Báo cáo hóa học: "Research Article On the Generalized Favard-Kantorovich and Favard-Durrmeyer Operators in Exponential Function Spaces" ppt

12 359 0
Báo cáo hóa học: "Research Article On the Generalized Favard-Kantorovich and Favard-Durrmeyer Operators in Exponential Function Spaces" ppt

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2007, Article ID 75142, 12 pages doi:10.1155/2007/75142 Research Article On the Generalized Favard-Kantorovich and Favard-Durrmeyer Operators in Exponential Function Spaces Grzegorz Nowak and Aneta Sikorska-Nowak Received 18 January 2007; Revised 12 June 2007; Accepted 14 November 2007 Recommended by Ulrich Abel We consider the Kantorovich- and the Durrmeyer-type modifications of the generalized Favard operators and we prove an inverse approximation theorem for functions f such that w σ f ∈ L p (R), where 1 ≤ p ≤∞and w σ (x) =ex p(−σx 2 ), σ>0. Copyright © 2007 G. Nowak and A. Sikorska-Nowak. This is an open access article dis- tributed under the Creative Commons Attribution License, which per mits unrestricted use, distribution, and reproduction in any medium, provided the original work is prop- erly cited. 1. Preliminaries Let L p,σ (R) =  f :   w σ f   p < ∞  for 1 ≤ p ≤∞ (1.1) be the weighted function space, where w σ (x) =ex p(−σx 2 ), σ>0, g p =   ∞ −∞   g(x)   p dx  1/p if 1 ≤ p<∞, g ∞ = essup x∈R   g(x)   . (1.2) We define the generalized Favard operators F n for functions f : R→R by F n f (x) = ∞  k=−∞ f (k/n)p n,k (x; γ)(x ∈R, n ∈ N), (1.3) 2 Journal of Inequalities and Applications where N ={1,2, }, p n,k (x; γ) = 1 nγ n √ 2π exp  − 1 2γ 2 n  k n −x  2  (1.4) and γ = (γ n ) ∞ n=1 is a positive sequence convergent to zero (see [1]). In the case where γ 2 n = ϑ/(2n) with a positive constant ϑ, F n become the known Favard operators intro- duced by Favard [2]. Some approximation properties of the classical Favard operators for continuous functions f on R are presented in [3, 4]. Some approximation properties of their generalization can be found, for example, in [1, 5]. Denote by F ∗ n the Kantorovich- type modification of operators F n ,definedby F ∗ n f (x) = n ∞  k=−∞ p n,k (x; γ)  (k+1)/n k/n f (t)dt (x ∈R, n ∈ N), (1.5) and by  F n the Durrmeyer-type modification of operators F n  F n f (x) = n ∞  k=−∞ p n,k (x; γ)  ∞ −∞ p n,k (t;γ) f (t)dt (x ∈R, n ∈ N), (1.6) where f ∈ L p,σ (R). Some estimates concerning the rates of pointwise convergence of the operators F ∗ n f and  F n f can be found in [6, 7]. Recently, several autors investigated the conditions under which global smoothness of a function f , as measured by its modulus of continuity ω( f ; ◦), is retained by the elements of approximating sequences (L n f ) (see, e.g., [8, 9]). For example, Kratz and Stadtm ¨ uller considered in [10]awideclassofdiscreteoperatorsL n and derived estimates of the form ω  L n f ;t  ≤ Kω( f ;t)(t>0), (1.7) with a positive constant K independent of f ,n,andt. For bounded functions f ∈ C(R) and operators F n satisfying γ 2 1 ≥ 1 2 π −2 log2, n 2 γ 2 n ≥ 1 2 π −2 logn if n ≥2, (1.8) they obtained the inequality ω(F n f ;t) ≤ 140ω( f ;t)+16π·tf  (t>0), (1.9) where f =sup{|f (x)| : x ∈ R}. Forbounded functions f ∈ C m (R) ={f : w m f  ∞ < ∞}, w m (x) = (1 + x 2m ) −1 , m ∈ N and for operators F n satisfying nγ 2 n ≥ c>0foralln ∈ N, Pych-Taberska [5]obtainedthe inequality ω 2  F n f ;t  m ≤ K  (1 +t 2 0 )ω 2 ( f ;t) m + t 2 f  m  (0 <t≤ t 0 ) (1.10) for all n ∈ N, n ≥n c where n c ∈ N and K is a constant. G. Nowak and A. Sikorska-Nowak 3 In this paper, we obtained an analogous inequality for the rth weighted modulus of smoothness of the function f ∈ L p,σ (R),σ>0,1 ≤ p ≤∞, ω r ( f ;t) σ,p = sup 0<h≤t   w σ Δ r h f  p (r ∈ N), (1.11) where Δ r h f (x) = r  i=0  r i  (−1) i f  x + h  r/2 −i  . (1.12) Namely, suppose that (γ n ) is a positive null sequence satisfying nγ r/2+1 n ≥ c max n∈N {γ r/2−1 n } > 0foralln ∈ N and σ 1 >σ>0. Then there exist positive constants, K,K 1 , such that for all n ≥K 1 and for arbitrary positive number t 0 ω r  L n f ,t  σ 1 ,p ≤ K  (1 +t 2 0 )ω r ( f ,t) σ,p + t r   w σ f   p   0 <t≤ t 0  , (1.13) where L n denotes the Favard-Kantorovich operator or the Favard-Durrmeyer operator. Throughout the paper, the sy mbols K(σ,σ 1 , ), K j (σ,σ 1 , )(j = 1,2, )willmean some positive constants, not necessarily the same at each occurrence, depending only on the parameters indicated in parentheses. 2. Preliminary results Let γ = (γ n ) ∞ n=1 be a positive sequence and let nγ 2 n ≥ c for all n ∈N, with a positive abso- lute constant c.Asisknown[5], for v ∈ N 0 ={0}∪N, n ∈ N, x ∈ R, ∞  k=−∞     k n −x     v p n,k (x; γ) ≤ 15A c  2 e  v/2  (2v)!γ v n , (2.1) where A c = max {1,(2cπ 2 ) −1 }. A simple calculation and the known Schwarz inequality lead to  ∞ −∞     k n −t     v p n,k (t;γ)dt ≤  (2v)!! γ v n n  k ∈ Z =  0,±1,±2,  . (2.2) Let us choose n ∈ N, j ∈ N 0 and let us write G ∗ n, j f (x) = n ∞  k=−∞ p n,k (x; γ)  k n −x  j  (k+1)/n k/n f (t)dt, (2.3)  G n, j f (x) = n ∞  k=−∞ p n,k (x; γ)  k n −x  j  ∞ −∞ p n,k (t;γ) f (t)dt, (2.4) where f ∈ L p,σ (R), 1 ≤ p ≤∞, σ>0. Obviously, G ∗ n,0 f (x) = F ∗ n f (x)and  G n,0 f (x) =  F n f (x). 4 Journal of Inequalities and Applications Lemma 2.1. Let γ = (γ n ) ∞ n=1 beapositivesequenceconvergentto0andletnγ 2 n ≥ c for all n ∈ N, with a positive absolute constant c.Thenforj ∈N 0 , f ∈ L p,σ (R), σ>0, 1 ≤ p ≤∞, and σ 1 >σ,   w σ 1 G ∗ n, j f   p ≤ 15A c exp  σ 1  σ + σ 1  σ 1 −σ    2 j  !2 j/2 γ j n   w σ f   p (2.5) for all n ∈ N such that γ 2 n ≤ (σ 1 −σ)/(4σ(σ + σ 1 )),   w σ 1  G n, j f   p ≤ 30A c  (2 j)!2 j/2 γ j n   w σ f   p (2.6) for all n ∈ N such that γ n ≤ max{(σ 1 −σ)/(2 √ σ(σ + σ 1 ));( √ σ 1 −σ)/( √ 2(σ + σ 1 ))}. Proof. In view of definition (2.3), exp  − σ 1 x 2  | G ∗ n, j f (x)|≤n ∞  k=−∞ exp  − σ 1 x 2  p n,k (x; γ)     k n −x     j × exp  σ(|k|+1  2 /n 2   (k+1)/n k/n exp  − σt 2  | f (t)|dt. (2.7) Using the inequality (u +v) 2 ≤ σ + σ 1 2σ u 2 + σ + σ 1 σ 1 −σ v 2 (u ∈ R, v ∈ R), (2.8) we can easily observe, that p n,k (x; γ)exp  − σ 1 x 2  exp  σ  k +1 n  2  ≤ √ 2exp  σ 1 (σ + σ 1 ) σ 1 −σ  p n,k  x; √ 2γ  , p n,k (x; γ)exp  − σ 1 x 2  exp  σ  k n  2  ≤ √ 2p n,k  x; √ 2γ  , (2.9) for n ∈ N such that γ 2 n ≤ (σ 1 −σ)/(4σ(σ + σ 1 )) (see [9]), where the symbol √ 2γ means the sequence ( √ 2γ n ) ∞ n=1 . Therefore, exp( −σ 1 x 2 )   G ∗ n, j f (x)   ≤ exp  σ 1  σ + σ 1  σ 1 −σ  √ 2n ∞  k=−∞ p n,k  x; √ 2γ  ×     k n −x     j  (k+1)/n k/n exp  − σt 2  | f (t)|dt. (2.10) From (2.2), we have   w σ 1 G ∗ n, j f   1 ≤ exp  σ 1  σ + σ 1  σ 1 −σ    2 j  !!( √ 2) j+1 γ j n   w σ f   1 . (2.11) G. Nowak and A. Sikorska-Nowak 5 Instead, for p =∞,from(2.1) it follows that   w σ 1 G ∗ n, j f   ∞ ≤ √ 2exp  σ 1  σ + σ 1  σ 1 −σ    w σ f   ∞ essup x∈R  ∞  k=−∞ p n,k  x; √ 2γ      k n −x     j  ≤ 15 √ 2A c exp  σ 1  σ + σ 1  σ 1 −σ   2 j  2 j  !γ j n w σ f  ∞ . (2.12) Finally, by Riesz-Thorin theorem, we have (2.5). In view of definition (2.4) and the inequality p n,k (x; γ)p n,k (t;γ)exp(−σ 1 x 2 )exp(σt 2 ) ≤ 2p n,k (x; √ 2γ)p n,k (t; √ 2γ), (2.13) for n ∈ N such that γ n ≤ max{(σ 1 −σ)/(2 √ σ(σ + σ 1 )); √ σ 1 −σ/( √ 2(σ + σ 1 ))} (see [6]), we have exp  − σ 1 x 2     G n, j f (x)   ≤ 2n ∞  k=−∞ p n,k  x; √ 2γ      k n −x     j  ∞ −∞ exp  − σt 2  p n,k  √ 2t;γ    f (t)   dt. (2.14) Applying (2.1)and(2.2), we get w σ 1  G n, j f  1 ≤ 30A c  (2 j)!!γ j n 2 j/2 w σ f  1 , w σ 1  G n, j f  ∞ ≤ 30A c  (2 j)!γ j n 2 j/2 w σ f  ∞ . (2.15) Finally, by Riesz-Thorin theorem, we have (2.6). Further , for δ>0, x ∈ R,andr ∈N we define Stieklov function of f f (δ,2r) (x) = 1 δ 2r 2  2r r   δ/2 −δ/2 ···  δ/2 −δ/2 r  i=1  2r r −i  (−1) i−1 f  x + i  t 1 + ···+ t 2r  dt 1 ···dt 2r . (2.16)  Lemma 2.2. For all r = 1,2, , 0 <δ≤1, σ 1 >σ>0, 1 ≤ p ≤∞,andx ∈ R,   w σ 1 f (r) (δ,2r)   p ≤ K  r,σ,σ 1  1 δ r ω r ( f ;δ) σ,p , (2.17)   w σ 1  f (δ,2r) − f    p ≤ K  r,σ,σ 1  ω r ( f ;δ) σ,p . (2.18) Proof. It is easy to see by induction that f (r) (δ,2r) (x) = 2  2r r  r  i=1 (−1) i−1  2r r −i  1 (iδ) 2r ×  iδ/2 −iδ/2 ···  iδ/2 −iδ/2 Δ r iδ f  x + u 1 + ···+ u r  du 1 ···du r . (2.19) 6 Journal of Inequalities and Applications Let σ 2 = (2σ 1 + σ)/3. In view of the inequality exp  − σ 1 x 2 + σ 2 (x + u) 2  ≤ exp  σ 2 σ 1 σ 1 −σ 2 u 2  , (2.20) where 0 <δ ≤ 1andu = u 1 + ···+ u r ,(u ≤r 2 /2), we have   w σ 1 f (r) (δ,2r)   p ≤ 2  2r r  exp  σ 1 σ 2 σ 1 −σ 2 r 4 4  r  i=1  2r r −i  1 (iδ) r w σ 2 Δ r iδ f  p . (2.21) Applying the Minkowski inequality and the fact that for 0 ≤ l i ≤ i −1(0≤i ≤ r), 0 <h≤ 1, exp  − σ 2 x 2 + σ  x + h  l 1 + ···+ l r − r(i −1) 2  2  ≤ exp  σσ 2 σ 2 −σ  r(i −1) 2  2  , (2.22) we obtain   w σ 2 Δ r iδ f   p =sup |h|≤δ   ∞ −∞     exp  − σ 2 x 2  i−1  l 1 =0 ··· i−1  l r =0 Δ r h f  x+h  l 1 + ···+ l r − r(i −1) 2      p dx  1/p ≤ exp  σσ 2 σ 2 −σ r 2 (i −1) 2 4  i r ω r ( f ;δ) σ,p . (2.23) So (2.17) is evident. It is easy to see that f (δ,2r) (x) − f (x) = (−1) r−1 δ 2r 1  2r r   δ/2 −δ/2 ···  δ/2 −δ/2 Δ 2r t 1 +···+t 2r f (x)dt 1 ···dt 2r . (2.24) By Minkowski inequality, for 1 ≤ p ≤∞,wehave(2.18).  Lemma 2.3. Suppose that γ = (γ n ) ∞ n=1 is a positive sequence convergent to 0 and that nγ r/2+1 n ≥ cK(r),wherer ∈ N, r ≥ 2, K(r) = max n∈N {γ r/2−1 n }, c is a positive absolute con- stant and let a r = 1 for even r and a r = 2 for odd r.Thenfor f ∈L p,σ (R), σ>0, 1 ≤ p ≤∞ and σ 1 >σ,wehave   w σ 1  F ∗ n f  (r) −(n/a r ) r F ∗ n Δ r a r /n f    p ≤ K(σ,σ 1 ,c,r)   w σ f   p (2.25) for all n ∈ N such that γ 2 n ≤ (σ 1 −σ)/(4σ(σ + σ 1 )) and nγ n > 4a 2 r r 2 ,and   w σ 1   F n f  (r) −(n/a r ) r  F n Δ r a r /n f    p ≤ K(σ,σ 1 ,c,r)   w σ f   p (2.26) for all n ∈ N such that γ n ≤ max{(σ 1 − σ)/(2 √ σ(σ + σ 1 )); √ σ 1 −σ/( √ 2(σ + σ 1 ))} and nγ n >r 2 /4. G. Nowak and A. Sikorska-Nowak 7 Proof. We consider an even r.Letr = 2r 1 , r 1 ∈ N, x ∈ R.Then n r F ∗ n  Δ r 1/n f (x)  = n 2r 1 +1 ∞  k=−∞ p n,k (x; γ) 2r 1  i=0  2r 1 i  (−1) i  (k+r 1 −i+1)/n (k+r 1 −i)/n f (t)dt = n 2r 1 +1 r 1 −1  i=0  2r 1 i  (−1) i × ∞  k=−∞  p n,k−(r 1 −i) (x; γ)+p n,k+(r 1 −i) (x; γ)   (k+1)/n k/n f (t)dt + n 2r 1 +1 ∞  k=−∞ ⎛ ⎝ 2r 1 r 1 ⎞ ⎠ (−1) r 1 p n,k (x; γ)  (k+1)/n k/n f (t)dt. (2.27) It is easy to see that p n,k−(r 1 −i) (x; γ)+p n,k+(r 1 −i) (x; γ) =p n,k (x; γ)  exp  r 1 −i nγ 2 n  k n −x  − (r 1 −i) 2 2n 2 γ 2 n  +exp  − r 1 −i nγ 2 n  k n −x  − (r 1 −i) 2 2n 2 γ 2 n  = p n,k (x; γ) ∞  l=1 (−1) l l! [l/2]  j=0  l 2 j  2 2j+1−l  k n −x  2j n 2j−2l γ −2l n (r 1 −i) 2l−2 j +2p n,k (x; γ). (2.28) Consequently, using definition (2.3), we get n r F ∗ n  Δ r 1/n f (x)  = 2r 1  l=1 [l/2]  j=0 n 2(r 1 +j−l) γ −2l n (−1) l 2 2j+1−l  2 j  !  l −2 j  ! × r 1 −1  i=0  2r 1 i  (−1) i  r 1 −i  2l−2 j G ∗ n,2j f (x) + ∞  l=2r 1 +1 [l/2]  j=0 n 2(r 1 +j−l) γ −2l n (−1) l 2 2j+1−l  2 j  !  l −2 j  ! × r 1 −1  i=0  2r 1 i  (−1) i  r 1 −i  2l−2 j G ∗ n,2j f (x) = S n,1 f (x)+S n,2 f (x). (2.29) 8 Journal of Inequalities and Applications In view of (2.5) and using Stirling formula, we obtain   w σ 1 S n,2 f   p ≤ K 1  σ,σ 1 ,c    w σ f   p 4 r 1 n 2r 1 ∞  l=2r 1 +1 r 2l 1 n 2l γ 2l n 2 l [l/2]  j=0  (4 j  !2 j  2 j  !  l −2 j  ! n 2j γ 2j n 4 j r −2j 1 ≤ K 2  σ,σ 1 ,c,r    w σ f   p n 2r 1 ∞  l=2r 1 +1  r 2 1 /2) l (n 2 γ 2 n ) l [l/2]  j=0  n 2 γ 2 n  j 64 j ≤ K 3  σ,σ 1 ,c,r    w σ f   p   16r 2 1  2r 1 +1 n 2 γ 2r 1 +2 n + n 2r 1 ∞  l=2r 1 +2  16r 2 1 nγ n  l  . (2.30) Assuming (16r 2 1 )/(nγ n ) < 1 and using the condition nγ r 1 +1 n ≥ cK(r), we get w σ 1 S n,2 f  p ≤ K 4 (σ,σ 1 ,c,r)w σ f  p . (2.31) Now observe that r 1 −1  i=0  2r 1 i  (−1) i  r 1 −i  2s = ⎧ ⎨ ⎩ 0if0<s<r 1 , (2r 1 )!/2ifs = r 1 . (2.32) The equality follows simply from properties of finite differences since the left-hand side of the equation is a half of the finite difference of the polynomial (r 1 −x) 2s . Therefore, S n,1 f (x) = 2r 1  l=r 1 (−1) l 2 2j+1−l l!n 2l−2 j−2r 1 γ 2l n  l 2 j  r 1 −1  i=0  2r 1 i  (−1) i  r 1 −i  2l−2 j G ∗ n,2j f (x) = r 1  l=0 l −1  j=0 (−1) r 1 +l 2 2j+1−l−r 1 (r 1 + l)!n 2l−2 j γ 2l+2r 1 n  r 1 + l 2 j  r 1 −1  i=0  2r 1 i  (−1) i  r 1 −i  2r 1 +2l−2 j G ∗ n,2j f (x) + r 1  l=0 (−1) 2r 1 −l γ 4r 1 −2l n  2r 1  ! 2 l l!  2r 1 −2l  ! G ∗ n,2j f (x). (2.33) It is easy to see, by the method of induction, that p (v) n,k (x; γ) = p n,k (x; γ) [v/2]  i=0 v!(−1) i (v −2i)!(2i)!! 1 γ 2v−2i n  k n −x  v−2i , v ∈ N. (2.34) Therefore, S n,1 f (x) = r 1  l=0 l −1  j=0 (−1) r 1 +l 2 2j+1−l−r 1  r 1 + l  !n 2l−2 j γ 2l+2r 1 n  r 1 + l 2 j  r 1 −1  i=0  2r 1 i  (−1) i  r 1 −i  2r 1 +2l−2 j G ∗ n,2j f (x) +  F ∗ n f (x)  (2r 1 ) . (2.35) G. Nowak and A. Sikorska-Nowak 9 Consequently, from (2.29)   (F ∗ n f ) (2r 1 ) (x) −n 2r 1 F ∗ n Δ 2r 1 1/n f (x)   ≤ K 5 (r) r 1 −1  j=0 r 1  l=j+1 n 2j (nγ n ) 2l γ 2r 1 n   G ∗ n,2j f (x)   +   S n,2 f (x)   . (2.36) The condition nγ r 1 +1 n ≥ cK(r) and the boundedness of the sequence (γ n )leadto    F ∗ n f  (2r 1 ) (x) −n 2r 1 F ∗ n Δ 2r 1 1/n f (x)   ≤ K 6 (r,c) r 1 −1  j=0 γ −2j n   G ∗ n,2j f (x)|+   S n,2 f (x)   . (2.37) Collecting the results we get estimate (2.25)forevenr, immediately. Now, we will prove inequality (2.25)foroddr.Namely,letr = 2r 2 +1,r 2 ∈ N, x ∈R. Then n r F ∗ n  Δ r 2/n f (x)  = n 2r 2 +2 r 2  i=0 ∞  k=−∞  2r 2 +1 i  (−1) i ×  p n,k−(2r 2 +1−2i) (x; γ) − p n,k+(2r 2 +1−2i) (x; γ)   (k+1)/n k/n f (t)dt. (2.38) It is easy to see that p n,k−(2r 2 +1−2i) (x; γ) − p n,k+(2r 2 +1−2i) (x; γ) = p n,k (x; γ) ∞  l=1 (−1) l+1 l! [(l−1)/2]  j=0  l 2 j +1  2 2j+2−l  k n −x  2j+1 n 2j+1−2l γ 2l n  2r 2 +1−2i  2j−2l+1 . (2.39) Consequently, n r F ∗ n (Δ r 2/n f (x)) = 2r 2 +1  l=1 n 2r 2 +2 [(l −1)/2]  j=0 n 2j−2l γ −2l n (−1) l+1 2 2j+2−l (2 j +1)!(l −2 j −1)! × r 2  i=0  2r 2 +1 i  (−1) i (2r 2 +1−2i) 2l−2 j−1 G ∗ n,2j+1 f (x) + ∞  l=2r 2 +2 n 2r 2 +2 [(l −1)/2]  j=0 n 2j−2l γ −2l n (−1) l+1 2 2j+2−l (2 j +1)!(l −2 j −1)! × r 2  i=0  2r 2 +1 i  (−1) i (2r 2 +1−2i) 2l−2 j−1 G ∗ n,2j+1 f (x) = S ∗ n,1 f (x)+S ∗ n,2 f (x). (2.40) Some simple calculation, Stirling formula and (2.5)give   w σ 1 S ∗ n,2 f   p ≤ K 7 (σ,σ 1 ,c,r)   w σ f   p (2.41) 10 Journal of Inequalities and Applications for n ∈ N such that (16r 2 )/(nγ n ) < 1.Next,inviewof(2.25) and the equality r 2  i=0  2r 2 +1 i  (−1) i  r 2 −i+1/2  2s−1 = ⎧ ⎨ ⎩ 0if0<s<r 2 +1,  2r 2 +1  !/2ifs = r 2 +1 (2.42) we obtain S ∗ n,1 f (x) = r 2  l=0 l −1  j=0 (−1) r 2 +l 2 2j+1−l−r 2 (2 j +1)!  l + r 2 −2j  ! n 2j−2l γ −2l−2r 2 −2 n × r 2  i=0  2r 2 +1 i  (−1) i  2r 2 +1−2i  2r 2 +2l−2 j+1 ×G ∗ n,2j+1 f (x)+2 2r 2 +1 (F ∗ n f ) (2r 2 +1) (x) . (2.43) Using (2.40) and the condition nγ r 2 +3/2 n ≥ cK(r), we have   (F ∗ n f ) (2r 2 +1) (x) −(n/2) 2r 2 +1 F ∗ n Δ 2r 2 +1 2/n f (x)   ≤ K 8 (r,c) r 2 −1  j=0 1 γ 2j+1 n   G ∗ n,2j+1 f (x)   +   S ∗ n,2 f (x)   . (2.44) Applying (2.5), we get (2.25)foroddr. Therefore, inequality (2.25)isproved. Now we will prove (2.26). Let r = 2r 1 , r 1 ∈ N. A simple calculation and the equality p n,k (t −(r 1 −i)/n;γ) = p n,k+r 1 −i (t;γ)give n r  F n  Δ r 1/n f (x)  = n 2r 1 +1 r 1 −1  i=0 ∞  k=−∞  2r 1 i  (−1) i  p n,k−(r 1 −i) (x; γ)+p n,k+(r 1 −i) (x; γ)  ×  ∞ −∞ p n,k (t;γ) f (t)dt + n 2r 1 +1 ∞  k=−∞  2r 1 r 1  (−1) i p n,k (x; γ) ×  ∞ −∞ p n,k (t;γ) f (t)dt. (2.45) The estimate (2.26) follows now the same way as ( 2.25).  3. Main result Theorem 3.1. Suppose that r ∈ N, (γ n ) is a positive null sequence satisfying nγ r/2+1 n ≥ cK(r) for all n ∈ N with some c>0 where K(r) = max n∈N {γ r/2−1 n }. Then there exists a constant K>0, such that for all f ∈ L p,σ (R), σ 1 >σ>0, 1 ≤ p ≤∞,andforanarbitrary positive number t 0 , ω r  F ∗ n f ,t  σ 1 ,p ≤ K  σ,σ 1 ,r,c  1+t 2 0  ω r ( f ,t) σ,p + t r   w σ f   p  0 <t≤ t 0  (3.1) for all n ∈ N such that γ 2 n ≤ (σ 1 −σ)/(4σ(σ + σ 1 )) and nγ n > 16r 2 ,and ω r   F n f ,t  σ 1 ,p ≤ K  σ,σ 1 ,r,c  1+t 2 0  ω r ( f ,t) σ,p + t r   w σ f   p  0 <t≤ t 0  (3.2) [...]... Commentarii Mathematici, vol 29, pp 103–112, 2001 [8] G A Anastassiou, C Cottin, and H H Gonska, “Global smoothness of approximating functions,” Analysis, vol 11, no 1, pp 43–57, 1991 [9] G Nowak, “Direct theorems for generalized Favard-Kantorovich and Favard-Durrmeyer operators in exponential function spaces,” to appear in Ukrainian Mathematical Journal [10] W Kratz and U Stadtm¨ ller, On the uniform... Pych-Taberska, On the generalized Favard operators, ” Functiones et Approximatio Commentarii Mathematici, vol 26, pp 265–273, 1998 [6] P Pych-Taberska and G Nowak, “Approximation properties of the generalized FavardKantorovich operators, ” Commentationes Mathematicae, vol 39, pp 139–152, 1999 [7] G Nowak and P Pych-Taberska, “Some properties of the generalized Favard-Durrmeyer operators, ” Functiones et Approximatio... Consequently by (2.17), (2.18) and assuming now 0 < t ≤ t0 , we have ∗ ωr Fn f ,t σ 1 ,p ≤ K σ,σ 1 ,r,c r 1 + t0 ωr ( f ;t)σ,p + t r wσ f p (3.10) On the same way we can prove (3.2) for Fn f , using (2.6) and (2.26) References [1] W Gawronski and U Stadtm¨ ller, “Approximation of continuous functions by generalized u Favard operators, ” Journal of Approximation Theory, vol 34, no 4, pp 384–396, 1982... “Sur les multiplicateurs d’interpolation,” Journal de Math´matiques Pures et Appliqu´es, e e vol 23, pp 219–247, 1944 [3] M Becker, P L Butzer, and R J Nessel, “Saturation for Favard operators in weighted function spaces,” Studia Mathematica, vol 59, no 2, pp 139–153, 1976 [4] M Becker, “Inverse theorems for Favard operators in polynomial weight spaces,” Commentationes Mathematicae, vol 22, no 2, pp... modulus of continuity of certain discrete approxu imation operators, ” Journal of Approximation Theory, vol 54, no 3, pp 326–337, 1988 Grzegorz Nowak: Higher School of Marketing and Management, Ostroroga 9a, 64-100 Leszno, Poland Email address: grzegnow@amu.edu.pl Aneta Sikorska-Nowak: Faculty of Mathematics and Computer Science, ´ Adam Mickiewicz University, Umultowska 87, 61-614 Poznan, Poland Email...G Nowak and A Sikorska-Nowak 11 √ √ √ for all n ∈ N such that γn ≤ max {(σ 1 − σ)/(2 σ(σ + σ 1 )); σ 1 − σ/( 2(σ + σ 1 ))} and nγn > r 2 /4 Proof Let σ 2 = (3σ 1 + σ)/4 In view of the inequality exp − σ 1 x2 + σ 2 (x + u)2 ≤ exp σ 2σ 1 2 u σ1 − σ2 (u ∈ R) (3.3) and the generalized Minkowski inequality it is easy to see that for 0 < h ≤ 1 wσ 1 Δr f h... (2.25), and (3.4) Let (r) p ∗ Fn f(δ,2r) ≤ K σ 2 ,σ 3 ,r,c (r) ∗ − n/ar )Fn Δr r /n f(δ,2r) a wσ 3 f(δ,2r) p (r) + wσ 3 f(δ,2r) p p ∗ + nr wσ 2 Fn Δr r /n f(δ,2r) a p (3.8) Using (2.5) for j = 0 and (3.7) we have ∗ ωr Fn f ,t σ 1 ,p ≤ K σ,σ 1 ,r,c wσ 3 ( f − f(δ,2r) ) p (r) + t r wσ 3 f(δ,2r) p + t r wσ 3 f(δ,2r) p (3.9) 12 Journal of Inequalities and Applications Consequently by (2.17), (2.18) and assuming... 2 f (3.5) p Applying these inequalities, we get wσ 1 Δr f h p ≤ wσ 1 Δr f − f(δ,2r) h r2 σ 2σ 1 ≤ 2r exp 4 σ1 − σ2 + wσ 1 Δr f(δ,2r) h p wσ 2 ( f − f(δ,2r) ) p p (r) + hr wσ 2 f(δ,2r) p (3.6) , where f(δ,2r) (x) (δ > 0, x ∈ R, r ∈ N) is defined by (2.16) ∗ Hence, applying this inequality for Fn f we have ∗ ωr Fn f ,t σ 1 ,p ≤ 2r exp ∗ Hence, wσ 2 (Fn f(δ,2r) )(r) σ 3 = (2σ 1 + σ)/3, then ∗ wσ 2 Fn f(δ,2r) . oper- ators in exponential function spaces,” to appear in Ukrainian Mathematical Journal. [10] W. Kratz and U. Stadtm ¨ uller, On the uniform modulus of continuity of certain discrete approx- imation operators, ”. by Ulrich Abel We consider the Kantorovich- and the Durrmeyer-type modifications of the generalized Favard operators and we prove an inverse approximation theorem for functions f such that w σ f. approximation properties of the classical Favard operators for continuous functions f on R are presented in [3, 4]. Some approximation properties of their generalization can be found, for example, in

Ngày đăng: 22/06/2014, 06:20

Từ khóa liên quan

Mục lục

  • 1. Preliminaries

  • 2. Preliminary results

  • 3. Main result

  • References

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan