Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
524,99 KB
Nội dung
Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2008, Article ID 390435, 14 pages doi:10.1155/2008/390435 ResearchArticleNewClassesofAnalyticFunctionsInvolvingGeneralizedNoorIntegral Operator Rabha W. Ibrahim and Maslina Darus School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor Darul Ehsan, Bangi 43600, Malaysia Correspondence should be addressed to Maslina Darus, maslina@pkrisc.cc.ukm.my Received 22 March 2008; Accepted 25 April 2008 Recommended by Jozsef Szabados The present article investigates newclassesoffunctionsinvolvinggeneralizedNoorintegral operator. Some properties of these functions are studied including characterization and distortion theorems. Moreover, we illustrate sufficient conditions for subordination and superordination for analytic functions. Copyright q 2008 R. W. Ibrahim and M. Darus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction and preliminaries Let H be the class offunctionsanalytic in U and let Ha, n be the subclass of H consisting offunctionsof the form fza a n z n a n1 z n1 ··· . Let A be the subclass of H consisting offunctionsof the form fzz a 2 z 2 ··· . Denote by D α : A→Athe operator defined by D α : z 1 − z α1 ∗fz,α>−1, 1.1 where ∗ refers to the Hadamard product or convolution. Then implies that D n fz z z n−1 fz n n! ,n∈ N 0 N ∪{0}. 1.2 We note that D 0 fzfz and D fzzf z. The operator D n f is called Ruscheweyh derivative of nth order of f. Noor 1, 2 defined and studied an integral operator I n : A→A analogous to D n f as follows. 2 Journal of Inequalities and Applications Let f n zz/1 − z n1 ,n∈ N 0 ,andletf −1 n be defined such that f n z∗f −1 n z z 1 − z . 1.3 Then I n fzf −1 n z∗fz z 1 − z n1 −1 ∗fz. 1.4 Note that I 0 fzzf z and I 1 fzfz. The operator I n is called the NoorIntegralof nth order of f. Using 1.3, 1.4, and a well-known identity for D n f, we have n 1I n fz − nI n1 fzz I n1 fz . 1.5 Using hypergeometric functions 2 F 1 , 1.4 becomes I n fz z 2 F 1 1, 1; n 1,z ∗fz, 1.6 where 2 F 1 a, b; c, z is defined by 2 F 1 a, b; c, z1 ab c z 1! aa 1bb 1 cc 1 z 2 2! ··· . 1.7 For complex parameters α 1 , ,α q α j A j / 0, −1, −2, ; j 1, ,q , β 1 , ,β p β j B j / 0, −1, −2, ; j 1, ,p , 1.8 the Fox-Wright generalization q Ψ p z of the hypergeometric q F p function bysee 3–5 q Ψ p ⎡ ⎢ ⎢ ⎣ α 1 ,A 1 , , α q ,A q ; z β 1 ,B 1 , , β p ,B p ; ⎤ ⎥ ⎥ ⎦ q Ψ p α j ,A j 1,q ; β j ,B j 1,p ; z : ∞ n0 Γ α 1 nA 1 ···Γ α q nA q Γ β 1 nB 1 ···Γ β p nB p z n n! ∞ n0 q j1 Γ α j nA j p j1 β j nB j z n n! , 1.9 where A j > 0 for all j 1, ,q, B j > 0 for all j 1, ,p,and1 p j1 B j − q j1 A j ≥ 0for suitable values |z|. For special case, when A j 1 for all j 1, ,q,and B j 1 for all j 1, ,p, we have the following relationship: q F p α 1 , ,α q ; β 1 , ,β p ; z Ω q Ψ p α j , 1 1,q ; β j , 1 1,p ; z , q ≤ p 1; q, p ∈ N 0 N ∪{0},z∈ U, 1.10 R. W. Ibrahim and M. Darus 3 where Ω : Γ β 1 ···Γ β p Γ α 1 ···Γ α q . 1.11 We introduce a function z q Ψ p α j ,A j 1,q ; β j ,B j 1,p ; z −1 given by z q Ψ p α j ,A j 1,q ; β j ,B j 1,p ; z ∗ z q Ψ p α j ,A j 1,q ; β j ,B j 1,p ; z −1 z 1 − z λ1 z ∞ n2 λ 1 n−1 n − 1! z n , λ>−1, 1.12 and obtain the following linear operator: I λ α j ,A j 1,q ; β j ,B j 1,p fz z q Ψ p α j ,A j 1,q ; β j ,B j 1,p ; z −1 ∗fz, 1.13 where f ∈A,z ∈ U,and z q Ψ p α j ,A j 1,q ; β j ,B j 1,p ; z −1 z ∞ n2 p j1 Γ β j n − 1B j q j1 Γ α j n − 1A j λ 1 n−1 z n . 1.14 For some computation, we have I λ α j ,A j 1,q ; β j ,B j 1,p fzz ∞ n2 p j1 Γ β j n − 1B j q j1 Γ α j n − 1A j λ 1 n−1 a n z n , 1.15 where a n is the Pochhammer symbol defined by a n Γa n Γa ⎧ ⎨ ⎩ 1,n 0 aa 1 ···a n − 1,n {1, 2, }. 1.16 From 1.15 we have the following result. Lemma 1.1. Let fz ∈Afor all z ∈ U then i I 0 1, 1 1,1 ; 1, 1/n − 1 1,p fzfz. ii I 1 1, 1 1,1 ; 1, 1/n − 1 1,p fzzf z. iii zI λ α j ,A j 1,q ; β j ,B j 1,p fz λ1I λ1 α j ,A j 1,q ; β j ,B j 1,p fz−λI λ α j ,A j 1,q ; β j ,B j 1,p fz. In the following definitions, we introduce newclassesofanalyticfunctions containing generalizedNoorintegral operator 1.15. 4 Journal of Inequalities and Applications Definition 1.2. Let fz ∈Athen fz ∈ S μ λ α j ,A j 1,q ; β j ,B j 1,p if and only if R z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz >μ, 0 ≤ μ<1,z∈ U. 1.17 Definition 1.3. Let fz ∈Athen fz ∈ C μ λ α j ,A j 1,q ; β j ,B j 1,p if and only if R z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz >μ, 0 ≤ μ<1,z∈ U. 1.18 Let F and G be analyticfunctions in the unit disk U. The function F is subordinate to G, written F ≺ G, if G is univalent, F0G0 and FU ⊂ GU. Or given two functions Fz and Gz, which are analytic in U, the function Fz is said to be subordination to Gz in U if there exists a function hz, analytic in U with h00, |hz| < 1 ∀z ∈ U, 1.19 such that FzG hz ∀z ∈ U. 1.20 Let φ : C 2 → C and let h be univalent in U. If p is analytic in U and satisfies the differential subordination φpz,zp z ≺ hz then p is called a solution of the differential subordination. The univalent function q is called a dominant of the solutions of the differential subordination, p ≺ q. If p and φpz,zp z are univalent in U and satisfy the differential superordination hz ≺ φpz,zp z then p is called a solution of the differential superordination. An analytic function q is called subordinant of the solution of the differential superordination if q ≺ p. Let Φ be an analytic function in a domain containing fU, Φ00 and Φ 0 > 0. The function f ∈Ais called Φ—like if R zf z Φ fz > 0,z∈ U. 1.21 This concept was introduced by Brickman 6 and established that a function f ∈Ais univalent if and only if f is Φ—like for some Φ. Definition 1.4. Let Φ be analytic function in a domain containing fU, Φ00, Φ 01, and Φω / 0forω ∈ fU−0. Let qz be a fixed analytic function in U, q01. The function f ∈Ais called Φ—like with respect to q if zf z Φ fz ≺ qz,z∈ U. 1.22 R. W. Ibrahim and M. Darus 5 In the present paper, we apply a method based on the differential subordination in order to obtain subordination results involvinggeneralizedNoorintegral operator for a normalized analytic function fz z ∈ U q 1 z ≺ z I λ α j ,A j 1,q ; β j ,B j 1,p fz Φ I λ α j ,A j 1,q ; β j ,B j 1,p fz ≺ q 2 z. 1.23 In order to prove our subordination and superordination results, we need to the following lemmas in the sequel. Definition 1.5 see 7.DenotebyQ the set of all functions fz that are analytic and injective on U − Ef,whereEf : {ζ ∈ ∂U : lim z→ζ fz∞} and are such that f ζ / 0forζ ∈ ∂U − Ef. Lemma 1.6 see 8. Let qz be univalent in the unit disk U and θ and let φ be analytic in a domain D containing qU with φw / 0, when w ∈ qU. Set Qz : zq zφqz,hz : θqz Qz. Suppose that 1 Qz is starlike univalent in U, 2 Rzh z/Qz > 0 for z ∈ U. If θ pz zp zφ pz ≺ θ qz zq zφ qz , 1.24 then pz ≺ qz, 1.25 and qz is the best dominant. Lemma 1.7 9. Let qz be convex univalent in the unit disk U and let ϑ and ϕ be analytic in a domain D containing qU. Suppose that 1 zq zϕqz is starlike univalent in U, 2 R{ϑ qz/ϕqz} > 0 for z ∈ U. If pz ∈Hq0, 1 ∩ Q, with pU ⊆ D and ϑpz zp zϕz being univalent in U and ϑ qz zq zϕ qz ≺ ϑ pz zp zϕ pz , 1.26 then qz ≺ pz, 1.27 and qz is the best subordinant. 6 Journal of Inequalities and Applications 2. Characterization properties and distortion theorems In this section, we investigate the characterization properties for the function fz ∈A to belong to the classes S μ λ α j ,A j 1,q ; β j ,B j 1,p and C μ λ α j ,A j 1,q ; β j ,B j 1,p by obtaining the coefficient bounds. Further, we prove the distortion theorems when fz ∈ S μ λ α j , A j 1,q ; β j ,B j 1,p and fz ∈ C μ λ α j ,A j 1,q ; β j ,B j 1,p . Theorem 2.1. Let fz ∈A. Then fz ∈ S μ λ α j ,A j 1,q ; β j ,B j 1,p ifandonlyif ∞ n2 H n−1 a n μλ 1 n−1 − λ 1 n − λ n ≤ 1 − μ, 0 ≤ μ<1, 2.1 where H n−1 : p j1 Γ β j n − 1B j q j1 Γ α j n − 1A j . 2.2 Proof. Suppose that 2.1 holds. Then by using Lemma 1.1 and for z ∈ U, we have R z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz ≤ z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz ≤ 1 ∞ n2 H n−1 a n λ 1 n − λ n 1 ∞ n2 H n−1 a n λ 1 n−1 . 2.3 This last expression is greater than μ,if2.1 holds this implies that fz ∈ S μ λ α j , A j 1,q ; β j ,B j 1,p . On the other hand, assume that fz ∈ S μ λ α j ,A j 1,q ; β j ,B j 1,p then R z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz >μ, 2.4 but R{z}≤|z| then z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz >μ. 2.5 By a computation, we obtain 2.1. Corollary 2.2. Let the function fz belong to the class S μ λ α j ,A j 1,q ; β j ,B j 1,p . Then a n ≤ 1 − μ H n−1 μλ 1 n−1 − λ 1 n − λ n , 0 ≤ μ<1, 2.6 where H n−1 is defined in 2.2. R. W. Ibrahim and M. Darus 7 Theorem 2.3. Let fz ∈A. Then fz ∈ C μ λ α j ,A j 1,q ; β j ,B j 1,p ifandonlyif ∞ n2 nH n−1 a n μλ 1 n−1 − λ 1 n − λ n ≤ 1 − μ, 0 ≤ μ<1, 2.7 where H n−1 is defined in 2.2. Corollary 2.4. Let the function fz belong to the class C μ λ α j ,A j 1,q ; β j ,B j 1,p . Then a n ≤ 1 − μ nH n−1 μλ 1 n−1 − λ 1 n − λ n , 0 ≤ μ<1, 2.8 where H n−1 is defined in 2.2. Theorem 2.5. Let fz ∈ S μ λ α j ,A j 1,q ; β j ,B j 1,p , then fz ≥|z|− 1 − μ H 1 μλ 1 1 − λ 1 2 − λ 2 |z| 2 , fz ≤|z| 1 − μ H 1 μλ 1 1 − λ 1 2 − λ 2 |z| 2 , 2.9 for z ∈ U where H n−1 is defined in 2.2. Proof. If fz ∈ S μ λ α j ,A j 1,q ; β j ,B j 1,p then in view of Theorem 2.1,wehave H 1 μλ 1 1 − λ 1 2 − λ 2 ∞ n2 a n ≤ ∞ n2 H n−1 a n μλ 1 n−1 − λ 1 n − λ n ≤ 1 − μ. 2.10 This yields ∞ n2 a n ≤ 1 − μ H 1 μλ 1 1 − λ 1 2 − λ 2 . 2.11 Now fz ≥|z|−|z| 2 ∞ n2 a n ≥|z|− 1 − μ H 1 μλ 1 1 − λ 1 2 − λ 2 |z| 2 . 2.12 Also, fz ≤|z| 1 − μ H 1 μλ 1 1 − λ 1 2 − λ 2 |z| 2 . 2.13 Hence the proof is complete. 8 Journal of Inequalities and Applications Corollary 2.6. Under the hypothesis of Theorem 2.5, fz is included in a disk with its center at the origin and radius r given by r 1 1 − μ H 1 μλ 1 1 − λ 1 2 − λ 2 . 2.14 In the same way, we can prove the following result. Theorem 2.7. Let fz ∈ C μ λ α j ,A j 1,q ; β j ,B j 1,p then fz ≥|z|− 1 − μ 2H 1 μλ 1 1 − λ 1 2 − λ 2 |z| 2 , fz ≤|z| 1 − μ 2H 1 μλ 1 1 − λ 1 2 − λ 2 |z| 2 , 2.15 for z ∈ U where H n−1 is defined in 2.2. Corollary 2.8. Under the hypothesis of Theorem 2.7, fz is included in a disk with its center at the origin and radius r given by r 1 1 − μ 2H 1 μλ 1 1 − λ 1 2 − λ 2 . 2.16 We next study some properties of the classes S μ λ α j ,A j 1,q ; β j ,B j 1,p and C μ λ α j ,A j 1,q ; β j ,B j 1,p . Theorem 2.9. Let λ>−1 and 0 ≤ μ 1 <μ 2 < 1. Then S μ 2 λ α j ,A j 1,q ; β j ,B j 1,p ⊂ S μ 1 λ α j ,A j 1,q ; β j ,B j 1,p . 2.17 Proof. By using Theorem 2.1. Theorem 2.10. Let −1 <λ 1 ≤ λ 2 and 0 ≤ μ<1. Then S μ λ 1 α j ,A j 1,q ; β j ,B j 1,p ⊇ S μ λ 2 α j ,A j 1,q ; β j ,B j 1,p . 2.18 Proof. By using Theorem 2.1. Theorem 2.11. Let λ>−1 and 0 ≤ μ 1 <μ 2 < 1. Then C μ 2 λ α j ,A j 1,q ; β j ,B j 1,p ⊂ C μ 1 λ α j ,A j 1,q ; β j ,B j 1,p . 2.19 Proof. By using Theorem 2.3. Theorem 2.12. Let −1 <λ 1 ≤ λ 2 and 0 ≤ μ<1. Then C μ λ 1 α j ,A j 1,q ; β j ,B j 1,p ⊇ C μ λ 2 α j ,A j 1,q ; β j ,B j 1,p . 2.20 Proof. By using Theorem 2.3. R. W. Ibrahim and M. Darus 9 3. Sandwich results By making use of Lemmas 1.6 and 1.7, we prove the following subordination and superordination results. Theorem 3.1. Let qz / 0 be univalent in U such that zq z/qz is starlike univalent in U and R 1 α γ qz zq z q z − zq z qz > 0,α,γ∈ C,γ / 0. 3.1 If f ∈Asatisfies the subordination α z I λ α j ,A j 1,q ; β j ,B j 1,p fz Φ I λ α j ,A j 1,q ; β j ,B j 1,p fz γ 1 z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz − zΦ I λ α j ,A j 1,q ; β j ,B j 1,p fz Φ I λ α j ,A j 1,q ; β j ,B j 1,p fz ≺ αqz γzq z qz , 3.2 then z I λ α j ,A j 1,q ; β j ,B j 1,p fz Φ I λ α j ,A j 1,q ; β j ,B j 1,p fz ≺ qz, 3.3 and qz is the best dominant. Proof. Our aim is to apply Lemma 1.6. Setting pz : z I λ α j ,A j 1,q ; β j ,B j 1,p fz Φ I λ α j ,A j 1,q ; β j ,B j 1,p fz . 3.4 Computation shows that zp z pz 1 z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz − zΦ I λ α j ,A j 1,q ; β j ,B j 1,p fz Φ I λ α j ,A j 1,q ; β j ,B j 1,p fz , 3.5 which yields the following subordination: αpz γzp z pz ≺ αqz γzq z qz ,α,γ∈ C. 3.6 10 Journal of Inequalities and Applications By setting θω : αω, φω : γ ω ,γ / 0, 3.7 it can be easily observed that θω is analytic in C and φω is analytic in C \{0} and that φω / 0whenω ∈ C\{0}. Also, by letting Qzzq zφ qz γz q z qz , hzθ qz Qzαqzγz q z qz , 3.8 we find that Qz is starlike univalent in U and that R zh z Qz 1 α γ qz zq z q z − zq z qz > 0. 3.9 Then the relation 3.3 follows by an application of Lemma 1.6. Corollary 3.2. Let the assumptions of Theorem 2.1 hold. Then the subordination α − γ z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz γ 1 z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz ≺ αqz γzq z qz , 3.10 implies z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz ≺ qz, 3.11 and qz is the best dominant. Proof. By letting Φω : ω. Corollary 3.3. If f ∈Aand assume that 3.1 holds then 1 z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz ≺ 1 Az 1 Bz A − Bz 1 Az1 Bz 3.12 implies z I λ α j ,A j 1,q ; β j ,B j 1,p fz I λ α j ,A j 1,q ; β j ,B j 1,p fz ≺ 1 Az 1 Bz , −1 ≤ B<A≤ 1, 3.13 and 1 Az/1 Bz is the best dominant. [...]... STGL-012-2006, Academy of Sciences, Malaysia References 1 K I Noor, “On newclassesofintegral operators,” Journal of Natural Geometry, vol 16, no 1-2, pp 71–80, 1999 2 K I Noor and M A Noor, “On integral operators,” Journal of Mathematical Analysis and Applications, vol 238, no 2, pp 341–352, 1999 14 Journal of Inequalities and Applications 3 C Fox, “The asymptotic expansion of the generalized hypergeometric... hypergeometric function,” Proceedings of the London Mathematical Society, vol 27, no 1, pp 389–400, 1928 4 E M Wright, “The asymptotic expansion of the generalized hypergeometric function,” Journal of the London Mathematical Society, vol 10, no 40, pp 286–293, 1935 5 E M Wright, “The asymptotic expansion of the generalized hypergeometric function,” Proceedings of the London Mathematical Society, vol... 389–408, 1940 6 L Brickman, “Φ-like analyticfunctions I,” Bulletin of the American Mathematical Society, vol 79, no 3, pp 555–558, 1973 7 S S Miller and P T Mocanu, “Subordinants of differential superordinations,” Complex Variables and Elliptic Equations, vol 48, no 10, pp 815–826, 2003 8 S S Miller and P T Mocanu, Differential Subordinations: Theory and Application, vol 225 of Monographs and Textbooks in... z ≺ αp z q z γzp z , p z α, γ ∈ C 3.24 By setting ϑ ω : αω, ϕω : γ , ω γ / 0, 3.25 it can be easily observed that θ ω is analytic in C and φ ω is analytic in C \ {0}, and that φ ω / 0 when ω ∈ C \ {0} Also, we obtain R ϑ q z ϕ q z R α q z γ > 0 Then 3.21 follows by an application of Lemma 1.7 Combining Theorems 3.1 and 3.6 in order to get the following sandwich theorems 3.26 R W Ibrahim and M Darus... 815–826, 2003 8 S S Miller and P T Mocanu, Differential Subordinations: Theory and Application, vol 225 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2000 9 T Bulboac˘ , Classesof first-order differential superordinations,” Demonstratio Mathematica, vol 35, no a 2, pp 287–292, 2002 ... Ibrahim and M Darus 11 Proof By setting Φ ω : ω, α γ 1 Az / 1 Bz , where −1 ≤ B < A ≤ 1 1, and q z : Corollary 3.4 If f ∈ A and assume that 3.1 holds then z Iλ αj , Aj 1,q Iλ αj , Aj 1 ; βj , Bj 1,p f z 1,q ; βj , Bj 1,p f z ≺ 1 z 1−z 2z 1 − z2 3.14 implies z Iλ αj , Aj Iλ αj , Aj and 1 1,q 1,q ; βj , Bj 1,p f z ; βj , Bj 1,p f z ≺ 1 z , 1−z 3.15 z / 1 − z is the best dominant Proof By setting Φ ω : ω,... , Aj Φ Iλ αj , Aj 1,q ; 1,q ; f z f z βj , Bj βj , Bj 1,p 1,p 3.20 f z f z holds, then q z ≺ z Iλ αj , Aj 1,q Φ Iλ αj , Aj ; βj , Bj 1,q ; βj , Bj 1,p 1,p f z 3.21 f z and q is the best subordinant Proof Our aim is to apply Lemma 1.7 Setting z Iλ αj , Aj p z : 1,q Φ Iλ αj , Aj ; βj , Bj 1,q ; βj , Bj 1,p 1,p f z f z 3.22 Computation shows that zp z p z 1 z Iλ αj , Aj Iλ αj , Aj 1,q ; βj , Bj ; βj ,... Iλ αj , Aj Iλ αj , Aj 1,q ; βj , Bj ; βj , Bj 1,q 1,p f z 1,p f z ≺ eAz Az 3.16 implies z Iλ αj , Aj Iλ αj , Aj 1,q ; βj , Bj 1,q ; βj , Bj 1,p f z 1,p f z ≺ eAz , 3.17 and eAz is the best dominant Proof By setting Φ ω : ω, α γ 1, and q z : eAz , |A| < π Theorem 3.6 Let q z / 0 be convex univalent in the unit disk U Suppose that R α q z γ > 0, α, γ ∈ C for z ∈ U, and that zq z /q z is starlike univalent... Aj Iλ αj , Aj 1,p 1,p βj , Bj 1,p f z /Φ Iλ αj , f z f z ; βj , Bj 1,q 1,q 1,q ; 3.18 ; βj , Bj 3.19 1,p 1,p f z f z − zΦ Iλ αj , Aj Φ Iλ αj , Aj ; βj , Bj 1,q ; βj , Bj 1,q 1,p 1,p f z f z 12 Journal of Inequalities and Applications is univalent in U and the subordination αq z z Iλ αj , Aj γzq z ≺α q z Φ Iλ αj , Aj 1,q ; βj , Bj 1,q ; βj , Bj z Iλ αj , Aj γ 1 Iλ αj , Aj − 1,p 1,q f z 1,p f z ; βj , . Corporation Journal of Inequalities and Applications Volume 2008, Article ID 390435, 14 pages doi:10.1155/2008/390435 Research Article New Classes of Analytic Functions Involving Generalized Noor Integral. 2008 Recommended by Jozsef Szabados The present article investigates new classes of functions involving generalized Noor integral operator. Some properties of these functions are studied including characterization. of functions analytic in U and let Ha, n be the subclass of H consisting of functions of the form fza a n z n a n1 z n1 ··· . Let A be the subclass of H consisting of functions of