analysis: Theory, Methods & Applications, vol. 64, no. 4, pp. 856–868, 2006. [5] S M. Jung, “On the Hyers-Ulam stability of the functional equations that have the quadratic property,” Journal of Mathematical Analysis and Applications, vol. 222, no. 1, pp. 126–137, 1998. [6] W G. Park and J H. Bae, “On a bi-quadratic functional equation and its stability,” Nonlinear Analysis: Theory, Methods & Applications, vol. 62, no. 4, pp. 643–654, 2005. Won-Gil Park: National Institute for Mathematical Sciences, 385-16 Doryong-Dong, Yuseong-Gu, Daejeon 305-340, South Korea Email address: wgpark@nims.re.kr Jae-Hyeong Bae: Department of Applied Mathematics, Kyung Hee University, Yongin 449-701, South Korea Email address: jhbae@khu.ac.kr . functional equations that have the quadratic property,” Journal of Mathematical Analysis and Applications, vol. 222, no. 1, pp. 126–137, 1998. [6] W G. Park and J H. Bae, “On a bi -quadratic functional. Hyers-Ulam-Rassias stability in Banach modules over a C ∗ -algebra,” Journal of Mathematical Analysis and Applications, vol. 294, no. 1, pp. 196– 205, 2004. [4] J H. Bae and W G. Park, “On stability. stability of an n-dimensional quadratic functional equation, ” Journal of Mathematical Analysis and Applications, vol. 258, no. 1, pp. 183–193, 2001. [3] J H. Bae and W G. Park, “On the generalized

Ngày đăng: 22/06/2014, 11:20

Mục lục

  • 1. Introduction

  • 2. Results

  • References

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan