1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu tái sử dụng phế thải nông nghiệp làm vật liệu hiệu năng cao xử lý nước thải

83 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 83
Dung lượng 17,21 MB

Nội dung

ĐẠI HỌC BÁCH KHOA HÀ NỘI LUẬN VĂN THẠC SĨ Nghiên cứu tái sử dụng phế thải nông nghiệp làm vật liệu hiệu cao xử lý nước thải PHẠM VĂN HỒNG Hoang.PV202815M@sis.hust.edu.vn Ngành Kỹ thuật mơi trường Giảng viên hướng dẫn: PGS TS  Thái Yên Ch ký ca GVHD Viện: Khoa hc Công ngh ng HÀ NỘI, 4/2023 CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự – Hạnh phúc BẢN XÁC NHẬN CHỈNH SỬA LUẬN VĂN THẠC SĨ Họ tên tác giả luận văn: Ph Đề tài luận văn: Nghiên cu tái s dng ph thi nông nghip làm vt liu hi c thi Chuyên ngành: K thung Mã số SV: 20202815M Tác ging dn khoa hc H ng chm lu xác nhn tác gi a cha, b sung lun hp Hng ngày 28/04/2023 vi ni dung sau: - - Vit li phn kt lung bao quát ni dung nghiên cu kèm kt qu ng; B sung thêm phn 1.4.3 Quá trình hp ph bt u t trang 27 vi ni dung: i hp ph;  ca trình hp ph; Các yu t n trình hp ph B sung danh mc t vit tt vi PVA WCA; Thay th  th dng thành dng ct vi hình 30 31; Vit hóa thut ng ti trang 9; B sung trích dn tài liu tham kho vi hình t n 10; B sung mơ t v  lp thí nghim Ngày 23 tháng  2023 Giáo viên hướng dẫn Tác giả luận văn CHỦ TỊCH HỘI ĐỒNG ĐỀ TÀI LUẬN VĂN Nghiên cu tái s dng ph thi nông nghip làm vt liu hi c thi ng dn Ký ghi rõ h tên Lời cảm ơn Em xin bày t lòng bi Thái Yên ng dn to mu kin tt nh em thi gian thc hin Lu Em xin gi li co vin, phòng ban, thy cô ca b môn Công ngh ng, B môn Qung phịng thí nghim Vin Khoa hc Cơng ngh n dy kin thc to mu kin v  vt ch th t em hoàn thành ni dung nghiên cu ca Lu Cuc bày t lòng bin nh nhng thy cơ, bng tình cng viên, chia s  sut trình hc tp nghiên cu HC VIÊN Ký ghi rõ h tên Tóm tắt luận văn Nguc h  a nghiêm trng bi ô nhim du t s c tràn du trình thi b du thy vc, t vic ch to loi vt liu hi i loi b hiu qu ng dc c nhiu s quan tâm Vt liu cellulose aerogel t thc vt cho thy nhiu ti   có kh   y sinh hc, hp ph du kh   o ca cellulose Trong nghiên cu này, cc tng hp t loi ph thi nơng nghi, bã mía d s dng cho mu khc nhim du Quy trình tng hp cellulose aerogel gn vi mc tiêu s dng dung mơi c hi Thay tn theo quy trình chit Soxhlet s dc hc chit tách t loi vt liu thơ bm hóa s dng NaOH vi s h tr ca sóng siêu âm Cellulose c s d ng làm tin ch ch t to tính k c cho ng dng hp ph du hn hp du  c, mu cellulose aerogel t  c ph vi methyltrimethoxysilane (MTMS)m: SEM, c (WCA) c s d c tính ca vt liu cellulose aerogel Mu cellulose aerogel c kim tra kh p ph du thông qua vinh dung ng hp ph vi du nht thi du diesel nguyên chtáp dng vi h du  c Các yu t n trình hp ph du hn hp du  c ca cellulose aerogel bao gm: khng vt liu aerogel, thnhi c ki ng hc gi bc 1, bc mơ hình Elovich c áp d mơ t ng hc ca q trình hp ph dc Kt qu cho thy rng mu cellulose aerogel to thành có kh  dng rõ ràng mà khơng b v cu trúc mng cu trúc ba chi  n hình c rt nh, khng t 15.4252.63 mg/cm3  rng xp cao (95.8298.97%) ng hp ph du nguyên cht 27.81 g/g vi du nht thi 26.85 g/g vi du diesel t 110o th hin tính k c ca cellulose aerogel sau trình ph MTMS Các mu cellulose aerogel d dàng ni b mc hp ph du vng hp ph du nht tht 27.49 g/g, giá tr vi du diesel 25.29 g/g V ng ca khng vt liu, dung ng hp ph vi c loi dng gim khng vt liu  0.05 g lên 0.45 g Mơ hình gi ng hc bc mơ hình Elovich mơ t ng hc ca q trình hp ph du nht thi du diesel tt vi h s i nhi, ng ging hp ph c quan sát thy nhi  khong 1060 o C, kt qu c ng ca nhi  nht ca du Quá trình hp ph du nht thi du diesel ca cellulose aerogel không b nh ng bi giá tr pH ca hn hp du  c thơng qua thí nghim vi giá tr pH thay i t 3, 5,  bn kh  dng cc khnh vi 10 ln hp ph  nh hp ph liên tc MỤC LỤC DANH MỤC HÌNH .1 DANH MỤC BẢNG BIỂU DANH MỤC TỪ VIẾT TẮT ĐẶT VẤN ĐỀ .4 CHƯƠNG TỔNG QUAN 1.1 Tổng quan aerogel 1.1.1 Khái niệm đặc tính 1.1.2 Phân loại .8 1.2 Aerogel sinh học .9 1.3 Cellulose aerogel từ sinh khối thực vật 12 1.3.1 Cellulose nguồn cellulose từ sinh khối thực vật 12 1.3.2 Quy trình chế tạo cellulose aerogel 14 1.3.3 Ứng dụng cellulose aerogel 18 1.4 Cellulose aerogel ứng dụng xử lý nước nhiễm dầu 21 1.4.1 Nước thải nhiễm dầu 21 1.4.2 Nước nhiễm dầu cố tràn dầu 24 1.4.3 Quá trình hấp phụ .26 1.4.4 Các công bố ứng dụng vật liệu cellulose aerogel xử lý nước nhiễm dầu 30 CHƯƠNG VẬT LIỆU VÀ PHƯƠNG PHÁP NGHIÊN CỨU 34 2.1 Vật liệu .34 2.1.1 Các loại sinh khối sử dụng để chiết tách cellulose .34 2.1.2 Đối tượng ứng dụng xử lý 34 2.2 Quy trình chế tạo cellulose aerogel từ sinh khối thô 34 2.2.1 Chiết tách sinh khối thu cellulose 34 2.2.2 Gel hóa hỗn hợp cellulose – PVA 35 2.2.3 Đông khô tạo aerogel 35 2.2.4 Tạo lớp phủ kị nước cho aerogel 36 2.3 Xác định đặc tính vật liệu 36 2.3.1 Đặc điểm hình thái cấu trúc 36 2.3.2 Khối lượng riêng độ xốp 37 2.3.3 Diện tích bề mặt riêng 37 2.3.4 Tính thấm nước .38 2.4 Thí nghiệm hấp phụ nước dầu 38 2.5 Thí nghiệm hấp phụ dầu hỗn hợp dầu – nước 39 2.5.1 Ảnh hưởng khối lượng cellulose aerogel đến hiệu loại bỏ dầu 39 2.5.2 Ảnh hưởng thời gian tiếp xúc động học hấp phụ 39 2.5.3 Ảnh hưởng nhiệt độ 40 2.5.4 Ảnh hưởng pH 40 2.6 Thí nghiệm đánh giá khả tái sử dụng 41 CHƯƠNG KẾT QUẢ VÀ THẢO LUẬN 42 3.1 Xác định đặc tính vật liệu 42 3.1.1 Đặc điểm hình thái bề mặt 42 3.1.2 Cấu trúc tinh thể nhóm chức 43 3.1.3 Khối lượng riêng độ xốp 45 3.1.4 Diện tích bề mặt riêng kích thước mao quản 46 3.1.5 Tính kị nước 47 3.2 Dung lượng hấp phụ với nước dầu nguyên chất .49 3.3 Dung lượng hấp phụ dầu hỗn hợp dầu – nước 53 3.3.1 Ảnh hưởng khối lượng cellulose aerogel .53 3.3.2 Ảnh hưởng thời gian tiếp xúc động học hấp phụ 54 3.3.3 Ảnh hưởng nhiệt độ 56 3.3.4 Ảnh hưởng pH 57 3.3 Khả tái sử dụng aerogel 58 3.4 So sánh với loại vật liệu hấp phụ tổng hợp khác .59 KẾT LUẬN 61 TÀI LIỆU THAM KHẢO 62 PHỤ LỤC 70 DANH MỤC HÌNH Hnh Lch s hình thành phát trin ca vt liu aerogel [6] Hc tính ca aerogel [7] Hnh Phân loi aerogel [3] Hnh Quy trình ch to aerogel sinh hc [7] .10 Hnh Cellulose t sinh khi thc vt [10] 13 Hnh Mi quan h gic mao qun nhi  [10] .16 Hn chuyn khi trình hp ph [45] 28 Hnh Cellulose aerogel tng th phân loi aerogel [10] 31 Hnh Quá trình tách tái sinh du/dung môi hi b du/dung môi hu ng  u (b) Lc hn hp du  c bng c (c) Tái to aerogel bt ép [10] 32 Hnh 10 (A) Quy trình chung ch to aerogel da cellulose, (B) Loi b du mc bng aerogel thu hi du bi, tr lu ca cellulose aerogel sau nén [54] 32 Hnh 11 Ph thi nông nghin cung c, b) Bã mía c) Lá da 34 Hnh 12 (a) Quá trình tin x lý bng sóng siêu âm (b) Hn hp sau q trình kim hóa 35 Hnh 13 Quy trình ch to cellulose aerogel t sinh khi 35 Hnh 14 (a) Khuôn cha gel (b) Các mkhô 36 Hnh 15 nh SEM ca mu aerogel cha 0.5 wt% cellulose: a) A- MTMS, b) A- MTMS, c) A- MTMS, d) A- MTMS, e) nh SEM ca bt da thô f) Các mu aerogel thành phm .42 Hnh 16 Ph FTIR ca loi sinh khi thô, m ph MTMS, A-RR ph MTMS du nht thi 44 Hnh 17 Ph nhiu x tia X (XRD) ca mu sinh kh  MTMS A-RR ph MTMS 45 Hnh 18 (a) Kh xp ca mu cellulose aerogel sau ph MTMS vi s i ca n cellulose (bi dng ct bi dng ng lt ng vi giá tr Kh rng xp) (b) Mu cellulose aerogel nm nhy ca hoa Ly 46 Hng nhit hp ph  nh hp ph N2 vi mu A MTMS b) ph MTMS 47 Hnh 20 a) Ging b mt cellulose aerogel ph MTMS du nht du diesel d dng b hp ph, b) c) Cellulose aerogel ph MTMS d dàng ni lên b mc sau b nhúng chìm .48 Hnh 21 Giá tr WCA a) ti b mt ngoài, b) ti mt ct bên cellulose aerogel ph MTMS 48 Hnh 22 Quá trình hp ph du nguyên cht theo thu tiên 49 H   ng hp ph d   ng cellulose ca mu cellulose aerogel ph MTMS 50 Hng hp ph ca cellulose aerogel 0.5 wt% ph MTMS vi du nht du diesel nguyên cht theo thi gian .51 Hng hc hp ph ca mu A-RR 0.5 wt% ph MTMS vi du nht du diesel nguyên cht 51 H   ng hp ph du vi m   c sau ph MTMS 52 Hnh 27 Quá trình cellulose aerogel ph MTMS hp ph du nht thi hn hp du  c .53 Hnh 28 ng ca khng hp ph du nht thi du diesel 54 Hng hc hp ph ca mu A-RR 0.5% ph MTMS vi du nht thi du diesel hn hp du  c 54 Hnh 30 ng ca nhi n hiu sut hp ph du nht thi du diesel ca cellulose aerogel 57 Hnh 31 ng cng hp ph du nht thi du diesel .58 Hng hp ph hiu sut tách du sau 10 chu k hp ph - nh hp ph bc 59 Hnh 33 Cellulose aerogel ph MTMS ti thi c sau 10 ln tái s dng liên tip 59 DANH MỤC BẢNG BIỂU Bng Thành ph, bã mía da 14 Bt tách cellulose ch tng 17 Bng Các công ngh x lý dc [1] 23 B lý s c du tràn [43] 25 Bng So sánh hp ph vt lý hp ph hóa hc [44] .27 Bng hp ph du ca cellulose aerogel công b  31 Bng Din tích b mc l trung bình ca mu cellulose aerogel c sau ph MTMS 47 Bng Giá tr WCA b mt cellulose aerogel ph MTMS theo thi gian 48 Bng Các thông s ng hc ca mu A-RR 0.5wt% sau ph MTMS vi du nht du diesel nguyên cht 52 Bng 10 Các thông s mô ng hc ca mu A-RR 0.5wt% ph MTMS vi du nht thi du diesel hn hp du  c .56 Bng hp ph du nht so sánh vi loi vt liu tng hp khác 59 Bng hp ph du diesel so sánh vi loi vt liu tng hp khác 60 DANH MỤC TỪ VIẾT TẮT MTMS methyltrimethoxysilane SEM  dng kính hin t quét FTIR  hng ngoi bii Fourier XRD Phân tích nhiu x tia X PVA Polyvinyl alcohol WCA c ARR Cellulose aerogel t  ABM Cellulose aerogel t bã mía ALD Cellulose aerogel t da [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] TÀI LIỆU THAM KHẢO C An, G Huang, Y Yao, and S Zhao, "Emerging usage of electrocoagulation technology for oil removal from wastewater: A review," Science of The Total Environment, vol 579, pp 537-556, 2017/02/01/ 2017 H Yang, J Sun, Y Zhang, Q Xue, and S Xia, "Preparation of hydrophobic carbon aerogel using cellulose extracted from luffa sponge for adsorption of diesel oil," Ceramics International, vol 47, no 23, pp 33827-33834, 2021/12/01/ 2021 R Ganesamoorthy, V K Vadivel, R Kumar, O S Kushwaha, and H Mamane, "Aerogels for water treatment: A review," Journal of Cleaner Production, vol 329, p 129713, 2021/12/20/ 2021 A Zaman, F Huang, M Jiang, W Wei, and Z Zhou, "Preparation, Properties, and Applications of Natural Cellulosic Aerogels: A Review," Energy and Built Environment, vol 1, no 1, pp 60-76, 2020/01/01/ 2020 C J Brinker, "Hydrolysis and condensation of silicates: Effects on structure," Journal of Non-Crystalline Solids, vol 100, no 1, pp 31-50, 1988/03/01/ 1988 M O Ansari, A A P Khan, M S Ansari, A Khan, R M Kulkarni, and V S Bhamare, "Chapter - Aerogel and its composites: fabrication and properties," in Advances in Aerogel Composites for Environmental Remediation, A A P Khan, M O Ansari, A Khan, and A M Asiri, Eds.: Elsevier, 2021, pp 1-17 L E Nita, A Ghilan, A G Rusu, I Neamtu, and A P Chiriac, "New Trends in Bio-Based Aerogels," Pharmaceutics, vol 12, no doi: 10.3390/pharmaceutics12050449 H.-B Chen, B.-S Chiou, Y.-Z Wang, and D A Schiraldi, "Biodegradable Pectin/Clay Aerogels," ACS Applied Materials & Interfaces, vol 5, no 5, pp 1715-1721, 2013/03/13 2013 P Liu et al., "Aerogels Meet Phase Change Materials: Fundamentals, Advances, and Beyond," ACS Nano, vol 16, no 10, pp 15586-15626, 2022/10/25 2022 J Paul and S S Ahankari, "Nanocellulose-based aerogels for water purification: A review," Carbohydrate Polymers, vol 309, p 120677, 2023/06/01/ 2023 L Zuo, Y Zhang, L Zhang, Y E Miao, W Fan, and T Liu, "Polymer/CarbonBased Hybrid Aerogels: Preparation, Properties and Applications," (in eng), Materials (Basel), vol 8, no 10, pp 6806-6848, Oct 2015 H Maleki, "Recent advances in aerogels for environmental remediation applications: A review," Chemical Engineering Journal, vol 300, pp 98-118, 2016/09/15/ 2016 C Tan, B M Fung, J K Newman, and C Vu, "Organic Aerogels with Very High Impact Strength," Advanced Materials, https://doi.org/10.1002/15214095(200105)13:93.0.CO;2-# vol 13, no 9, pp 644646, 2001/05/01 2001 S b Hammouda, Z Chen, C An, and K Lee, "Recent advances in developing cellulosic sorbent materials for oil spill cleanup: A state-of-the-art review," Journal of Cleaner Production, vol 311, p 127630, 2021/08/15/ 2021 N H Do et al., "The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw," Scientific Reports, vol 10, no 1, p 21263, 2020/12/04 2020 62 [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] T.-T Nguyen et al., "Research and Development Prospects for Sugarcane Industry in Vietnam," Sugar Tech, vol 24, no 5, pp 1330-1341, 2022/10/01 2022 M A Mahmud and F R Anannya, "Sugarcane bagasse - A source of cellulosic fiber for diverse applications," (in eng), Heliyon, vol 7, no 8, p e07771, Aug 2021 Z Daud, M Z M Hatta, A S B M Kassim, H B Awang, and A M J B Aripin, "Exploring of agro waste (pineapple leaf, corn stalk, and napier grass) by chemical composition and morphological study," vol 9, pp 872-880, 2013 H I Syeda and P.-S Yap, "A review on three-dimensional cellulose-based aerogels for the removal of heavy metals from water," Science of The Total Environment, vol 807, p 150606, 2022/02/10/ 2022 L Y Long, Y X Weng, and Y Z Wang, "Cellulose Aerogels: Synthesis, Applications, and Prospects," (in eng), Polymers (Basel), vol 10, no 6, Jun 2018 M Dilamian and B Noroozi, "Rice straw agri-waste for water pollutant adsorption: Relevant mesoporous super hydrophobic cellulose aerogel," Carbohydrate Polymers, vol 251, p 117016, 2021/01/01/ 2021 D T Tran et al., "Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications," Materials Chemistry and Physics, vol 253, p 123363, 2020/10/01/ 2020 P A V Freitas, C González-Martínez, and A Chiralt, "Influence of the cellulose purification process on the properties of aerogels obtained from rice straw," Carbohydrate Polymers, vol 312, p 120805, 2023/07/15/ 2023 Q B Thai et al., "Cellulose-based aerogels from sugarcane bagasse for oil spillcleaning and heat insulation applications," Carbohydrate Polymers, vol 228, p 115365, 2020/01/15/ 2020 L N Phat et al., "Synthesis of hybrid carbon aerogels from sugarcane bagasse and coffee grounds for oil adsorption application," Biomass Conversion and Biorefinery, 2022/06/13 2022 T Ahamad, M Naushad, Ruksana, A N Alhabarah, and S M Alshehri, "N/S doped highly porous magnetic carbon aerogel derived from sugarcane bagasse      International Journal of Biological Macromolecules, vol 132, pp 1031-1038, 2019/07/01/ 2019 H Liu, P Li, T Zhang, Y Zhu, and F Qiu, "Fabrication of recyclable magnetic double-base aerogel with waste bioresource bagasse as the source of fiber for the enhanced removal of chromium ions from aqueous solution," Food and Bioproducts Processing, vol 119, pp 257-267, 2020/01/01/ 2020 Y Lei et al., "Zn/Co-ZIF reinforced sugarcane bagasse aerogel for highly efficient catalytic activation of peroxymonosulfate," Journal of Environmental Chemical Engineering, vol 9, no 6, p 106885, 2021/12/01/ 2021 L N Tan, N C T Nguyen, A M H Trinh, N H N Do, K A Le, and P K Le, "Eco-friendly synthesis of durable aerogel composites from chitosan and pineapple leaf-based cellulose for Cr(VI) removal," Separation and Purification Technology, vol 304, p 122415, 2023/01/01/ 2023 N H N Do, B Y Truong, P T X Nguyen, K A Le, H M Duong, and P K Le, "Composite aerogels of TEMPO-oxidized pineapple leaf pulp and chitosan 63 [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] for dyes removal," Separation and Purification Technology, vol 283, p 120200, 2022/01/15/ 2022 B M Cherian et al., "Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications," Carbohydrate Polymers, vol 86, no 4, pp 1790-1798, 2011/10/15/ 2011 P Franco, S Cardea, A Tabernero, and I De Marco, "Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review," Molecules, vol 26, no 15 doi: 10.3390/molecules26154440 P X T Nguyen et al., "Recent Developments in Water Treatment by Cellulose Aerogels from Agricultural Waste," IOP Conference Series: Earth and Environmental Science, vol 947, no 1, p 012011, 2021/12/01 2021 V Gitis and G Rothenberg, Ceramic membranes: new opportunities and practical applications John Wiley & Sons, 2016 L Yu, M Han, and F He, "A review of treating oily wastewater," Arabian Journal of Chemistry, vol 10, pp S1913-S1922, 2017/05/01/ 2017 A I Zouboulis and A Avranas, "Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 172, no 1, pp 153-161, 2000/10/25/ 2000 A Glickman, "Produced water toxicity: steps you can take to ensure permit compliance," in API Produced Water Management Technical Forum and Exhibition, Lafayette, LA, 1998, pp 17-18 S Jamaly, A Giwa, and S W Hasan, "Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities," Journal of Environmental Sciences, vol 37, pp 15-30, 2015/11/01/ 2015 I J L D e ITOPF, "Oil tanker spill statistics 2016," 2017 J R Nelson, T H Grubesic, L Sim, and K Rose, "A geospatial evaluation of oil spill impact potential on coastal tourism in the Gulf of Mexico," Computers, Environment and Urban Systems, vol 68, pp 26-36, 2018/03/01/ 2018 S Musk, "Trends in oil spills from tankers and ITOPF non-tanker attended incidents," in Proceedings of the Thirty-fifth AMOP Technical Seminar on Environmental Contamination and Response Environment Canada, Vancouver, British Columbia, Canada, 2012, pp 775-797 P Li, Q Cai, W Lin, B Chen, and B Zhang, "Offshore oil spill response practices and emerging challenges," Marine Pollution Bulletin, vol 110, no 1, pp 6-27, 2016/09/15/ 2016 H Singh, N Bhardwaj, S K Arya, and M Khatri, "Environmental impacts of oil spills and their remediation by magnetic nanomaterials," Environmental Nanotechnology, Monitoring & Management, vol 14, p 100305, 2020/12/01/ 2020 M Ghaedi, Adsorption: Fundamental processes and applications Academic Press, 2021 J Wang and X Guo, "Adsorption kinetic models: Physical meanings, applications, and solving methods," Journal of Hazardous Materials, vol 390, p 122156, 2020/05/15/ 2020 G Kumar, D T K Dora, D Jadav, A Naudiyal, A Singh, and T Roy, "Utilization and regeneration of waste sugarcane bagasse as a novel robust 64 [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] aerogel as an effective thermal, acoustic insulator, and oil adsorbent," Journal of Cleaner Production, vol 298, p 126744, 2021/05/20/ 2021 L Zhou, S Zhai, Y Chen, and Z Xu, "Anisotropic Cellulose Nanofibers/Polyvinyl Alcohol/Graphene Aerogels Fabricated by Directional Freeze-drying as Effective Oil Adsorbents," Polymers, vol 11, no doi: 10.3390/polym11040712 M Fauziyah, W Widiyastuti, and H Setyawan, "A hydrophobic cellulose aerogel from coir fibers waste for oil spill application," IOP Conference Series: Materials Science and Engineering, vol 778, no 1, p 012019, 2020/04/01 2020 I Benito-González, A López-Rubio, L G Gómez-Mascaraque, and M Martínez-Sanz, "PLA coating improves the performance of renewable adsorbent pads based on cellulosic aerogels from aquatic waste biomass," Chemical Engineering Journal, vol 390, p 124607, 2020/06/15/ 2020 X Zhang, H Wang, Z Cai, N Yan, M Liu, and Y Yu, "Highly Compressible and Hydrophobic Anisotropic Aerogels for Selective Oil/Organic Solvent Absorption," ACS Sustainable Chemistry & Engineering, vol 7, no 1, pp 332340, 2019/01/07 2019 F Rafieian, M Hosseini, M Jonoobi, and Q Yu, "Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment," Cellulose, vol 25, no 8, pp 4695-4710, 2018/08/01 2018 Z Jing et al., "Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation," Food and Bioproducts Processing, vol 115, pp 134-142, 2019/05/01/ 2019 Y Wang et al., "Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties," Journal of Materials Chemistry B, 10.1039/C9TB01313J vol 7, no 38, pp 57625774, 2019 P Bharmoria and S P M Ventura, "Chapter 17 - Bio-based aerogels for environmental remediation problems," in Advances in Aerogel Composites for Environmental Remediation, A A P Khan, M O Ansari, A Khan, and A M Asiri, Eds.: Elsevier, 2021, pp 329-345 N Dinh Vu, H Thi Tran, N D Bui, C Duc Vu, and H Viet Nguyen, "Lignin -Assisted Alkaline Treatment Method," International Journal of Polymer Science, vol 2017, p 1063695, 2017/10/25 2017 A Venkateswara Rao, N D Hegde, and H Hirashima, "Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels," Journal of Colloid and Interface Science, vol 305, no 1, pp 124-132, 2007/01/01/ 2007 T Zhai, Q Zheng, Z Cai, L.-S Turng, H Xia, and S Gong, "Poly(vinyl alcohol)/Cellulose Nanofibril Hybrid Aerogels with an Aligned Microtubular Porous Structure and Their Composites with Polydimethylsiloxane," ACS Applied Materials & Interfaces, vol 7, no 13, pp 7436-7444, 2015/04/08 2015 G Naidu, T Nur, P Loganathan, J Kandasamy, and S Vigneswaran, "Selective sorption of rubidium by potassium cobalt hexacyanoferrate," Separation and Purification Technology, vol 163, pp 238-246, 2016/05/11/ 2016 65 [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] H Chen, J L Muros-Cobos, and A Amirfazli, "Contact angle measurement with a smartphone," Review of Scientific Instruments, vol 89, no 3, p 035117, 2018/03/01 2018 M Zanini et al., "Producing aerogels from silanized cellulose nanofiber suspension," Cellulose, vol 24, no 2, pp 769-779, 2017/02/01 2017 S Zhou, P Liu, M Wang, H Zhao, J Yang, and F Xu, "Sustainable, Reusable, and Superhydrophobic Aerogels from Microfibrillated Cellulose for Highly Effective Oil/Water Separation," ACS Sustainable Chemistry & Engineering, vol 4, no 12, pp 6409-6416, 2016/12/05 2016 H N Tran, S.-J You, A Hosseini-Bandegharaei, and H.-P Chao, "Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review," Water Research, vol 120, pp 88-116, 2017/09/01/ 2017 D Q Truong et al., "Removing ammonium from contaminated water using Purolite C100E: batch, column, and household filter studies," Environmental Science and Pollution Research, vol 29, no 12, pp 16959-16972, 2022/03/01 2022 L Liu, Z Y Gao, X P Su, X Chen, L Jiang, and J M Yao, "Adsorption Removal of Dyes from Single and Binary Solutions Using a Cellulose-based Bioadsorbent," ACS Sustainable Chemistry & Engineering, vol 3, no 3, pp 432442, 2015/03/02 2015 F Lai, Y.-E Miao, L Zuo, Y Zhang, and T Liu, "Carbon Aerogels Derived from Bacterial Cellulose/Polyimide Composites as Versatile Adsorbents and Supercapacitor Electrodes," ChemNanoMat, https://doi.org/10.1002/cnma.201500210 vol 2, no 3, pp 212-219, 2016/03/01 2016 S Han, Q Sun, H Zheng, J Li, and C Jin, "Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution," Carbohydrate Polymers, vol 136, pp 95-100, 2016/01/20/ 2016 C Su, H Yang, H Zhao, Y Liu, and R Chen, "Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water," Chemical Engineering Journal, vol 330, pp 423432, 2017/12/15/ 2017 Y Zhang, M Yin, X Lin, X Ren, T.-S Huang, and I S Kim, "Functional nanocomposite aerogels based on nanocrystalline cellulose for selective oil/water separation and antibacterial applications," Chemical Engineering Journal, vol 371, pp 306-313, 2019/09/01/ 2019 Z Zhang, G Sèbe, D Rentsch, T Zimmermann, and P Tingaut, "Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water," Chemistry of Materials, vol 26, no 8, pp 26592668, 2014/04/22 2014 W Qu, Z Wang, X Wang, Z Wang, D Yu, and D Ji, "High-hydrophobic ZIF67@PLA honeycomb aerogel for efficient oilwater separation," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 658, p 130768, 2023/02/05/ 2023 T Zhang, D Yuan, Q Guo, F Qiu, D Yang, and Z Ou, "Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: Inspired by green leaves to green Tofu," Food and Bioproducts Processing, vol 114, pp 154-162, 2019/03/01/ 2019 66 [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] C Simón-Herrero, A Romero, A Esteban-Arranz, A R de la Osa, and L Sánchez-Silva, "Utilization and reusability of hydroxyethyl cellulose alumina based aerogels for the removal of spilled oil," Chemosphere, vol 260, p 127568, 2020/12/01/ 2020 J Rong et al., "A facile strategy toward 3D hydrophobic composite resin network decorated with biological ellipsoidal structure rapeseed flower carbon for enhanced oils and organic solvents selective absorption," Chemical Engineering Journal, vol 322, pp 397-407, 2017/08/15/ 2017 Z Xu, X Jiang, H Zhou, and J Li, "Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)cellulose nanofiber (CNF) aerogels as effective oil absorbents," Cellulose, vol 25, no 2, pp 1217-1227, 2018/02/01 2018 C Jiménez-Saelices, B Seantier, B Cathala, and Y Grohens, "Spray freezedried nanofibrillated cellulose aerogels with thermal superinsulating properties," Carbohydrate Polymers, vol 157, pp 105-113, 2017/02/10/ 2017 X Sun, F Xu, R Sun, P Fowler, and M Baird, "Characteristics of degraded cellulose obtained from steam-exploded wheat straw," Carbohydrate research, vol 340, pp 97-106, 02/01 2005 Q Liao et al., "Flexible and durable cellulose aerogels for highly effective oil/water separation," RSC Advances, 10.1039/C6RA12356B vol 6, no 68, pp 63773-63781, 2016 F Nindiyasari et al., "Characterization and mechanical properties investigation of the cellulose/gypsum composite," Journal of Composite Materials, vol 50, no 5, pp 657-672, 2016/03/01 2015 A D French, "Idealized powder diffraction patterns for cellulose polymorphs," Cellulose, vol 21, no 2, pp 885-896, 2014/04/01 2014 J P de Oliveira, G P Bruni, S L M el Halal, F C Bertoldi, A R G Dias, and E d R Zavareze, "Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging," International Journal of Biological Macromolecules, vol 124, pp 175-184, 2019/03/01/ 2019 R Rotaru et al., "Ferromagnetic iron oxidecellulose nanocomposites prepared by ultrasonication," Polymer Chemistry, 10.1039/C7PY01587A vol 9, no 7, pp 860-868, 2018 R Ye et al., "Oil/water separation using elastic bio-aerogels derived from bagasse: Role of fabrication steps," Journal of Hazardous Materials, vol 438, p 129529, 2022/09/15/ 2022 Z Li et al., "Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent," Carbohydrate Polymers, vol 191, pp 183-190, 2018/07/01/ 2018 H Bidgoli, Y Mortazavi, and A A Khodadadi, "A functionalized nanostructured cellulosic sorbent aerogel for oil spill cleanup: Synthesis and characterization," Journal of Hazardous Materials, vol 366, pp 229-239, 2019/03/15/ 2019 C Wan, Y Lu, J Cao, and J Li, "Preparation, Characterization and Oil Adsorption Properties of Cellulose Aerogels from Four Kinds of Plant Materials via a NaOH/PEG Aqueous Solution," Fibers and Polymers, vol 16, pp 302-307, 02/01 2015 67 [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] J Feng, S T Nguyen, Z Fan, and H M Duong, "Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels," Chemical Engineering Journal, vol 270, pp 168-175, 2015/06/15/ 2015 L Yi et al., "Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from Water," Journal of Hazardous Materials, vol 385, p 121507, 2020/03/05/ 2020 D Quyet Truong et al., "Selective rubidium recovery from seawater with metalorganic framework incorporated potassium cobalt hexacyanoferrate nanomaterial," Chemical Engineering Journal, vol 454, p 140107, 2023/02/15/ 2023 A Samanta, Q Wang, S K Shaw, and H Ding, "Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors," Materials & Design, vol 192, p 108744, 2020/07/01/ 2020 Z.-Y Wu, C Li, H.-W Liang, J.-F Chen, and S.-H Yu, "Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose," Angewandte Chemie International Edition, https://doi.org/10.1002/anie.201209676 vol 52, no 10, pp 2925-2929, 2013/03/04 2013 X.-M Li, D Reinhoudt, and M Crego-Calama, "What we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces," Chemical Society Reviews, 10.1039/B602486F vol 36, no 8, pp 1350-1368, 2007 Y.-Q Li, Y A Samad, K Polychronopoulou, S M Alhassan, and K Liao, "Carbon Aerogel from Winter Melon for Highly Efficient and Recyclable Oils and Organic Solvents Absorption," ACS Sustainable Chemistry & Engineering, vol 2, no 6, pp 1492-1497, 2014/06/02 2014 Y Yang, Y Deng, Z Tong, and C Wang, "Renewable Lignin-Based Xerogels with Self-Cleaning Properties and Superhydrophobicity," ACS Sustainable Chemistry & Engineering, vol 2, no 7, pp 1729-1733, 2014/07/07 2014 R S Rengasamy, D Das, and C Praba Karan, "Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers," Journal of Hazardous Materials, vol 186, no 1, pp 526-532, 2011/02/15/ 2011 J Wang, Y Zheng, and A Wang, "Coated kapok fiber for removal of spilled oil," Marine Pollution Bulletin, vol 69, no 1, pp 91-96, 2013/04/15/ 2013 B Tansel and B Pascual, "Removal of emulsified fuel oils from brackish and pond water by dissolved air flotation with and without polyelectrolyte use: Pilotscale investigation for estuarine and near shore applications," Chemosphere, vol 85, no 7, pp 1182-1186, 2011/11/01/ 2011 S T Nguyen et al., "Cellulose Aerogel from Paper Waste for Crude Oil Spill Cleaning," Industrial & Engineering Chemistry Research, vol 52, no 51, pp 18386-18391, 2013/12/26 2013 - motor oil removal from water with different sorption materials," Journal of Hazardous Materials, vol 154, no 1, pp 558-563, 2008/06/15/ 2008 R Masoodi and K M Pillai, "Darcy's law-based model for wicking in paper-like swelling porous media," AIChE Journal, https://doi.org/10.1002/aic.12163 vol 56, no 9, pp 2257-2267, 2010/09/01 2010 68 [100] X Gui et al., "Recyclable carbon nanotube sponges for oil absorption," Acta Materialia, vol 59, no 12, pp 4798-4804, 2011/07/01/ 2011 [101] H Liu, B Geng, Y Chen, and H Wang, "Review on the Aerogel-Type Oil Sorbents Derived from Nanocellulose," ACS Sustainable Chemistry & Engineering, vol 5, no 1, pp 49-66, 2017/01/03 2017 [102] S T Nguyen, J Feng, S K Ng, J P W Wong, V B C Tan, and H M Duong, "Advanced thermal insulation and absorption properties of recycled cellulose aerogels," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 445, pp 128-134, 2014/03/20/ 2014 [103]  waste for oil spill cleanup," Marine Pollution Bulletin, vol 125, no 1, pp 341349, 2017/12/15/ 2017 [104] Q B Thai et al., "Advanced aerogels from waste tire fibers for oil spill-cleaning applications," Journal of Environmental Chemical Engineering, vol 8, no 4, p 104016, 2020/08/01/ 2020 [105] N Xiao, Y Zhou, Z Ling, and J Qiu, "Synthesis of a carbon nanofiber/carbon foam composite from coal liquefaction residue for the separation of oil and water," Carbon, vol 59, pp 530-536, 2013/08/01/ 2013 [106] J Hu et al., "Biocompatible, hydrophobic and resilience graphene/chitosan       Surface and Coatings Technology, vol 385, p 125361, 2020/03/15/ 2020 [107] X Zhou, Z Zhang, X Xu, X Men, and X Zhu, "Facile Fabrication of Superhydrophobic Sponge with Selective Absorption and Collection of Oil from Water," Industrial & Engineering Chemistry Research, vol 52, no 27, pp 94119416, 2013/07/10 2013 [108] L Wu, J Zhang, B Li, and A Wang, "Magnetically driven super durable superhydrophobic polyester materials for oil/water separation," Polymer Chemistry, 10.1039/C3PY01478A vol 5, no 7, pp 2382-2390, 2014 [109] M Shi et al., "Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures," RSC Advances, 10.1039/C6RA26831E vol 7, no 7, pp 4039-4045, 2017 [110] Y Zhang, Q Shen, X Li, H Xie, and C Nie, "Facile synthesis of ternary flexible silica aerogels with coarsened skeleton for oilwater separation," RSC Advances, 10.1039/D0RA07906E vol 10, no 69, pp 42297-42304, 2020 [111] J Wang and S Liu, "Remodeling of raw cotton fiber into flexible, squeezingresistant macroporous cellulose aerogel with high oil retention capability for oil/water separation," Separation and Purification Technology, vol 221, pp 303310, 2019/08/15/ 2019 [112] R K Rama S Agarwal, "Hierarchically Porous Bio-Based Sustainable Conjugate Sponge for Highly Selective Oil/Organic Solvent Absorption," Advanced Functional Materials, https://doi.org/10.1002/adfm.202100640 vol 31, no 18, p 2100640, 2021/05/01 2021 [113] N Cao et al., "Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation," Chemical Engineering Journal, vol 326, pp 17-28, 2017/10/15/ 2017 69 PHỤ LỤC Bảng Kh xp ca mu cellulose aerogel ph MTMS vi s i ca n cellulose Mẫu wt% A-RR SD A-BM SD A-LD SD 0.53 1.34 1.12 15.42 27.75 42.21 1.78 0.78 0.87 0.73 0.59 0.64 98.97 98.15 96.67 0.78 0.67 0.57 Khối lượng riêng (mg/cm3 ) 0.5 16.07 24.1 40.63 0.5 98.93 98.39 97.29 1.35 17.78 0.72 32 1.46 52.63 Độ rỗng xốp (%) 0.57 98.81 0.48 97.87 0.54 95.82 Ghi chú: SD (Standard Deviation)   lch chun Bảng ng hp ph du nguyên cht ng cellulose ca aerogel ph MTMS Mẫu wt% A-RR 0.5 27.81 23.63 22.7 0.5 26.85 20.97 18.83 SD A-BM Dầu nhớt thải (g/g) 0.38 26.16 0.63 23.92 0.42 20.88 Dầu diesel (g/g) 0.35 26.5 0.57 18.67 0.45 19.41 SD A-LD SD 0.37 0.45 0.69 27.08 21.75 22.84 0.38 0.68 0.34 0.39 0.46 0.48 25.85 19.74 18.43 0.49 0.62 0.56 Bảng ng hp ph du nguyên cht vi mu cellulose aerogel 0.5% c sau ph MTMS Mẫu A-RR   24.34 27.81   23.42 26.85 SD A-BM Dầu nhớt thải (g/g) 0.46 23.99 0.38 26.16 Dầu diesel (g/g) 0.75 21.77 0.35 26.5 70 SD A-LD SD 0.65 0.37 23.34 27.08 0.67 0.38 0.87 0.39 22.69 25.85 0.35 0.49 Bảng ng ca khng hp ph du hn hp du  c Khối lượng cellulose aerogel (g) Dung lượng hấp phụ (g/g) Dầu nhớt thải 27.94 26.87 22.69 19.71 19.04 18.45 18.77 18.21 Dầu Diesel 25.58 23.25 22.28 19.35 19.81 18.30 18.09 18.12 0.0501 0.0848 0.1233 0.1736 0.2568 0.3484 0.3864 0.4289 0.0557 0.0908 0.1183 0.1702 0.2636 0.3532 0.3907 0.4212 Hiệu suất (%) 17.50 28.48 34.96 42.77 61.11 80.33 90.65 97.61 17.81 26.39 32.95 41.17 65.28 80.80 88.33 95.42 Bảng ng hp ph du c ca cellulose aerogel ph MTMS theo thi gian Dầu nhớt thải Dầu Diesel Thời gian (phút) Dung lượng hấp phụ (g/g) Thời gian (phút) Dung lượng hấp phụ (g/g) 0.16667 0.5 10 20 30 35 0.00 5.33 12.71 18.25 22.77 26.26 27.81 27.55 27.49 27.56 0.08333 0.16667 0.33333 10 20 30 0.00 23.71 24.30 24.58 24.83 25.02 25.09 25.24 25.25 25.29 71 Bảng ng ca nhi n hiu sut hp ph du hn hp du  c ca cellulose aerogel ph MTMS Dầu nhớt thải Nhiệt độ (o C) Dầu Diesel Dung lượng hấp phụ (g/g) SD Dung lượng hấp phụ (g/g) SD 26.13 27.56 27.12 25.34 24.39 0.79 1.15 0.64 0.31 0.22 26.79 25.65 25.09 24.38 22.88 1.12 0.83 0.67 0.56 0.65 10 20 25 40 60 Bảng ng cng hp ph du hn hp du  c ca cellulose aerogel sau ph MTMS pH 27.38 26.21 27.12 26.48 27.45 26.84 27.65 26.46 Loại dầu  Diesel Bảng ng hp ph hiu sut tách du sau 10 chu k hp ph  nh hp ph bc Số lần tái sử dụng Dung lượng hấp phụ (g/g) 10 27.38 11.78 7.27 6.51 6.56 5.96 6.30 6.26 6.28 6.22 6.20 25.42 15.43 7.83 SD Dầu nhớt thải 0.36 0.19 0.04 1.06 0.62 0.84 1.04 0.99 1.00 1.02 1.00 Dầu Diesel 0.33 0.22 0.37 72 Hiệu suất tách dầu (%) SD 65.01 45.92 35.66 33.75 35.27 32.90 34.90 35.01 35.07 34.72 34.63 5.36 5.36 4.75 0.10 2.15 0.30 0.67 0.77 0.77 0.89 0.89 72.23 59.18 44.65 2.13 1.38 0.92 10 7.36 7.34 7.07 6.65 6.56 6.53 6.49 6.43 0.68 0.47 0.63 0.43 0.43 0.44 0.42 0.36 73 42.95 43.59 43.06 41.35 41.49 41.50 41.51 41.38 2.21 1.60 1.92 1.03 1.37 1.58 1.47 1.21 TÓM TẮT LUẬN VĂN THẠC SĨ  tài: Nghiên cu tái s dng ph thi nông nghip làm vt liu hi c thi Tác gi lu Khóa: 2020B ng d Thái Yên T khóa (Keyword): , bã mía, da, vt liu cellulose aerogel, hp ph du Ni dung tóm tt: a) Lý ch tài Vt liu cellulose aerogel t thc vt cho thy nhiu ti  hy sinh hc, hp ph du kh o ca cellulose Hp ph c coi mt công ngh hiu qu  x c thi nhim du kh i b du cao, d vn hành tiêu th ng Các vt liu hp ph truyn thng bao gm polypropylene (PP), zeolit than hot tính, nhiên nhng vt liu có nh kh  dng kém, kh p ph d chn lc thiu kh  phân hy sinh hc Vic nông nghip vi din tích canh tác dành lúa c, mía da chim mt t trng lu nn nông nghi mng ln ph thi nông nghi  i v mùa thu hoch ng sinh khi mang tin, yêu cu bc thit s dng có hiu qu ng ph thy, có th thu hng sinh khi làm ngun nguyên li sn xut cellulose aerogel ng dng x c nhim du b) Mu ca lung, phm vi nghiên cu Mục đích nghiên cứu Ch to thành công vt liu aerogel nn cellulose t loi ph thi nơng nghip g, da bã mía có kh p ph du hiu qu Đối tượng phạm vi nghiên cứu - Ph thi nông nghi, bã mía da Vt liu hi c thc nhim du (du nht thi du diesel) Nội dung nghiên cứu - Ch to cellulose aerogel vi n i t 0.5 wt%, wt% wt% vc chit tách t loi ph thi nơng nghi, bã mía da; c tính ca mu cellulose aerogel ch tc, bao gm: cu trúc hình thái, cu trúc tinh th nhóm ch xp, tính k c; -    ng hp ph hai loi du (du nht thi du diesel) ca cellulose aerogel; - ng dng cellulose aerogel trình hp ph du hn hp du  c: Nghiên cu ng ca yu t: khng cellulose aerogel, thi gian phn ng, nhi ng hp ph du nht thi du diesel; Nghiên cu kh  dng hiu qu tách du ca cellulose aerogel sau q trình hp ph c) Tóm tng ni dung i ca tác gi - Vt liu cc tng hp t loi ph thi nông nghi, bã mía d x c thi nhim du có nhic tính ni tri v kh p ph Hiu qu ca trình cht tách cellulose t sinh khi c nâng cao nh áp dng quy trình tin x lý bng sóng siêu âm Sau q trình chit tách này, hemicellulose c loi b hoàn toàn Các mu cellulose aerogel to thành có kh ng rõ ràng mà không b v cu trúc mng cu trúc ba chin hình, bênh cng riêng th rng xp cao Vt liu aerogel có tính k c nh q trình sylan hóa b mt s dng methyltrimethoxysilane (MTMS)  dàng ni mt c hp ph du Sau kim tra ng ca yu t: khng vt liu, thi gian hp ph, nhi c kim tra kh  dng bng ép c d) u Thay áp dng quy trình chit Soxhlet s dc hi (toluen), cellulose c chit tách t loi vt liu thơ bm hóa s dng NaOH vi s h tr cc s dng làm tin ch ch t- to tính k c cho ng dng hp ph du hn hp du  c, mu cellulose aerogel to thành c ph v c s d c tính ca cellulose aerogel sau ph MTMS Mc king hp ph vi du nht thi du Diesel nguyên chc ng dng vi h du  c Các yu t n trình hp ph du hn hp du  c bao gm: khng cellulose aerogel, th c ki ng hc gi bc 1, bc áp d mơ t ng hc ca q trình hp ph du c e) Kt lun c ch to thành công t loi ph thi nông nghip gm , bã mía da c loi b hồn tồn sau trình chit tách thu cellulose nh trình kim hóa tin x lý bng sóng siêu âm c rt nh (15.4252.63 mg/cm3) có  rng xp cao (95.82 98.97%) ng hp ph du nguyên cht 27.81 g/g vi du nht thi 26.85 g/g vi du diesel Sau q trình ph MTMS, vt liu có tính k c d dàng ni b mng thi hp ph du nht thi du diesel vng hp ph du nht tht 27.49 g/g, giá tr vi du diesel 25.29 g/g V ng ca khi ng vt ling hp ph vi c loi dng gim khi ng vt li 0.05 g lên 0.45 g Mô hình gi ng hc bc mơ hình Elovich mơ t ng hc ca q trình hp ph du nht thi du diesel tt vi h s  quan cao Vi nhing ging hp ph c quan sát thy nhi ng 1060 oC, kt qu c ng ca nhi lên  nht ca du Quá trình hp ph du nht thi du diesel ca cellulose aerogel không b ng bi giá tr pH ca hn hp du  c thơng qua thí nghim vi giá tr i t 3, 5, Cellulose aerogel có th c s dng li nhiu vịng (~10 ln) thu hi du nh n Kt qu c cho thy rng cellulose aerogel t loi ph thi nơng nghip có nhc tính hp ph du hiu qu, cho thy ting dng vic tách du khi nhiu nguc ô nhim, k c s c tràn du hoc x c nhim du

Ngày đăng: 11/12/2023, 06:44

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w