Báo cáo hóa học: " Research Article Existence and Uniqueness of Solutions for Singular Higher Order Continuous and Discrete Boundary Value Problems" pptx
Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
498,94 KB
Nội dung
Hindawi Publishing Corporation BoundaryValue Problems Volume 2008, Article ID 123823, 11 pages doi:10.1155/2008/123823 ResearchArticleExistenceandUniquenessofSolutionsforSingularHigherOrderContinuousandDiscreteBoundaryValue Problems Chengjun Yuan, 1, 2 Daqing Jiang, 1 and You Zhang 1 1 School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, Jilin, China 2 School of Mathematics and Computer, Harbin University, Harbin 150086, Heilongjiang, China Correspondence should be addressed to Chengjun Yuan, ycj7102@163.com Received 4 July 2007; Accepted 31 December 2007 Recommended by Raul Manasevich By mixed monotone method, the existenceanduniqueness are established forsingular higher-order continuousanddiscreteboundaryvalue problems. The theorems obtained are very general and complement previous known results. Copyright q 2008 Chengjun Yuan et al. This is an open access article distributed under the Creative Commons Attribution License, which p ermits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction In recent years, the study of higher-order continuousanddiscreteboundaryvalue problems has been studied extensively in the literature see 1–17 and their references. Most of the results told us that the equations had at least single and multiple positive solutions. Recently, some authors have dealt with the uniquenessofsolutionsforsingular higher- ordercontinuousboundaryvalue problems by using mixed monotone method, for example, see 6, 14, 15. However, there are few works on the uniquenessofsolutionsforsingular dis- crete boundaryvalue problems. In this paper, we state a unique fixed point theorem for a class of mixed monotone op- erators, see 6, 14, 18. In virtue of the theorem, we consider the existenceanduniquenessofsolutionsfor the following singular higher-order continuousanddiscreteboundaryvalue problems 1.1 and 1.2 by using mixed monotone method. We first discuss the existenceanduniquenessofsolutionsfor the following singular higher-order continuousboundaryvalue problem y n tλqtgyhy0, 0<t<1,λ>0, y i 0y n−2 10, 0 ≤ i ≤ n − 2, 1.1 2 BoundaryValue Problems where n ≥ 2, qt ∈ C0, 1, 0, ∞, g : 0, ∞ → 0, ∞ is continuousand nondecreasing; h : 0, ∞ → 0, ∞ is continuousand nonincreasing, and h may be singular at y 0. Next, we consider the existenceanduniquenessofsolutionsfor the following singular higher-order discreteboundaryvalue problem Δ n yiλqin−1gyin−1 hyin−1 0,i∈ N {0, 1, 2, ,T − 1},λ>0, Δ k y0Δ n−2 yT 10, 0 ≤ k ≤ n − 2, 1.2 where n ≥ 2, N {0, 1, 2, ,Tn}, qi ∈ CN , 0, ∞, g : 0, ∞ → 0, ∞ is continuousand nondecreasing; h : 0, ∞ → 0, ∞ is continuousand nonincreasing, and h may be singular at y 0. Throughout this paper, the topology on N will be the discrete topology. 2. Preliminaries Let P be a normal c one of a Banach space E,ande ∈ P with e≤1,e / θ. Define Q e {x ∈ P | x / θ, there exist constants m, M > 0 such that me ≤ x ≤ Me}. 2.1 Now we give a definition see 18. Definition 2.1 see 18. Assume A : Q e × Q e → Q e . A is said to be mixed monotone if Ax, y is nondecreasing in x and nonincreasing in y,thatis,ifx 1 ≤ x 2 x 1 ,x 2 ∈ Q e implies Ax 1 ,y ≤ Ax 2 ,y for any y ∈ Q e ,andy 1 ≤ y 2 y 1 ,y 2 ∈ Q e implies Ax, y 1 ≥ Ax, y 2 for any x ∈ Q e . x ∗ ∈ Q e is said to be a fixed point of A if Ax ∗ ,x ∗ x ∗ . Theorem 2.2 see 6, 14. Suppose that A: Q e × Q e → Q e is a mixed monotone operator and ∃ a constant α, 0 ≤ α<1, such that A tx, 1 t y ≥ t α Ax, y,forx,y∈ Q e , 0 <t<1. 2.2 Then A has a unique fixed point x ∗ ∈ Q e . Moreover, for any x 0 ,y 0 ∈ Q e × Q e , x n A x n−1 ,y n−1 ,y n A y n−1 ,x n−1 ,n 1, 2, , 2.3 satisfy x n −→ x ∗ ,y n −→ x ∗ , 2.4 where x n − x ∗ o 1 − r α n , y n − x ∗ o 1 − r α n , 2.5 0 <r<1, r is a constant from x 0 ,y 0 . Theorem 2.3 see 6, 14, 18. Suppose that A: Q e × Q e → Q e is a mixed monotone operator and ∃ a constant α ∈ 0, 1 such that 2.2 holds. If x ∗ λ is a unique solution of equation Ax, xλx, λ>02.6 in Q e ,thenx ∗ λ − x ∗ λ 0 →0,λ→ λ 0 . If 0 <α<1/2, then 0 <λ 1 <λ 2 implies x ∗ λ 1 ≥ x ∗ λ 2 , x ∗ λ 1 / x ∗ λ 2 ,and lim λ→∞ x ∗ λ 0, lim λ→0 x ∗ λ ∞. 2.7 Chengjun Yuan et al. 3 3. Uniqueness positive solution of differential equations 1.1 This section discusses singular higher-order boundaryvalue problem 1.1. Throughout this section, we let Gt, s be the Green’s function to −y 0,y0y10, we note that Gt, s ⎧ ⎨ ⎩ t1 − s, 0 ≤ t ≤ s ≤ 1, s1 − t, 0 ≤ s ≤ t ≤ 1, 3.1 and one can show that Gt, tGs, s ≤ Gt, s ≤ Gt, t, for Gt, s ≤ Gs, s, t, s ∈ 0, 1 × 0, 1. 3.2 Suppose that y is a positive solution of 1.1.Let xty n−2 t, 3.3 from y i 0y n−2 10, 0 ≤ i ≤ n−2, and Taylor Formula, we define operator T : C 2 0, 1 → C n 0, 1,by ytTxt t 0 t − s n−3 n − 3! xsds, for 3 ≤ n, ytTxtxt, for n 2 3.4 Then we have x 2 tλft, Txt 0, 0 <t<1,λ>0, x0x10. 3.5 Then from 3.4, we have the next lemma. Lemma 3.1. If xt is a solution of 3.5,thenyt is a solution of 1.1. Further, if yt is a solution of 1.1,implythatxt is a solution of 3.5. Let P {x ∈ C0, 1 | xt ≥ 0, for all t ∈ 0, 1 }. Obviously, P is a normal cone of Banach space C0, 1. Theorem 3.2. Suppose that there exists α ∈ 0, 1 such that gtx ≥ t α gx, 3.6 h t −1 x ≥ t α hx, 3.7 for any t ∈ 0, 1 and x>0,andq ∈ C0, 1, 0, ∞ satisfies 1 0 s n−1 n − 2s −α qsds < ∞. 3.8 Then 1.1 has a unique positive solution y ∗ λ t. And moreover, 0 <λ 1 <λ 2 implies y ∗ λ 1 ≤ y ∗ λ 2 ,y ∗ λ 1 / y ∗ λ 2 . If α ∈ 0, 1/2,then lim λ→0 y ∗ λ 0, lim λ→∞ y ∗ λ ∞. 3.9 4 BoundaryValue Problems Proof. Since 3.7 holds, let t −1 x y, one has hy ≥ t α hty. 3.10 Then hty ≤ 1 t α hy, for t ∈ 0, 1,y>0. 3.11 Let y 1. The above inequality is ht ≤ 1 t α h1, for t ∈ 0, 1. 3.12 From 3.7, 3.11,and3.12, one has h t −1 x ≥ t α hx,h 1 t ≥ t α h1,htx ≤ 1 t α hx,ht ≤ 1 t α h1, for t ∈ 0, 1,x>0. 3.13 Similarly, from 3.6, one has gtx ≥ t α gx,gt ≥ t α g1, for t ∈ 0, 1,x>0. 3.14 Let t 1/x, x > 1, one has gx ≤ x α g1, for x ≥ 1. 3.15 Let etGt, tt1 − t, and we define Q e x ∈ C0, 1 | 1 M Gt, t ≤ xt ≤ MGt, t,t∈ 0, 1 , 3.16 where M>1 is chosen such that M>max λg1 1 0 qsds λh1 1 0 s n−1 n − 2s n! −α qsds 1/1−α , λg1 1 0 Gs, s s n−1 n − 2s n! α qsds λh1 1 0 Gs, sqsds −1/1−α . 3.17 First, from 3.4 and 3.16, for any x ∈ Q e ,wehavethefollowing. When 3 ≤ n, 1 M t n−1 n − 2t n! ≤ t 0 1 M Gs, s t − s n−3 n − 3! ds ≤ Txt ≤ t 0 MGs, s t − s n−3 n − 3! ds ≤ M t n−1 n − 2t n! ≤ M, for t ∈ 0, 1, 3.18 Chengjun Yuan et al. 5 when n 2, 1 M t n−1 n − 2t n! ≤ Txtxt ≤ M tn − 2t n! ≤ M, for t ∈ 0, 1, 3.19 then 1 M t n−1 n − 2t n! ≤ Txt ≤ M t n−1 n − 2t n! ≤ M, for t ∈ 0, 1. 3.20 For any x, y ∈ Q e , we define A λ x, ytλ 1 0 Gt, sqsgTxs hTysds, for t ∈ 0, 1. 3.21 First, we show that A λ : Q e × Q e → Q e . Let x, y ∈ Q e , from 3.14, 3.15,and3.20,wehave gTxt ≤ gM ≤ M α g1, for t ∈ 0, 1, 3.22 and from 3.13,wehave hTyt ≤ h 1 M t n−1 n − 2t n! ≤ t n−1 n − 2t n! −α h 1 M ≤ M α t n−1 n − 2t n! −α h1, for t ∈ 0, 1. 3.23 Then, from 3.2, 3.21, 3.22 and 3.23,wehave On the other hand, for any x, y ∈ Q e ,from3.13 and 3.14,wehave gTxt ≥ g 1 M t n−1 n − 2t n! ≥ t n−1 n − 2t n! α g 1 M ≥ t n−1 n − 2t n! α 1 M α g1, hTyt ≥ hMh 1 1/M ≥ 1 M α h1, for t ∈ 0, 1. 3.24 Thus, from 3.2, 3.21 and 3.24,wehave A λ x, yt ≥ λGt, t 1 0 Gs, sqsM −α s n−1 n − 2s n! α g1ds 1 0 Gs, sqsM −α h1ds ≥ 1 M Gt, t, for t ∈ 0, 1. 3.25 So, A λ is well defined and A λ Q e × Q e ⊂ Q e . 6 BoundaryValue Problems Next, for any l ∈ 0, 1, one has A λ lx, l −1 y tλ 1 0 Gt, sqs glTxs h l −1 Tys ds ≥ λ 1 0 Gt, sqs l α gTxs l α hTys ds l α A λ x, yt, for t ∈ 0, 1. 3.26 So the conditions of Theorems 2.2 and 2.3 hold. Therefore, there exists a unique x ∗ λ ∈ Q e such that A λ x ∗ ,x ∗ x ∗ λ . It is easy to check that x ∗ λ is a unique positive solution of 3.5 for given λ>0. Moreover, Theorem 2.3 means that if 0 <λ 1 <λ 2 , then x ∗ λ 1 t ≤ x ∗ λ 2 t, x ∗ λ 1 t / x ∗ λ 2 t and if α ∈ 0, 1/2,then lim λ→0 x ∗ λ 0, lim λ→∞ x ∗ λ ∞. 3.27 Next, from Lemma 3.1 and 3.4,wegetthaty ∗ λ Tx ∗ λ is a unique positive solution of 1.1 for given λ>0. Moreover, if 0 <λ 1 <λ 2 , then y ∗ λ 1 t ≤ y ∗ λ 2 t, y ∗ λ 1 t / y ∗ λ 2 t and if α ∈ 0, 1/2,then lim λ→0 y ∗ λ 0, lim λ→∞ y ∗ λ ∞. 3.28 This completes the proof. Example 3.3. Consider the following singularboundaryvalue problem: y n tλ μy a ty −b t 0,t∈ 0, 1, y i 0y n−2 10, 0 ≤ i ≤ n − 2, 3.29 where λ, a, b > 0, μ ≥ 0, max{a, b} < 1/n − 1. Applying Theorem 3.2,letα max{a, b} < 1/n − 1, qt1, gyμy a , hyy −b , then gty ≥ t α gy,h t −1 ≥ t α hy, 1 0 s n−1 n − 2s −α ds < ∞. 3.30 Thus all conditions in Theorem 3.2 are satisfied. We can find 3.29 has a unique positive so- lution y ∗ λ t. In addition, 0 <λ 1 <λ 2 implies y ∗ λ 1 ≤ y ∗ λ 2 ,y ∗ λ 1 / y ∗ λ 2 .Ifα max{a, b}∈0, 1/2, then lim λ→0 y ∗ λ 0, lim λ→∞ y ∗ λ ∞. 3.31 Chengjun Yuan et al. 7 4. Uniqueness positive solution of difference equations 1.2 This section discusses singular higher-order boundaryvalue problem 1.2. Throughout this section, we let Ki, j be Green’s function to −Δ 2 yiui 10, i ∈ N, y0yT 10, we note that Ki, j ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ jT 1 − i T 1 , 0 ≤ j ≤ i − 1, iT 1 − j T 1 ,i≤ j ≤ T 1, 4.1 and one can show that Ki, i ≥ Ki, j,Kj, j ≥ Ki, j,Ki, j ≥ Ki, i T 1 , for 0 ≤ i ≤ T 1, 1 ≤ j ≤ T. 4.2 Suppose that y is a positive solution of 1.2.Let xiΔ n−2 yi, for 0 ≤ i ≤ T 1. 4.3 From Δ i y0Δ n−2 yT 10, 0 ≤ i ≤ n − 2, and Δ m yi − 1Δ m−1 yi − Δ m−1 yi − 1,sowe define operator T,by Txiyi n − 1 i1 l1 C n−2 i−ln−1 xl, for 0 ≤ i ≤ T. 4.4 Then Δ 2 xiλFi n − 1,Txi 0, 0 ≤ i ≤ T − 1,λ>0, x0xT 10. 4.5 Lemma 4.1. If xi is a solution of 4.5,thenyi is a solutionn of 1.2. Proof. Since we remark that xi is a solution of 4.5,ifandonlyif xi T j1 Ki, jλFj n − 1,Txj, for 0 ≤ i ≤ T 1. 4.6 Let Txiyi n − 1, for 0 ≤ i ≤ T. 4.7 From 4.4 we find Δ i y0Δ n−2 yT 10, 0 ≤ i ≤ n − 2, and xiΔ n−2 yi,sothatyi is asolutionof1.2. Further, if yi is a solution o f 1.2,implythatxi is a solution of 4.5. Let P {x ∈ CN , 0, ∞ | xi ≥ 0, for all i ∈ N }. Obviously, P is a normal cone of Banach space CN , 0, ∞. 8 BoundaryValue Problems Theorem 4.2. Suppose that there exists α ∈ 0, 1 such that gtx ≥ t α gx, h t −1 x ≥ t α gx, 4.8 for any t ∈ 0, 1 and x>0,andq ∈ CN , 0, ∞. Then 1.2 has a unique positive solution y ∗ λ i. And moreover, 0 <λ 1 <λ 2 implies y ∗ λ 1 ≤ y ∗ λ 2 , y ∗ λ 1 / y ∗ λ 2 .Ifα ∈ 0, 1/2,then lim λ→0 y ∗ λ 0, lim λ→∞ y ∗ λ ∞. 4.9 Proof. The proof is the same as that of Theorem 3.2,from4.12 and 4.13, one has h t −1 x ≥ t α hx,h 1 t ≥ t α h1,htx ≤ 1 t α hx,ht ≤ 1 t α h1, for t ∈ 0, 1,x>0; gtx ≥ t α gx,gt ≥ t α g1, for t ∈ 0, 1,x>0. 4.10 gtx ≥ t α gx,gt ≥ t α g1, for t ∈ 0, 1,x>0. 4.11 Let t 1/x, x > 1, one has gx ≤ x α g1, for x ≥ 1. 4.12 Let eiKi, i/T 1, and we define Q e x ∈ P | 1 M ei ≤ xi ≤ Mei, for 0 ≤ i ≤ T 1 , 4.13 where M>1 is chosen such that M>max λT 1g1 T j1 qj n − 1 j1 l1 C n−2 j−ln−1 α λT 1 1α h1 T j1 K −α j, jqj n − 1 1/1−α ; λg1 T j1 qj n − 1 Kj, j T 1 α λh1 T j1 qj n − 1 j1 l1 C n−2 j−ln−1 −α −1/1−α . 4.14 From 4.4 and 4.13, for any x ∈ Q e ,wehave 1 M ej ≤ Txj j1 l1 C n−2 j−ln−1 xl ≤ Mej j1 l1 C n−2 j−ln−1 , for 0 ≤ j ≤ T. 4.15 Chengjun Yuan et al. 9 For any x, y ∈ Q e , we define A λ x, yiλ T j1 Ki, jqj n − 1gTxj hTyj, for 0 ≤ i ≤ T 1. 4.16 First we show that A λ : Q e × Q e → Q e . Let x, y ∈ Q e , from 4.11 and 4.12,wehave gTxj ≤ g Mej j1 l1 C n−2 j−ln−1 ≤g M j1 l1 C n−2 j−ln−1 ≤M α j1 l1 C n−2 j−ln−1 α g1, for 1≤j ≤ T , 4.17 and from 4.10,wehave hTyj ≤ h 1 M ej ≤ e −α jh 1 M ≤ M α e −α jh1, for 1 ≤ j ≤ T. 4.18 Then, from 4.2 and the above, we have A λ x, yi ≤ λKi, i T j1 qj n − 1gTxj T 1hTyj ≤ eiM α λT 1 g1 T j1 qj n − 1 j1 l1 C n−2 j−ln−1 α h1 T j1 e −α jqj n − 1 ≤ eiM α λT 1 g1 T j1 qj n − 1 j1 l1 C n−2 j−ln−1 α h1 T j1 Kj, j T 1 −α qj n − 1 ≤ Mei, for 0 ≤ i ≤ T 1. 4.19 On the other hand, for any x, y ∈ Q e ,from4.10 and 4.12,wehave gxj ≥ g 1 M ej ≥ e α j 1 M α g1, for 1 ≤ j ≤ T, 4.20 hyj ≥ h Mej j1 l1 C n−2 j−ln−1 ≥ M −α j1 l1 C n−2 j−ln−1 −α h1, for 1 ≤ j ≤ T. 4.21 Thus, from 4.2 and 4.16,wehave A λ x, yi ≥ λei T j0 qj n − 1gTxj T j0 qj n − 1hTyj ≥ λeiM −α g1 T j0 qj Ki, i T 1 α h1 T j0 qj n − 1 j1 l1 C n−2 j−ln−1 −α ≥ 1 M ei, for 0 ≤ i ≤ T 1. 4.22 10 BoundaryValue Problems So, A λ is well defined and A λ Q e × Q e ⊂ Q e . Next, for any l ∈ 0, 1, one has A λ lx, l −1 y iλ T j1 Ki, jqj n − 1 gTlxj h T l −1 yj λ T j1 Ki, jqj n − 1 glTxj h l −1 Tyj ≥ λ T j1 Ki, jqj n − 1 l α gTxj l α hTyj ds l α A λ x, yi, for 0 ≤ i ≤ T 1. 4.23 So the conditions of Theorems 2.2 and 2.3 hold. Therefore, there exists a unique x ∗ λ ∈ Q e such that A λ x ∗ ,x ∗ x ∗ λ . It is easy to check that x ∗ λ is a unique positive solution of 4.5 for given λ>0. Moreover, Theorem 2.3 means that if 0 <λ 1 <λ 2 , then x ∗ λ 1 t ≤ x ∗ λ 2 t, x ∗ λ 1 t / x ∗ λ 2 t and if α ∈ 0, 1/2,then lim λ→0 x ∗ λ 0, lim λ→∞ x ∗ λ ∞. 4.24 Next, on using Lemma 3.1,from4.5,wegetthaty ∗ λ Tx ∗ λ is a unique positive solution of 1.2 for given λ>0. Moreover, if 0 <λ 1 <λ 2 , then y ∗ λ 1 t ≤ y ∗ λ 2 t, y ∗ λ 1 t / y ∗ λ 2 t and if α ∈ 0, 1/2,then lim λ→0 y ∗ λ 0, lim λ→∞ y ∗ λ ∞. 4.25 This completes the proof. Example 4.3. Consider the following singularboundaryvalue problem: Δ n yi − 1λ μy a iy −b i 0,i∈ N, Δ i y0Δ n−2 y10, 0 ≤ i ≤ n − 2, 4.26 where λ, a, b > 0, μ ≥ 0, max{a, b} < 1. Let qi1, gyμy a , hyy −b , α max{a, b} < 1, then gty ≥ t α gy,h t −1 y ≥ t α hy, 4.27 thus all conditions in Theorem 4.2 are satisfied. We can find 4.26 has a unique positive so- lution y ∗ λ t. In addition, 0 <λ 1 <λ 2 implies y ∗ λ 1 ≤ y ∗ λ 2 ,y ∗ λ 1 / y ∗ λ 2 .Ifα max{a, b}∈0, 1/2, then lim λ→0 y ∗ λ 0, lim λ→∞ y ∗ λ ∞. 4.28 [...]... Existenceofsolutionsforsingularboundary problems forhigherorder differential equations,” Rendiconti del Seminario Matem` tico e Fisico di Milano, vol 65, pp 249– a 264, 1995 13 R P Agarwal and F.-H Wong, Existenceof positive solutionsforhigherorder difference equations,” Applied Mathematics Letters, vol 10, no 5, pp 67–74, 1997 14 X Lin, D Jiang, and X Li, Existenceanduniquenessof solutions. .. Agarwal and D O’Regan, Existence theory for single and multiple solutions to singular positone boundaryvalue problems,” Journal of Differential Equations, vol 175, no 2, pp 393–414, 2001 8 P R Agarwal and D O’Regan, Singulardiscreteboundaryvalue problems,” Applied Mathematics Letters, vol 12, no 4, pp 127–131, 1999 9 R P Agarwal and F.-H Wong, Existenceof positive solutionsforhigherorder difference... Xue, and W Ge, “Triple solutionsfor a higher- order difference equation,” Journal of Inequalities in Pure and Applied Mathematics, vol 6, no 1, Article 10, pp 1–11, 2005 11 P J Y Wong and R P Agarwal, “On the existenceofsolutionsofsingularboundaryvalue problems forhigherorder difference equations,” Nonlinear Analysis Theory, Methods & Applications, vol 28, no 2, pp 277–287, 1997 12 R P Agarwal and. .. solutionsforsingular fourth -order boundaryvalue problems,” Journal of Computational and Applied Mathematics, vol 196, no 1, pp 155–161, 2006 15 Z Zengqin, Uniquenessof positive solutionsforsingular nonlinear second -order boundary- value problems,” Nonlinear Analysis Theory, Methods & Applications, vol 23, no 6, pp 755–765, 1994 16 R P Agarwal and I Kiguradze, “Two-point boundaryvalue problems for higher- order. .. order differential equations,” Journal of Differential Equations, vol 3, pp 1–8, 1995 5 C J Chyan and J Henderson, “Positive solutionsforsingularhigherorder nonlinear equations,” Differential Equations and Dynamical Systems, vol 2, no 2, pp 153–160, 1994 6 X Lin, D Jiang, and X Li, Existenceanduniquenessofsolutionsforsingular k, n − k conjugate boundaryvalue problems,” Computers & Mathematics... for higher- order linear differential equations with strong singularities,” BoundaryValue Problems, vol 2006, Article ID 83910, 32 pages, 2006 17 X Hao, L Liu, and Y Wu, “Positive solutionsfor nonlinear nth -order singular nonlocal boundaryvalue problems,” BoundaryValue Problems, vol 2007, Article ID 74517, 10 pages, 2007 18 D Guo, The Order Methods in Nonlinear Analysis, Shandong Technical and Science... boundaryvalue problems for superlinear higherorder ODEs,” Computers and Mathematics with Applications, vol 40, no 2-3, pp 249–259, 2000 3 P W Eloe and J Henderson, Singular nonlinear boundaryvalue problems forhigherorder ordinary differential equations,” Nonlinear Analysis Theory, Methods & Applications, vol 17, no 1, pp 1–10, 1991 4 P W Eloe and J Henderson, “Postive solutionsforhigherorder differential... of China Grants no 10571021 and 10701020 The work was supported by Subject Foundation of Harbin University Grant no HXK200714 References 1 Y Guo and J Tian, “Positive solutionsof m-point boundaryvalue problems forhigherorder ordinary differential equations,” Nonlinear Analysis Theory, Methods & Applications, vol 66, no 7, pp 1573–1586, 2007 2 D Jiang, “Multiple positive solutions to singularboundary . Corporation Boundary Value Problems Volume 2008, Article ID 123823, 11 pages doi:10.1155/2008/123823 Research Article Existence and Uniqueness of Solutions for Singular Higher Order Continuous and Discrete Boundary. continuous and discrete boundary value problems 1.1 and 1.2 by using mixed monotone method. We first discuss the existence and uniqueness of solutions for the following singular higher- order continuous. theorem for a class of mixed monotone op- erators, see 6, 14, 18. In virtue of the theorem, we consider the existence and uniqueness of solutions for the following singular higher- order continuous