Báo cáo hóa học: " Research Article A Perturbed Ostrowski-Type Inequality on Time Scales for k Points for Functions Whose Second Derivatives Are Bounded" doc
Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
507,05 KB
Nội dung
Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2008, Article ID 597241, 12 pages doi:10.1155/2008/597241 ResearchArticleAPerturbedOstrowski-TypeInequalityonTimeScalesforkPointsforFunctionsWhoseSecondDerivativesAre Bounded Wenjun Liu, 1 Qu ´ ˆoc Anh Ng ˆ o, 2, 3 and Wenbing Chen 1 1 College of Mathematics and Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China 2 Department of Mathematics, College of Science, Viet Nam National University, Hanoi, Vietnam 3 Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543 Correspondence should be addressed to Wenjun Liu, wjliu@nuist.edu.cn Received 6 May 2008; Accepted 13 August 2008 Recommended by Kunquan Lan We first derive aperturbedOstrowski-typeinequalityontimescalesforkpointsforfunctionswhosesecondderivativesare bounded and then unify corresponding continuous and discrete versions. We also point out some particular perturbed integral inequalities ontimescalesforfunctionswhosesecondderivativesare bounded as special cases. Copyright q 2008 Wenjun Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction The following integral inequality which was first proved by Ostrowski in 1938 has received considerable attention from many researchers 1–9. Theorem 1.1. Let f : a, b → R be continuous on a, b and differentiable in a, b and its derivative f : a, b → R is bounded on a, b, that is, f ∞ : sup t∈a,b |f x| < ∞.Then for any x ∈ a, b, the following inequality holds: fx − 1 b − a b a ftdt ≤ 1 4 x − a b/2 2 b − a 2 b − af ∞ . 1.1 The inequality is sharp in the sense that the constant 1/4 cannot be replaced by a smaller one. In 1988, Hilger 10 developed the theory of timescales as a theory capable to contain both difference and differential calculus in a consistent way. Since then, many authors have 2 Journal of Inequalities and Applications studied the theory of certain integral inequalities ontime scales. For example, we refer the reader to 11–18.In15, Bohner and Matthews established the following so-called Ostrowski inequalityontime scales. Theorem 1.2 see 15, Theorem 3.5. Let a, b, x, t ∈ T, a<b, and f : a, b → R be differentiable. Then b a f σ tΔt − fxb − a ≤ Mh 2 x, ah 2 x, b, 1.2 where h k ·, · is defined by Definition 2.9 below and M sup a<x<b |f Δ x|. This inequality is sharp in the sense that the right-hand side of 1.1 cannot be replaced by a smaller one. Liu and Ng ˆ o then generalize the above Ostrowski inequalityontimescalesforkpoints x 1 ,x 2 , ,x k in 19. They also extended the result by considering functionswhosesecondderivativesare bounded in 20. They obtained the following theorem. Theorem 1.3. Let a, b, x, t ∈ T, a<b, and f : a, b → R be a twice differentiable function on a, b and f ΔΔ : a, b → R bounded, that is, M : sup a<t<b |f ΔΔ x| < ∞.Then b a f σ tΔt − f σ xb − ah 2 x, a − h 2 x, bf Δ x ≤ Mh 3 x, a − h 3 x, b. 1.3 Theorem 1.3 may be thought of as aperturbed version of Theorem 1.2. In the present paper we will first derive aperturbedOstrowski-type i nequality ontimescalesforkpoints x 1 ,x 2 , ,x kforfunctionswhosesecondderivativesare bounded and then unify corresponding continuous and discrete versions. We also point out some particular perturbed integral inequalities ontimescalesforfunctionswhosesecondderivativesare bounded as special cases. 2. Timescales essentials In this section, we briefly introduce the timescales theory and refer the reader to Hilger 10 and the books 21–23 for further details see also 19, 20. Definition 2.1. Atime scale T is an arbitrary nonempty closed subset of the real numbers. Definition 2.2. For t ∈ T, one defines the forward jump operator σ : T → T by σtinf{s ∈ T : s>t}, while the backward jump operator ρ : T → T is defined by ρtsup{s ∈ T : s<t}. In this definition, we put inf ∅ sup T i.e., σtt if T has a maximum t and sup ∅ inf T i.e., ρt t if T has a minimum t, where ∅ denotes the empty set. If σt >t, then we say that t is right-scattered, while if ρt <t, then we say that t is left-scattered.Points that are right-scattered and left-scattered at the same timeare called isolated. If σtt and t<sup T, then t is called right dense,andifρtt and t>inf T, then t is called left dense. Points that are both right dense and left dense are called dense. Wenjun Liu et al. 3 Definition 2.3. Let t ∈ T, then two mappings μ, ν : T → 0, ∞ satisfying μt : σt − t, νt : t − ρt2.1 are called the graininess functions. We now introduce the set T κ which is derived from the timescales T as follows. If T has a left-scattered maximum t, then T κ : T −{t}, otherwise T κ : T. Furthermore, fora function f : T → R, we define the function f σ : T → R by f σ tfσt for all t ∈ T. Definition 2.4. Let f : T → R be a function ontime scales. Then for t ∈ T κ , one defines f Δ t to be the number, if one exists, such that for all ε>0 there is a neighborhood U of t such that for all s ∈ U f σ t − fs − f Δ tσt − s ≤ ε|σt − s|. 2.2 We say that f is Δ-differentiable on T κ provided f Δ t exists for all t ∈ T κ . We talk about the second derivative f ΔΔ provided f Δ is differentiable on T κ 2 T κ κ with derivative f ΔΔ f Δ Δ : T κ 2 → R. Definition 2.5. A mapping f : T → R is called rd-continuous denoted by f ∈ C rd provided that it satisfies 1 f is continuous at each right-dense point of T; 2 the left-sided limit lim s → t− fsft− exists at each left-dense point t of T. Remark 2.6. It follows from Theorem 1.74 of Bohner and Peterson 21 that every rd- continuous function has an antiderivative. Definition 2.7. A function F : T → R is called a Δ-antiderivative of f : T → R provided F Δ tft holds for all t ∈ T κ . Then the Δ-integral of f is defined by b a ftΔt Fb − Fa. 2.3 Proposition 2.8. Let f, g be rd-continuous, a, b, c ∈ T, and α, β ∈ R.Then 1 b a αftβgtΔt α b a ftΔt β b a gtΔt, 2 b a ftΔt − a b ftΔt, 3 b a ftΔt c a ftΔt b c ftΔt, 4 b a ftg Δ tΔt fgb − fga − b a f Δ tgσtΔt, 5 aa ftΔt 0, 6 If ft ≥ 0 for all a ≤ t<bthen b a ftΔt ≥ 0. 4 Journal of Inequalities and Applications Definition 2.9. Let h k : T 2 → R, k ∈ N 0 be defined by h 0 t, s1 ∀s, t ∈ T 2.4 and then recursively by h k1 t, s t s h k τ,sΔτ ∀s, t ∈ T. 2.5 Remark 2.10. It follows from Proposition 2.86 that if s ≤ t, then h k1 t, s ≥ 0 for all t, s ∈ T and all k ∈ N. Remark 2.11. If we let h Δ k t, s denote for each fixed s the derivative of h k t, s with respect to t, then h Δ k t, sh k−1 t, s, fork ∈ N,t∈ T κ . 2.6 3. The perturbed Ostrowski inequalityontimescales Our main result reads as follows . Theorem 3.1. Suppose that 1 a, b ∈ T, I k : a x 0 <x 1 < ··· <x k−1 <x k b is a division of the interval a, b for x 0 ,x 1 , ,x k ∈ T; 2 α i ∈ T i 0, ,k 1 is “k 2” points so that α 0 a, α i ∈ x i−1 ,x i i 1, ,k and α k1 b; 3 f : a, b → R is a twice differentiable function on a, b and f ΔΔ : a, b → R is bounded, that is, M : sup a<t<b |f ΔΔ t| < ∞. Then b a f σ tΔt − k i0 α i1 − α i f σ x i k−1 i0 h 2 x i1 ,α i1 f Δ x i1 − h 2 x i ,α i1 f Δ x i ≤ M k−1 i0 h 3 x i1 ,α i1 − h 3 x i ,α i1 . 3.1 To prove Theorem 3.1, we need the following generalized montgomery identity for twice differentiable function. This is motivated by the ideas of Sofo and Dragomir in 24, where the continuous version of aperturbed Ostrowski inequalityfor twice differentiable mappings was proved. Wenjun Liu et al. 5 Lemma 3.2 generalized montgomery identity. Under the assumptions of Theorem 3.1, k i0 α i1 − α i f σ x i b a f σ tΔt − b a Kt, I k f ΔΔ Δt k−1 i0 h 2 x i1 ,α i1 f Δ x i1 − h 2 x i ,α i1 f Δ x i , 3.2 where Kt, I k ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ h 2 t, α 1 ,t∈ a, x 1 , h 2 t, α 2 ,t∈ x 1 ,x 2 , . . . h 2 t, α k−1 ,t∈ x k−2 ,x k−1 , h 2 t, α k ,t∈ x k−1 ,b. 3.3 Proof. Integrating by parts and applying Proposition 2.84 , we have b a Kt, I k f ΔΔ tΔt k−1 i0 x i1 x i Kt, I k f ΔΔ tΔt k−1 i0 x i1 x i h 2 t, α i1 f ΔΔ tΔt k−1 i0 α i1 x i h 2 t, α i1 f ΔΔ tΔt x i1 α i1 h 2 t, α i1 f ΔΔ tΔt k−1 i0 h 2 α i1 ,α i1 f Δ α i1 − h 2 x i ,α i1 f Δ x i − α i1 x i f Δ σth Δ 2 t, α i1 Δt h 2 x i1 ,α i1 f Δ x i1 − h 2 α i1 ,α i1 f Δ α i1 − x i1 α i1 f Δ σth Δ 2 t, α i1 Δt k−1 i0 h 2 x i1 ,α i1 f Δ x i1 − h 2 x i ,α i1 f Δ x i − α i1 x i f Δ σtt − α i1 Δt − x i1 α i1 f Δ σtt − α i1 Δt k−1 i0 h 2 x i1 ,α i1 f Δ x i1 − h 2 x i ,α i1 f Δ x i f σ x i x i − α i1 α i1 x 1 f σ tΔt − f σ x i1 x i1 − α i1 x i1 α i1 f σ tΔt 6 Journal of Inequalities and Applications b a f σ tΔt k−1 i0 h 2 x i1 ,α i1 f Δ x i1 − h 2 x i ,α i1 f Δ x i f σ aa − α 1 k−1 i1 f σ x i x i − α i1 − f σ bb − α k − k−2 i0 f σ x i1 x i1 − α i1 b a f σ tΔt − k i0 f σ x i α i1 − α i k−1 i0 h 2 x i1 ,α i1 f Δ x i1 − h 2 x i ,α i1 f Δ x i , 3.4 that is, 3.2 holds. Proof of Theorem 3.1. By applying Lemma 3.2,weget b a f σ tΔt − k i0 α i1 − α i f σ x i k−1 i0 h 2 x i1 ,α i1 f Δ x i1 − h 2 x i ,α i1 f Δ x i b a Kt, I k f ΔΔ tΔt k−1 i0 x i1 x i Kt, I k f ΔΔ tΔt ≤ k−1 i0 x i1 x i |Kt, I k ||f ΔΔ t|Δt ≤ M k−1 i0 x i1 x i |h 2 t, α i1 |Δt M k−1 i0 α i1 x i α i1 t α i1 − τΔτ Δt x i1 α i1 h 2 t, α i1 Δt M k−1 i0 α i1 x i h 2 t, α i1 Δt x i1 α i1 h 2 t, α i1 Δt M k−1 i0 h 3 x i1 ,α i1 − h 3 x i ,α i1 . 3.5 The proof is complete. If we apply the the inequality 3.1 to different time scales, we will get some well- known and some new results. Corollary 3.3 continuous case. Let T R. Then our delta integral is the usual Riemann integral from calculus. Hence, h 2 t, s t − s 2 2 , ∀t, s ∈ R. 3.6 Wenjun Liu et al. 7 This leads us to state the following inequality: b a ftΔt − k i0 α i1 − α i fx i 1 2 k−1 i0 x i1 − α i1 2 f x i1 − x i − α i1 2 f x i ≤ M 6 k−1 i0 x i1 − α i1 3 − x i − α i1 3 , 3.7 where M sup a<x<b |f x|. Remark 3.4. The inequality 3.7 is exactly the generalized Ostrowski inequality shown in 24. Corollary 3.5 discrete case. Let T Z, a 0, b n. Suppose that 1 I k :0 j 0 <j 1 < ··· <j k−1 <j k n is a division of 0,n ∩ Z for j 0 ,k 1 , ,j k ∈ Z; 2 p i ∈ Z i 0, ,k 1 is “k 2” points so that p 0 0, p i ∈ j i−1 ,j i ∩ Z i 1, ,k and p k1 n; 3 fkx k . Then, n j1 x j − k i0 p i1 − p i x j i 1 k−1 i0 h 2 j i1 ,p i1 Δx j i 1 − h 2 j i ,p i1 Δx j i ≤ M k−1 i0 h 3 j i1 ,p i1 − h 3 j i ,p i1 3.8 for all i 1,n,where M sup 1≤i≤n−1 Δ 2 x i ,h k t, s t − s k 3.9 for all t, s ∈ Z. Corollary 3.6 quantum calculus case. Let T q N 0 , q>1, a q m ,b q n with m<n. Suppose that 1 I k : q m q j 0 <q j 1 < ···<q j k−1 <q j k q n is a division of q m ,q n ∩ q N 0 for j 0 ,j 1 , ,j k ∈ N 0 ; 2 q p i ∈ q N 0 i 0, ,k 1 is “k 2” points so that q p 0 q m , q p i ∈ q j i−1 ,q j i ∩ q N 0 i 1, ,k and q p k1 q m ; 3 f : q m ,q n → R is differentiable. 8 Journal of Inequalities and Applications Then, q n q m fqtΔt − k i0 q p i1 − q p i fq j i 1 k−1 i0 h 2 q j i1 ,q p i1 fq j i1 1 − fq j i1 q − 1q j i1 − h 2 q j i ,q p i fq j i 1 − fq j i q − 1q j i ≤ M k−1 i0 h 3 q j i1 ,q p i1 − h 3 q j i ,q p i1 , 3.10 where M sup q m <t<q n fq 2 t − q 1fqtqft qq − 1 2 t 2 ,h k t, s k−1 ν0 t − q ν s ν μ0 q μ , ∀t, s ∈ q N 0 . 3.11 4. Some particular perturbed integral inequalities ontimescales In this section, we point out some particular perturbed integral inequalities ontimescalesforfunctionswhosesecondderivativesare bounded as special cases, such as perturbed rectangle inequalityontime scales, perturbed trapezoid inequalityontime scales, perturbed mid-point inequalityontime scales, perturbed Simpson inequalityontime scales, perturbed averaged mid-point-trapezoid inequalityontime scales, and others. Throughout this section, we always assume that a, b ∈ T with a>band f : a, b → R is differentiable. We denote M sup a<x<b f ΔΔ x < ∞. 4.1 Proposition 4.1. Suppose that α ∈ a, b ∩ T. Then one has the perturbed rectangle inequalityontimescales b a f σ tΔt − α − af σ ab − αf σ b h 2 b, αf Δ b − h 2 a, αf Δ a ≤ Mh 3 b, α − h 3 a, α. 4.2 Proof. We choose x 0 a, x 1 b, α 0 a, α 1 α ∈ a, b and α 2 b in Theorem 3.1 to get the result. Remark 4.2. a If we choose α b in 4.2, we get the perturbed left rectangle inequalityontimescales b a f σ tΔt − b − af σ a − h 2 a, bf Δ a ≤−Mh 3 a, b. 4.3 Wenjun Liu et al. 9 b If we choose α a in 4.2, we get the perturbed right rectangle inequalityontimescales b a f σ tΔt − b − af σ bh 2 b, af Δ b ≤ Mh 3 b, a. 4.4 c If we choose α a b/2in4.2, we get the perturbed trapezoid inequalityontimescales b a f σ tΔt − f σ af σ b 2 b − a h 2 b, a b 2 f Δ b − h 2 a, a b 2 f Δ a ≤ M h 3 b, a b 2 − h 3 a, a b 2 . 4.5 Proposition 4.3. Suppose that x ∈ a, b ∩ T, α 1 ∈ a, x ∩ T and α 2 ∈ x, b ∩ T. Then one has the perturbedinequalityontimescales b a f σ tΔt − α 1 − af σ aα 2 − α 1 f σ xb − α 2 f σ b h 2 x, α 1 f Δ x − h 2 a, α 1 f Δ ah 2 b, α 2 f Δ b − h 2 x, α 2 f Δ x ≤ Mh 3 x, α 1 − h 3 a, α 1 h 3 b, α 2 − h 3 x, α 2 . 4.6 Remark 4.4. If we choose α 1 a and α 2 b in Proposition 4.3, we get exactly Theorem 1.3. Therefore, Theorem 3.1 is a generalization of Theorem 4 in 20. If we choose x a b/2in 3.1, we get the perturbed mid-point inequalityontimescales b a f σ tΔt − f σ a b 2 b − a h 2 a b 2 ,a − h 2 a b 2 ,b f Δ a b 2 ≤ M h 3 a b 2 ,a − h 3 a b 2 ,b . 4.7 Corollary 4.5. Suppose that x ∈ 5a b/6, a 5b/6 ∩ T, α 1 5a b/6 and α 2 a5b/6. Then one has the perturbedinequalityontimescales b a f σ tΔt − b − a 3 f σ af σ b 2 2f σ x h 2 x, 5ab 6 f Δ x−h 2 a, 5a b 6 f Δ ah 2 b, a 5b 6 f Δ b−h 2 x, a 5b 6 f Δ x ≤ M h 3 x, 5a b 6 − h 3 a, 5a b 6 h 3 b, a 5b 6 − h 3 x, a 5b 6 . 4.8 10 Journal of Inequalities and Applications Remark 4.6. If we choose x a b/2in4.8, we get the perturbed Simpson inequalityontimescales b a f σ tΔt − b − a 3 f σ af σ b 2 2f σ a b 2 h 2 a b 2 , 5a b 6 f Δ a b 2 − h 2 a, 5a b 6 f Δ a h 2 b, a 5b 6 f Δ b − h 2 a b 2 , a 5b 6 f Δ a b 2 ≤ M h 3 a b 2 , 5a b 6 − h 3 a, 5a b 6 h 3 b, a 5b 6 − h 3 a b 2 , a 5b 6 . 4.9 Corollary 4.7. Suppose that a b/2 ∈ T, α 1 ∈ a, a b/2 ∩ T and α 2 ∈ a b/2,b ∩ T. Then one has the perturbedinequalityontimescales b a f σ tΔt − α 1 − af σ aα 2 − α 1 f σ a b 2 b − α 2 f σ b h 2 a b 2 ,α 1 f Δ a b 2 − h 2 a, α 1 f Δ ah 2 b, α 2 f Δ b − h 2 a b 2 ,α 2 f Δ a b 2 ≤ M h 3 a b 2 ,α 1 − h 3 a, α 1 h 3 b, α 2 − h 3 a b 2 ,α 2 . 4.10 Remark 4.8. If we choose α 1 3a b/4andα 2 a 3b/4in4.10, we get the perturbed averaged mid-point-trapezoid inequalityontimescales b a f σ tΔt − b − a 2 f σ af σ b 2 f σ a b 2 h 2 a b 2 , 3a b 4 f Δ a b 2 − h 2 a, 3a b 4 f Δ a h 2 b, a 3b 4 f Δ b − h 2 a b 2 , a 3b 4 f Δ a b 2 ≤ M h 3 a b 2 , 3a b 4 − h 3 a, 3a b 4 h 3 b, a 3b 4 − h 3 a b 2 , a 3b 4 . 4.11 [...]... scalesforfunctionswhosesecond ˆ derivativesare bounded,” to appear in Inequality Theory and Applications, vol 6, 2009 21 M Bohner and A Peterson, Dynamic Equations onTime Scales: An Introduction with Application, Birkh¨ user, Boston, Mass, USA, 2001 a 12 Journal of Inequalities and Applications 22 M Bohner and A Peterso, Eds., Advances in Dynamic Equations onTime Scales, Birkh¨ user, Boston, a Mass,... Hong, H.-J Li, and S.-L Yu, “Some complements of Cauchy’s inequalityontime scales, ” Journal of Inequalities and Applications, vol 2006, Article ID 97430, 19 pages, 2006 19 W Liu and Q. -A Ngo, A generalization of Ostrowski inequalityontimescalesfork points, ” Applied ˆ Mathematics and Computation, vol 203, no 2, pp 754–760, 2008 20 W Liu and Q. -A Ngo, “An Ostrowski type inequalityontime scales. .. applications in numerical integration,” Kyungpook Mathematical Journal, vol 39, no 2, pp 333–341, 1999 2 S S Dragomir, R P Agarwal, and P Cerone, On Simpson’s inequality and applications,” Journal of Inequalities and Applications, vol 5, no 6, pp 533–579, 2000 3 S S Dragomir, P Cerone, and J Roumeliotis, A new generalization of Ostrowski’s integral inequalityfor mappings whosederivativesare bounded... inequalities and applications,” Acta Mathematica Universitatis Comenianae, vol 77, no 1, pp 147–154, 2008 6 W Liu, “Several error inequalities fora quadrature formula with a parameter and applications,” Computers & Mathematics with Applications, vol 56, no 7, pp 1766–1772, 2008 7 D S Mitrinovi´ , J E Peˇ ari´ , and A M Fink, Inequalities forFunctions and Their Integrals and c c c Derivatives, Kluwer Academic... maßkettenkalkul mit anwendung auf zentrumsmannigfaltigkeiten, Ph.D thesis, Universitaat ¨ Wurzburg, Wurzburg, Germany, 1988 ¨ ¨ 11 R Agarwal, M Bohner, and A Peterson, “Inequalities ontime scales: a survey,” Mathematical Inequalities & Applications, vol 4, no 4, pp 535–557, 2001 12 M R S Ammi, R A C Ferreira, and D F M Torres, “Diamon-α Jensen’s inequalityontime scales, ” Journal of Inequalities and Applications,... Birkh¨ user, Boston, a Mass, USA, 2003 23 V Lakshmikantham, S Sivasundaram, and B Kaymakcalan, Dynamic Systems on Measure Chains, vol 370 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996 24 A Sofo and S S Dragomir, Aperturbed version of the Ostrowski inequalityfor twice differentiable mappings,” Turkish Journal of Mathematics, vol 25, no 3, pp 379–412,... Applications, vol 2008, Article ID 576876, 13 pages, 2008 13 M Bohner, S Clark, and J Ridenhour, “Lyapunov inequalities fortime scales, ” Journal of Inequalities and Applications, vol 7, no 1, pp 61–77, 2002 14 M Bohner and T Matthews, “The Gruss inequalityontime scales, ” Communications in Mathematical ¨ Analysis, vol 3, no 1, pp 1–8, 2007 15 M Bohner and T Matthews, “Ostrowski inequalities ontime scales, ”... Netherlands, 1994 8 D S Mitrinovi´ , J E Peˇ ari´ , and A M Fink, Classical and New Inequalities in Analysis, vol 61 of c c c Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993 9 N Ujevi´ , A generalization of Ostrowski’s inequality and applications in numerical integration,” c Applied Mathematics Letters, vol 17, no 2, pp 133–137, 2004 10 S Hilger, Ein maßkettenkalkul... inequalities ontime scales, ” Journal of Inequalities in Pure and Applied Mathematics, vol 9, no 1, article 6, pp 1–8, 2008 16 W N Li and W Sheng, “Some nonlinear integral inequalities ontime scales, ” Journal of Inequalities and Applications, vol 2007, Article ID 70465, 15 pages, 2007 17 F.-H Wong, S.-L Yu, and C.-C Yeh, “Anderson’s inequalityontime scales, ” Applied Mathematics Letters, vol 19, no 9,... bounded and applications in numerical integration and for special means,” Applied Mathematics Letters, vol 13, no 1, pp 19–25, 2000 4 W Liu, Q.-L Xue, and S.-F Wang, “Several new perturbed Ostrowski-like type inequalities,” Journal of Inequalities in Pure and Applied Mathematics, vol 8, no 4, article 110, pp 1–6, 2007 5 W Liu, C Li, and Y Hao, “Further generalization of some double integral inequalities and . Equations on Time Scales, Birkh ¨ auser, Boston, Mass, USA, 2003. 23 V. Lakshmikantham, S. Sivasundaram, and B. Kaymakcalan, Dynamic Systems on Measure Chains, vol. 370 of Mathematics and Its Applications,. as special cases, such as perturbed rectangle inequality on time scales, perturbed trapezoid inequality on time scales, perturbed mid-point inequality on time scales, perturbed Simpson inequality. type inequality on time scales for functions whose second derivatives are bounded,” to appear in Inequality Theory and Applications, vol. 6, 2009. 21 M. Bohner and A. Peterson, Dynamic Equations