Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 30 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
30
Dung lượng
2,16 MB
Nội dung
Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 291 p1 t1 t2 t3 p2 p3 M1 M2 p4 p5 t4 t5 t6 p1 t1 t2 t3 p2 p3 M1 M2 p4 p5 t4 t5 t6 Fig. 7. The five BUCs of M1 M1’ p1 p3 p4 p1 p2 p5 M1 p4 p3 p1 p5 p2 M1’ p3 p4 p1 p6 p1 p2 (a) A1-A3-B2 (b)A3-B2-A1 (c)B2-A3-A1 p1 M1’ p1 p3 p4 p1 p2 p5 M1 p4 p3 p1 p5 p2 M1’ p3 p4 p1 p6 p1 p2 (a) A1-A3-B2 (b)A3-B2-A1 (c)B2-A3-A1 p1 Fig. 8. Example of the unfolding of M1 Petri Net: Theory and Applications 292 In this net, we can find the 6 processes of M1 are as follows (Fig. 9): Suf1 = t1 t5t3 (15), Suf2 = t5t1t3 (15), Suf3 = t1t3t5 (12), Suf4 = t3t1t5 (12), Suf5 = t3t5t1 (15), Suf6 = t5t3t1 (15), where () is an operation time of Sufi. temps Suf1 Suf2 Suf3 Suf4 2010 temps Suf5 Suf6 2010 temps Suf1 Suf2 Suf3 Suf4 temps Suf1 Suf2 Suf3 Suf4 2010 temps Suf5 Suf6 2010 Fig. 9. Results of the permutations of BUC in M1 In M1, we can choose two schedules as transitions sequences: t3-t1-t5 and t1-t3-t5. 2. Modeling of M2 and its unfolding nets Machine M2 involved two tasks (OP1 and OP2) in three processes (t2, t4 and t6) (Fig. 10,11). p1 t1 t2 t3 p2 p3 M1 M2 p4 p5 t4 t5 t6 p1 t1 t2 t3 p2 p3 M1 M2 p4 p5 t4 t5 t6 Fig. 10. The BUC of M2 Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 293 M2’ p1 p2 p5 p3 p4 p1 M2’ p5 p2 p4 p1 p1 M2’ p2 p1 p5 p4 p3 p1 (a) B1-A2-B3 (b)A2-B1-B3 (c)B3-A2-B1 p3 M2’ p1 p2 p5 p3 p4 p1 M2’ p5 p2 p4 p1 p1 M2’ p2 p1 p5 p4 p3 p1 (a) B1-A2-B3 (b)A2-B1-B3 (c)B3-A2-B1 p3 Fig. 11. Example of unfolding of M2 We can show the six processes like as follows (Fig. 12) : Suf1 = t2t4t6 (13), Suf2 = t2t6t4 (14), Suf3 = t4t6t2 (11), Suf4 = t4t2t6 (13), Suf5 = t6t4t2 (11), Suf6 = t6t2t4 (13). temps Suf1 Suf2 Suf3 Suf4 2010 temps Suf5 Suf6 2010 temps Suf1 Suf2 Suf3 Suf4 temps Suf1 Suf2 Suf3 Suf4 2010 temps Suf5 Suf6 2010 Fig. 12. Results of permutations of BUC in M2 Petri Net: Theory and Applications 294 In M2, we can find two solutions like as Suf3 and Suf5. Now, we apply the selected solutions of BUC of M2: {Suf3 and Suf5} to obtain the solution BUC on M1: {Suf3 and Suf4}, then we obtained two solutions. The optimal schedules of two cycles are in Fig. 13 and 14. Bs1: A3A1B2 (M1) B3B1A2 (M2) Bs2: A1A3B2 (M1) B3B1A2 (M2) time machines op A1 op A2 op B3 W 1 W 2 W 3 M 1 M 2 time op B1 op A1 op B1 op B3 W. I. P. A B op A2 op B2 CT 10 t. u. 0 t+10 op A3 op B2 op A1 op A2 op B3 op B1 op B2 op A1 op B1 op B3 op A2 op B2 op A3 CT 10 t. u. t+20 op A3 op A3 time machines op A1 op A2 op B3 W 1 W 2 W 3 M 1 M 2 time op B1 op A1 op B1 op B3 W. I. P. A B op A2 op B2 CT 10 t. u. 0 t+10 op A3 op B2 op A1 op A2 op B3 op B1 op B2 op A1 op B1 op B3 op A2 op B2 op A3 CT 10 t. u. t+20 op A3 op A3 Fig. 13. Optimal schedule of Bs1 time machines op A1 op A2 op B3 W 1 W 2 W 3 M 1 M 2 time op B1 op A1 op B1 op B3 W. I . P. A B op A2 op B2 CT 10 t. u. 0 t+10 op A3 op B2 op A1 op A2 op B3 op B1 op B2 op A1 op B1 op B3 op A2 op B2 op A3 CT 10 t. u. t+20 time machines op A1 op A2 op B3 W 1 W 2 W 3 M 1 M 2 time op B1 op A1 op B1 op B3 W. I . P. A B op A2 op B2 CT 10 t. u. 0 t+10 op A3 op B2 op A1 op A2 op B3 op B1 op B2 op A1 op B1 op B3 op A2 op B2 op A3 CT 10 t. u. t+20 Fig.14. Optimal schedule of Bs2 Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 295 temps t + 10 p 3 p 4 p 5 p 6 cycle p 2 p 1 M 1 M2 p1 t1 t2 t3 p2 p3 M1 M2 p4 p5 p6 t4 t5 t6 temps t + 10 p 3 p 4 p 5 p 6 cycle p 2 p 1 M 1 M2 temps t + 10 p 3 p 4 p 5 p 6 cycle p 2 p 1 M 1 M2 p1 t1 t2 t3 p2 p3 M1 M2 p4 p5 p6 t4 t5 t6 p1 t1 t2 t3 p2 p3 M1 M2 p4 p5 p6 t4 t5 t6 (a) Linear schedule (b) The flow of marking of (a) Fig. 15. Linear schedule of Bs1 temps t + 10 p 3 p 4 p 5 p 6 cycle p 2 p 1 M 1 M2 p1 t1 t2 t3 p2 p3 M1 M2 p4 p5 p6 t4 t5 t6 temps t + 10 p 3 p 4 p 5 p 6 cycle p 2 p 1 M 1 M2 p1 t1 t2 t3 p2 p3 M1 M2 p4 p5 p6 t4 t5 t6 (a) Linear schedule (b) The flow of marking of (a) Fig. 16. Linear schedule of Bs2 Petri Net: Theory and Applications 296 Finally, we get three pallets rather than two, which is lower bound WIP. Indeed in this model, it is impossible to optimize CT with two pallets, as proved in (Camus,1997). So, we can say that this solution is best possible one(Fig. 15,16). 6. Benchmark 6.1 Notations In this section, one example taken from the literature is analyzed in order to apply three cyclic scheduling analysis methods such as Hillion (Hillion, 1987), Korbaa (Korbaa, 1997), and the previously presented approach. The definitions and the assumptions for this work have been summarized (Korbaa,1997). The formulations for our works, we can summarize as follows: ¦ J JP t tD )()( , the sum of all transition timings of J M(J) (=Mo(J)), the (constant) number of tokens in J, C(J) = P(J)/M(J), the cycle time of J, Where J is a circuit. C* =Max(C(J)) for all circuits of the net, CT the minimal cycle time associated to the maximal throughput of the system: CT =Max(C(J)) for all resource circuits = C* Let CT be the optimal cycle time based on the machines work, then WIP is (Korbaa,1997): i pe ipallets ty icarried by OS to be timeOperating CT WIP ¦ » » » » » » º « « « « « « ª ¦ We introduce an illustrative example in Camus(Camus, 1997), two part types (P1 and P2) have to be produced on three machines U1, M1 and M2. P1 contains three operations: u1(2 t.u.) then M1(3 t.u.) and M2(3 t.u.) P2 contains two operations: M1(1 t.u.) and U1(2 t.u.). The production horizon is fixed and equalized to E={3P1, 2P2}. Hence five parts with the production ratio 3/5 and 2/5 should be produced in each cycle. We suppose that there are two kinds of pallets: each pallet will be dedicated to the part type P1 and the part type P2. Each transport resource can carry only one part type. The operating sequences of each part type are indicated as OS1 and OS2. In this case, the cycle time of OP11, OS12 and OS13 are all 7 and Op21 and OS22 all 3, also the machines working time of U1 is 10, M1 is 11 and M2 is 6. So the cycle time CT is 10. The minimization WIP is: CT OSofTimesperatingO WIP 1p » » » º « « « ª ¦ CT OSofTimesperatingO 2p » » » º « « « ª ¦ 3 11 33 11 777 » » º « « ª » » º « « ª Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 297 e 2 e 1 U 1 M 1 M 2 1/5 (2) (3) t 11 t 12 (2) t 13 U 1 M 1 M 2 (2) (3) t 11 t 12 (2) t 13 1/5 e 0 (2) M 1 U 1 t 11 t 12 M 2 (2) t 13 1/5 (3) t f P tr (P 1 )P tr (P 2 ) M 1 M 2 U 1 1/5 M 1 U 1 t 21 t 22 (1) (2) (1) U 1 M 1 t 21 t 22 1/5 (2) OS 1 OS 1 OS 1 OS 2 OS 2 e 2 e 1 U 1 M 1 M 2 1/5 (2) (3) t 11 t 12 (2) t 13 U 1 M 1 M 2 (2) (3) t 11 t 12 (2) t 13 1/5 e 0 (2) M 1 U 1 t 11 t 12 M 2 (2) t 13 1/5 (3) t f P tr (P 1 )P tr (P 2 ) M 1 M 2 U 1 1/5 M 1 U 1 t 21 t 22 (1) (2) (1) U 1 M 1 t 21 t 22 1/5 (2) OS 1 OS 1 OS 1 OS 2 OS 2 Fig. 17. Illustrative example 6.2 Benchmark By the example, we can obtain some results like as the following figures (Fig. 18-20). 1. Optimization The Hillion’s schedule (Hillion, 1987) has 6 pallets, the Korbaa’s schedule (Korbaa, 1997) 3 ones, and the proposed schedule 4 ones. This solution showed that the good optimization of Korbaa’s schedule could be obtained and the result of the proposed schedule could be better than that of the Hillion’s. Also, the solutions of the proposed approach are quite similar to (a) and (c) in Fig. 20 without the different position. 2. Effect It’s very difficult problem to solve a complexity value in the scheduling algorithm for evaluation. In this works, an effect values was to be considered as the total sum of the numbers of permutation and of calculation in the scheduling algorithm to obtain a good solution. An effected value of the proposed method is 744, i.e. including all permutation available in each BUC, and selecting optimal solution for approach to next BUC. An effect value to obtain a good solution is 95 in the Korbaa’s method; 9 times for partitions, 34 times Petri Net: Theory and Applications 298 for regrouping, and 52 times for calculation cycle time. In the Hillion’s method, an effected value is 260; 20 times for machine’s operation schedule and 240 times for the job’s operation schedule. time W.I.P. op 11 W 1 W 2 W 3 W 4 W 5 W 6 P 1 Part type op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 P 1 P 1 P 2 P 2 0 11 time W.I.P. op 11 W 1 W 2 W 3 W 4 W 5 W 6 P 1 Part type op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 P 1 P 1 P 2 P 2 0 11 Fig. 18. Hillion’s schedule regrouping process time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W. I. P. op 11 W 1 W 2 W 3 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machi nes op 12 M 1 1 M 1 2 011 regrouping process time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W. I. P. op 11 W 1 W 2 W 3 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machi nes op 12 M 1 1 M 1 2 011 Fig. 19. Korbaa’s schedule regrouping process time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W. I.P. op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 regrouping process time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W. I.P. op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 (a) Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 299 regrouping process time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W. I . P . op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 regrouping process time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W. I . P . op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 (b) regr oupi ng pr ocess time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W.I.P. op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 regr oupi ng pr ocess time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W.I.P. op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 (c) regrouping process time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W.I.P. op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 regrouping process time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W.I.P. op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 (d) Petri Net: Theory and Applications 300 regrouping process time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W. I.P. op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 regrouping process time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W. I.P. op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 (e) Fig. 20. Proposed schedule Fig. 21. Total relation graph 3. Time Based on the three algorithms, we can get time results for obtaining the good solution. Since this example model is simple, they need very small calculation times; 1 sec for the Korbaa’s approach and 1.30sec for both of the Hillion’s and the proposed approaches. The Korbaa’s approach has minimum 1 minute and maximum 23 hours in the 9 machines and 7 operations case in Camus (Camus, 1997), while the proposed approach 3 minutes. Meanwhile the Hillion’s and the Korbaa’s approaches belong to the number of the operation and the machines, the proposed method to the number of resource shares machines. This means that the Hillion’s and the Korbaa’s approaches analyzing times are longer than the proposed one in the large model. As the characteristic resultants of these approaches are shown in Fig. 21, the Korbaa approach is found out to be good and the Hillion approach is [...]... integrating Petri subnet models within a general Petrinet model for a manufacturing system environment, and, in particular, a workstation controller In essence, the error recovery plan consists of a trajectory (Petri subnet) having the detailed recovery steps that are then incorporated into the workstation control logic The logic was based on a Timed PetriNet (TPN) model of the total production system The Petri. .. exemplified by a PetriNet based model for large scale production systems Petri Nets have been successfully used for modeling and controlling the dynamics of flexible manufacturing systems (Hilton & Proth, 1989; Zhou & DiCesare, 1993) Generally, in a Petri net, the operations required on a part are modeled with combinations of places and transitions The movement of tokens throughout the net models the... are incorporated into the logic of the control agent In the context of Petri Nets, a recovery trajectory corresponds to a Petri subnet which models the sequence of steps required to reinstate the system back to a normal state After being generated, the recovery subnet is incorporated into the workstation activities net (the PetriNet of the multi-agent system environment) In this research, we follow... designation of others (Zhou & DiCesare, 1993) and denote the incorporation of a recovery subnet into the activities net as net augmentation The terms “original net or “activities net refer to the PetriNet representing the workstation activities (within a multi-agent environment) during the normal operation of the system The net augmentation brings several problems that require careful handling to avoid undesirable... hybrid Petri net- neural net structure The following sections of this chapter first discuss the background on architectures for reconfigurable and adaptable manufacturing control Subsequent discussions will be based on the genesis of work at Lehigh University on Petri nets from initial modeling and solution approaches to more recent work on embedding intelligent agents with Petri Nets A hybrid nets consisting... generated by the state equations 3.3 PetriNet Decomposition In the process of establishing a hierarchical Petri net- based workstation model, issues can be categorized into different classes where each class occurs at different levels of the hierarchy Fig 4 An example of decomposition of a multi-layer Petrinet model for an assembly station (Ma & Odrey, 1996) At the Petrinet modeling level two decision... first section used an augmented PetriNet approach and 2) a subsequent section was an attempt to provide a hybrid net by joining Neural Nets with Petri Nets This was done for a workstation level controller with in a hierarchical system following the work done at NIST Both of these approaches are discussed in subsequent sections Error Recovery in Production Systems: A PetriNet Based Intelligent System... Analysis of Petri nets by Ordering Relations in Reduced Unfolding, Formal Methods in System Design, Vol 12, No.1, pp 5-38 Korbaa O., Camus H & Gentina J-C.(1997) FMS Cyclic Scheduling with Overlapping production cycles, Proceeding of ICATPN’97, pp.35-52 302 Petri Net: Theory and Applications Lee DY & DiCesare F.(1995) Petri Net- based heuristic Scheduling for Flexible Manufacturing, In: Petri Nets in Flexible... highly specific tasks) As noted in the previous section the highest layer is modeled with a Timed Colored PetriNet (TCPN) The TCPN layer is then “unfolded” in several layers with different degrees of detail Lower levels are represented by Timed Petri Nets and Ordinary Petri Nets For each of these nets in order to track the system status state equations can be developed These equations serve to determine... multi-layer Petrinet framework establishes layers to provide the linkage between high-level abstract information for discrete systems and L1 0 0 L2 0 0 L3 0 0 0 0 0 LJ 1 c L 0 0 0 2 c 3 c LJ c L L L (6) low-level numeric data for continuous systems Different nets are used to represent different levels of complexity Three functional distinct subnets which are the basic building blocks for the Petrinet workstation . University on Petri nets from initial modeling and solution approaches to more recent work on embedding intelligent agents with Petri Nets. A hybrid nets consisting of a Petri Net with a Neural Net approach. I.P. op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 regrouping process time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W. I.P. op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 (a) Chapter. ocess time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W.I.P. op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 regr oupi ng pr ocess time op 11 U 1 M 1 M 2 op 12 op 13 op 11 op 12 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 time W.I.P. op 11 W 1 W 2 W 4 op 12 op 13 op 11 op 13 op 13 op 11 op 12 op 22 op 21 op 22 op 21 machines op 12 M 1 1 M 1 2 0 11 W 3 (c) regrouping