1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

AUTOMATION & CONTROL - Theory and Practice Part 8 pptx

25 430 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 1,07 MB

Nội dung

AUTOMATION&CONTROL-TheoryandPractice166 Fi g T h la y ac c T h in t Pr o - s e it eq u Fi n fu n 3. 2 T h th e p o co n P D g . 5. Generic stru c h e procedure to c y er receives a va l c ordin g to equati h is activation co e t ermediate layer, o pa g ation ma y b e lection of an ap p is also necessar y u ation (5), and t h n ally, the output n ction that was u 2 Neural PDF h e principal reas o e anal y sis, desi g o ssible to acquire n trolled, this inf o D or PID and, in t h c ture for three la y c alculate the pro l ue X i , which is p on (3) where S is p j S e fficient S j p is p r in this case the s i h b e accomplished u p ropriate functio n y to define an e h is is obtained w h p k r t function of the u sed to connect t h o n that Artificial g n and impleme n any a priori kn o o rmation can be u h e case consider e y er ANN. pa g ation values p ropa g ated with called the activa t n n i p iij p WXW 1     r opa g ated b y an ig moid function, p j S p j e S h    1 1 )( u sin g alternative n depends on th e e xcitin g functio n h en the wei g hts V     l j p j p jk hV 1 output neuron ‘ h e input and hid d p k r p k e O    1 1 Neural Networ k n tation of contr o o wledge of the st u sed to improve t e d here, PDF. Th e for each la y er i s a weight W ij to t ion coefficient. p j,1  output functio n equation (4). p ran g e-limited f u e final applicatio n n , in order to a c V jk have been cal c   p kl V ,1 ‘ k’ is obtained u s d en la y ers, equati k s (ANNs) have e o l strate g ies is t t ructure of the m t he tunin g of t y p e re are man y con t s as follows. Th e the intermediat e n which represe n u nctio n s, such as n . As shown in fi g c cess the output c ulated. sing the same si on (6). e arned their posi t t heir flexibilit y . I m odel of a syste m ical controllers, s t ributions in the a e input e la y er, (3) n ts the (4) tanh -1 , g ure 5, la y er, (5) gmoid (6) t ion in If it is m to be s uch as a rea of ar t ad j G a T h G a h y fu z pr e tu r h y us e In di s (2 0 N e E q in t fu n th e Fi g t ificial neural ne j ust the parame t a rcez & Garcez, 1 9 h ere have been s e a rcez and Garce z y droelectric pow e z z y inference to e sented a sel f -le a r bine g overnor. R y bridized control l e d as g overnors o this work a ba s crete PDF re g ul a 0 00) with g reat s e ural-PDF schem e q uatio n s 7 and 8 t erconnection V j n ction for the er r e chan g e of si g n i g . 6. Neural PDF. tworks aimed a t t ers of discrete P 9 95). In this wor k e veral works w h z (1995) applie d e r plant. D j ukano v control a low h a r n in g control s ys R ecentl y , Shu-Qi l er based on g e n o f a h y droelectri c ck-propa g ation s a tor. This strate g s ucess in practic a e proposed. The r j tv 1 (  ji tw 1 (   8 are expressed and W ij . Equati o r or.  is include d i n the evolution o t definin g fast a n P ID control s y ste m k a similar strate g h ere ANN have d PI neural cont r v ic, et al. (1997) v h ead h y dropow e s tem usin g a PID n g et al. (2005) h n etic al g orithms a c power plant m o s trate gy has be e gy was used to a d a l implementati o r e g ulation can b e j signtv ()() 1   ji s ig n tw )() 1   j j e e h v tE      1 )(  to recursivel y o n 9 is used to d e d to calculate the o f the process. n d effective stra t m s (Narendra & gy is used to tun e been applied to r ol to a linear s v alidated an ada p e r s y stem. Yin-S o fuzz y NN and a h ave compared a a nd fuzz y NN w o del. e n used to ad j u s dj ust a PID cont r o ns. Fi g ure 6 sh o e calculated b y : j u y h e e 1 )    i j u y x e e n 2 )(    u y e e ad j ust the wei gh e velop the mini m g radient of the f t e g ies to calcula t Mukhopadh y a y e a discrete PDF. h y droelectric s y s imulator of a 2 0 p tive-network ba o n g , et al. (2000 ) a pplied it to a h yd a PID controller w w hen the controll e s t the paramete r r oller b y A g uado o ws the scheme hts for each ne u m ization of the t r f unction and to e t e and , 1996; y stems. 0 MW sed o n ) have d raulic w ith a e rs are r s of a Behar of the (7) (8) (9) u ronal r ansfer e xpress NeuralPDFControlStrategyforaHydroelectricStationSimulator 167 Fi g T h la y ac c T h in t Pr o - s e it eq u Fi n fu n 3. 2 T h th e p o co n P D g . 5. Generic stru c h e procedure to c y er receives a va l c ordin g to equati h is activation co e t ermediate la y er, o pa g ation ma y b e lection of an ap p is also necessar y u ation (5), and t h n all y , the outpu t n ction that was u 2 Neural PDF h e principal reas o e anal y sis, desi g o ssible to acquire n trolled, this inf o D or PID and, in t h c ture for three la y c alculate the pro l ue X i , which is p on (3) where S is p j S e fficient S j p is p r in this case the s i h b e accomplished u p ropriate functio n y to define an e h is is obtained w h p k r t function of the u sed to connect t h o n that Artificial g n and impleme n an y a priori kn o o rmation can be u h e case consider e y er ANN. pa g ation values p ropa g ated with called the activa t n n i p iij p WXW 1     r opa g ated b y an ig moid function, p j S p j e S h    1 1 )( u sin g alternative n depends on th e e xcitin g functio n h en the wei g hts V     l j p j p jk hV 1 output neuron ‘ h e input and hid d p k r p k e O    1 1 Neural Networ k n tation of contr o o wled g e of the s t u sed to improve t e d here, PDF. Th e for each la y er i s a weight W ij to t ion coefficient. p j,1  output functio n equation (4). p ran g e-limited f u e final applicatio n n , in order to a c V jk have been cal c   p kl V ,1 ‘ k’ is obtained u s d en la y ers, equati k s (ANNs) have e o l strate g ies is t t ructure of the m t he tunin g of t y p e re are man y con t s as follows. Th e the intermediat e n which represe n u nctio n s, such as n . As shown in fi g c cess the output c ulated. s in g the same si on (6). e arned their posi t t heir flexibilit y . I m odel of a s y ste m ical controllers, s t ributions in the a e input e la y er, (3) n ts the (4) tanh -1 , g ure 5, la y er, (5) g moid (6) t ion in If it is m to be s uch as a rea of ar t ad j G a T h G a h y fu z pr e tu r h y us e In di s (2 0 N e E q in t fu n th e Fi g t ificial neural ne j ust the parame t a rcez & Garcez, 1 9 h ere have been s e a rcez and Garce z y droelectric pow e z z y inference to e sented a sel f -le a r bine g overnor. R y bridized control l e d as g overnors o this work a ba s crete PDF re g ul a 0 00) with great s e ural-PDF schem e q uatio n s 7 and 8 t erconnection V j n ction for the er r e chan g e of si g n i g . 6. Neural PDF. tworks aimed a t t ers of discrete P 9 95). In this wor k e veral works w h z (1995) applie d e r plant. D j ukano v control a low h a r n in g control s ys R ecentl y , Shu-Qi l er based on g e n o f a h y droelectri c ck-propa g ation s a tor. This strate g s ucess in practic a e proposed. The r j tv 1 (  ji tw 1 (   8 are expressed and W ij . Equati o r or.  is include d i n the evolution o t definin g fast a n P ID control s y ste m k a similar strate g h ere ANN have d PI neural cont r v ic, et al. (1997) v h ead h y dropow e s tem usin g a PID n g et al. (2005) h n etic al g orithms a c power plant m o s trate gy has be e gy was used to a d a l implementati o r e g ulation can b e j signtv ()() 1   ji s ig n tw )() 1   j j e e h v tE      1 )(  to recursivel y o n 9 is used to d e d to calculate the o f the process. n d effective stra t m s (Narendra & gy is used to tun e been applied to r ol to a linear s v alidated an ada p e r s y stem. Yin-S o fuzz y NN and a h ave compared a a nd fuzz y NN w o del. e n used to ad j u s dj ust a PID cont r o ns. Figure 6 sh o e calculated b y : j u y h e e 1 )    i j u y x e e n 2 )(    u y e e ad j ust the wei gh e velop the mini m g radient of the f t e g ies to calcula t Mukhopadh y a y e a discrete PDF. h y droelectric s y s imulator of a 2 0 p tive-network ba o n g , et al. (2000 ) a pplied it to a h yd a PID controller w w hen the controll e s t the paramete r r oller b y A g uado o ws the scheme hts for each ne u m ization of the t r f unction and to e t e and , 1996; y stems. 0 MW sed o n ) have d raulic w ith a e rs are r s of a Behar of the (7) (8) (9) u ronal r ansfer e xpress AUTOMATION&CONTROL-TheoryandPractice168 4. 4. 1 Di n ar e th e sp e g o re f al s gr i Fi g T h re g in c si g th e re g va n re g fe e re a si g th e li n 4. 2 W i ar e th e Classic contr o 1 Dinorwig Gov e n orwi g has a di g e two control lo o e turbine’s g uid e e ed re g ulation d vernor. A PI co n f erence to the p o s o a derivative fe e i d frequency. g . 7. Scheme of t h h e g enerators m u g ulator y authori t c reasin g g enerati g nal to the g ove r e g overnor oper a g ulatio n (Manso o n e openin g and g ulation mode ( p e d-forward sign a a ction when bi g c g nal (control si gn e feed-forward s n ear relationship b 2 Anti-windup P I i th careful tunin g e sub j ect to const e se circumstanc e o llers for hydr o e rnor Configura t g ital Governor w o ps, for power a n e vane is ad j uste d d roop. The Dro o n fi g uration is use d o wer control loo p e d-forward loop h e Dinorwi g Go v u st maintain th ty . When the r e o n . On the othe r r nor valve will c l a tes with two d o r, 2000). The po w defines the oper a p art load respon s a l, directly sets t c han g es in the p o n al) is produced b s i g nal. The pow e b etween g uide v a I D g , PI control can raints and their b e s, the performa n o electric stati o t ion w hose g eneral co n n d frequenc y (M a d dependin g on o p g ain is used d for this control p , which is prop o that allows the s v ernor. e speed within e ference is raise d r hand, when th e l ose, decreasin g g roop settin g s; 1 % w er reference si g a tin g point for t h s e). Chan g in g th e t he guide vane o wer reference a p by addin g the ou t e r feedback loo p a ne openin g and offer g ood and r b ehaviour chan ge n ce of a linear o ns n fi g uration is sh o a nsoor, 2000). In the power devi a to chan g e the s . The frequenc y c o rtional to the fr e sy stem to respon d an operational d the g overnor e output si g nal i s g eneratio n (Wri g % for hi g h re g u l g nal sets the refer h e unit when it i s e power referen c position, in ord e p pear. The g uide v t put si g nals fro m p compensates t h power. r obust performa n e s when the cons controller, such o wn in Fi g ure 7. the power contr o a tion multiplied s peed reference c ontrol loop pro v e quenc y error. T h d to a rapidly-ch a band defined b valve will ope n s lowered the re f g ht, 1989). At Di n l ation and 4% f o ence position fo r s workin g in fre q c e, which also ac er to produce a v ane position re f m the P, I and D p h e s y stem for th e n ce. However, al l traints are activ a as PI, can dete r There o l loop b y the of the v ides a h ere is a n g in g by the n , thus f erence n orwi g o r low r g uide q uenc y ts as a rapid f erence p arts to e no n - l Plant a ted. In r iorate si g be c an ca u 20 0 be c th i o u s ys si g A t Fi g A t a n sa t be g a i li m is c tr a Fi g 5. T h g o w e g nificantl y (Pen g, c omes excessive l d it then “winds u sed b y the satu r 0 1). In other wo r c ause increasing i s behaviour per u tput of the pla n s tem back to its c g n for a lon g ti m t herton, 1995). g ure 8 shows a ge t herton, 1995). T h n e g ative value a n t uration is used t inte g rated is m o i n (K i ) are ad j us t m it and the dead z c ommonl y used. a ckin g anti-wind u g . 8. General sch e Simulink © Mo d h e Simulink © soft w vernors. This to o e re constructed , et. al., 1996). W h ly lar g e compar e up”. In addition , r ation effect (Pe n r ds, windup is p the control si g n sists the inte g ra t n t. As a conseq u c orrect stead y -st a m e. The result i s e neral PI control l h is controller has n d forces the out t o reduce the int e o dified b y the p r t ed in order to m z one depend on t In this work, th e u p structure will e me of PI anti-wi n d el and Progr a w are tool was us e o l has libraries o f usin g these sta n h en the plant has e d to a linear res p , a hi g her inte g ra t ng , et. al., 1996; B roduced when t h al can no longer t or value can be u ence, when re c a te value require s a lar g e overs h l er that includes a an internal feed b put of the s y ste m eg rator input. As r oportional g ain m aintain equival e t he constraints fi x e responses of th e be used as a basi n dup. a m e d to facilitate st u f specific functio n n dard Simulink © actuator saturat i p onse (an actua t t or output and a B ohn & Atherton , h e control si g nal accelerate the r e come ver y lar g e c overin g from s a s the control err o h oot and a long a tracking anti- w b ack path, which m to be in the li n can be seen fro m (K), therefore th e e nce with the cl a x ed b y the opera t e plant when it i s s of comparison. u dies of the pow e n s (blocks) and t h © functions. Us i i on the inte g rato r t or without satu r lon g er settlin g ti m , 1995; Goodwin , saturates the ac t e sponse of the p l , without affecti n a turation, bringi n o r to be of the o p settling time (B o w indup scheme ( B drives the inte g r n ear ran g e. The i n m Fi g ure 8 the si g e values of the i n a ssic PI. The sat u t or; a value of 0. 9 s g overned b y a P e r plant under di f h e power plant m i n g a dialo g b o r value r ation), m e are , et al., t uator, l ant. If ng the ng the p posite o hn & B ohn & ator to n ternal g nal to n te g ral u ration 9 5 p. u. P I with f ferent m odels o x, the NeuralPDFControlStrategyforaHydroelectricStationSimulator 169 4. 4. 1 Di n ar e th e sp e g o re f al s g r i Fi g T h re g in c si g th e re g va n re g fe e re a si g th e li n 4. 2 W i ar e th e Classic contr o 1 Dinorwig Gov e n orwi g has a di g e two control lo o e turbine’s g uid e e ed re g ulation d vernor. A PI co n f erence to the p o s o a derivative fe e i d frequenc y . g . 7. Scheme of t h h e g enerators m u g ulator y authori t c reasin g g enerati g nal to the g ove r e g overnor oper a g ulatio n (Manso o n e openin g and g ulation mode ( p e d-forward si g n a a ction when bi g c g nal (control si gn e feed-forward s n ear relationship b 2 Anti-windup P I i th careful tunin g e sub j ect to const e se circumstanc e o llers for hydr o e rnor Configura t g ital Governor w o ps, for power a n e vane is ad j uste d d roop. The Dro o n fi g uration is use d o wer control loo p e d-forward loop h e Dinorwi g Go v u st maintain th ty . When the r e o n . On the othe r r nor valve will c l a tes with two d o r, 2000). The po w defines the oper a p art load respon s a l, directl y sets t c han g es in the p o n al) is produced b s i g nal. The pow e b etween g uide v a I D g , PI control can raints and their b e s, the performa n o electric stati o t ion w hose g eneral co n n d frequenc y (M a d dependin g on o p g ain is used d for this control p , which is prop o that allows the s v ernor. e speed within e ference is raise d r hand, when th e l ose, decreasin g g roop settin g s; 1 % w er reference si g a tin g point for t h s e). Chan g in g th e t he g uide vane o wer reference a p by addin g the ou t e r feedback loo p a ne openin g and offer g ood and r b ehaviour chan ge n ce of a linear o ns n fi g uration is sh o a nsoor, 2000). In the power devi a to chan g e the s . The frequenc y c o rtional to the fr e sy stem to respon d an operational d the g overnor e output si g nal i s g eneratio n (Wri g % for hi g h re g u l g nal sets the refer h e unit when it i s e power referen c position, in ord e p pear. The g uide v t put si g nals fro m p compensates t h power. r obust performa n e s when the cons controller, such o wn in Fi g ure 7. the power contr o a tion multiplied s peed reference c ontrol loop pro v e quenc y error. T h d to a rapidly-ch a band defined b valve will ope n s lowered the re f g ht, 1989). At Di n l ation and 4% f o ence position fo r s workin g in fre q c e, which also ac e r to produce a v ane position re f m the P, I and D p h e s y stem for th e n ce. However, al l traints are activ a as PI, can dete r There o l loop b y the of the v ides a h ere is a n g in g by the n , thus f erence n orwi g o r low r g uide q uenc y ts as a rapid f erence p arts to e no n - l Plant a ted. In r iorate si g be c an ca u 20 0 be c th i o u s ys si g A t Fi g A t a n sa t be g a i li m is c tr a Fi g 5. T h g o w e g nificantl y (Pen g, c omes excessive l d it then “winds u sed b y the satu r 0 1). In other wo r c ause increasing i s behaviour per u tput of the pla n s tem back to its c g n for a lon g ti m t herton, 1995). g ure 8 shows a ge t herton, 1995). T h n egative value a n t uration is used t inte g rated is m o i n (K i ) are ad j us t m it and the dead z c ommonl y used. a ckin g anti-wind u g . 8. General sch e Simulink © Mo d h e Simulink © soft w vernors. This to o e re constructed , et. al., 1996). W h ly lar g e compar e up”. In addition , r ation effect (Pe n r ds, windup is p the control si g n sists the inte g ra t n t. As a conseq u c orrect stead y -st a m e. The result i s e neral PI control l h is controller has n d forces the out t o reduce the int e o dified b y the p r t ed in order to m z one depend on t In this work, th e u p structure will e me of PI anti-wi n d el and Progr a w are tool was us e o l has libraries o f usin g these sta n h en the plant has e d to a linear res p , a hi g her inte g ra t ng , et. al., 1996; B roduced when t h al can no longer t or value can be u ence, when re c a te value require s a lar g e overs h l er that includes a an internal feed b put of the syste m eg rator input. As r oportional g ain m aintain equival e t he constraints fi x e responses of th e be used as a basi n dup. a m e d to facilitate st u f specific functio n n dard Simulink © actuator saturat i p onse (an actua t t or output and a B ohn & Atherton , h e control si g nal accelerate the r e come ver y lar g e c overin g from s a s the control err o h oot and a long a tracking anti- w b ack path, which m to be in the li n can be seen fro m (K), therefore th e e nce with the cl a x ed b y the opera t e plant when it i s s of comparison. u dies of the pow e n s (blocks) and t h © functions. Us i i on the inte g rato r t or without satu r lon g er settlin g ti m , 1995; Goodwin , saturates the ac t e sponse of the p l , without affecti n a turation, bringi n o r to be of the o p settling time (B o w indup scheme ( B drives the inte g r n ear range. The i n m Fi g ure 8 the si g e values of the i n a ssic PI. The sat u t or; a value of 0. 9 s g overned b y a P e r plant under di f h e power plant m i n g a dialo g b o r value r ation), m e are , et al., t uator, l ant. If ng the ng the p posite o hn & B ohn & ator to n ternal g nal to n te g ral u ration 9 5 p. u. P I with f ferent m odels o x, the AUTOMATION&CONTROL-TheoryandPractice170 pa m o s ys Si m co m tu r fo r in s n o w i m o bl o C u fu n (le th e m o vi e pa o u al g ch a ha ch a Fi g rameters of a s p o dels ma y be ch a s tem and linear o m ulink © power m binin g the f r bine/ g enerator a r this stud y ; the y s tance, there are o nlinear no n -elas t i thout rate limit a o del can be ad j u s o ck has the optio n u stomised Simul i n ctions can be i n arnin g paramete r e plant and its o u o del to be chan ge e wed and assess e rameters. The c u u tput deviatio n fr g orithm takes ar o a n g e) to find th e ve been reache d a n g e. g . 9. Simulink © p o p ecific block can a n g ed. These m o o r nonlinear beh a plant model. T h f our sub-s y ste m a nd sensor filter s y can be select e three models a t ic and nonlinear a tion and satura t s ted to represen t n of classical and i nk © S-functions n corporated wit h r s) and sample ti u tput is the con t e d easil y or the c e d. The neural al u rrent criterion o om the set-point ; o und 10 iteratio n e “best” ran g e o d the parameter s o wer plant mode l be ad j usted. For o dels can represe n a viour ma y be sel h e full h y droel e m s: Guide va n s . Each block is p e d to represent a a vailable to sim u elastic. The g uid e t ion. The sensor t different condi t advanced contr o were develope d h in Simulink © m o me. Its inputs ar e t rol si g nal. The v c ontrol al g orith m g orithm calculat e o f optimalit y is q ; however this cr i n s (the exact val u o f parameter val u s sta y constant u l . example, the o p n t the power pl a e cted. Fi g ure 9 s h e ctric station m o n e d y namics, p art of the Simu l a diversit y of m o u late the h y drau e vane d y namics filters block is a ions of the natio o llers. d for the neural P o dels. The neur a e the reference a n v ersatilit y of Sim u m to be modifie d e s the optimal v a q uadratic error, i terion can be ch a u e depending o n u es (trainin g ti m u ntil the set-poi n p eratin g point of a nt as a SISO or M h ows a schemati c o del is construc t h y draulic subs y l ink © librar y dev e o des of operati o lic subs y stem - can be selected w a fixed block. T h nal g rid. The g o v P DF al g orithms. a l PDF block acc n d the output si gn u link © allows th e d and new result s a lues of the cont r where the error a n g ed if necessa r n the ma g nitude m e). When these r n t or the plant linear M IMO c of the t ed by y stem, e loped o n. For linear, w ith or h e g rid v ernor These c epts η n als of e plant s to be r ol law is the ry . The of the r an g es model 6. A s pr o s ys te s Fo an co n pa ba pl a sh o co n co n o p dr i Fi g ca s Simulation re s s discussed previ o vide timel y an d s tem. The actual s tin g , it can be sp e r all simulations , d 50 Hz, and ass u n nected to the n rameters fixed a sis of compariso n a nt under anti- w o ws the small s n nected. In bot h n troller, being r e p erational cases. T i vin g the process g . 10. Small-step s e o f one unit in o s ults ousl y , the role o f d accurate sup p form of the pow e e cified in terms o , the model is e x u mes a Grid s y s t n onlinear model t K=0.1 and T i = 0 n . Figure 10 sho w w indup PI and n e s tep responses ( 0 h cases, the h yd e spectivel y 10% a T he undershoot . response of the o peratio n . f a h y droelectric p l y of its dema n e r demand is rel a o f step, ramp and x pressed in the p t em with infinite of the h y droele c 0 .12 (as currentl y w s the small step r e ural PDF contro l 0 .05 p.u.) of the d roelectric plant a nd 30% faster i n is also reduced i hydro plant wit h station in frequ e n ded power con t a ted to Grid freq u random input si p er-unit s y stem, n busbars. The ne u c tric power plan t y implemented i n r esponses (0.05 p l lers for one uni t power station w performs better n the one unit o p i n both cases w h h neural PDF an d e nc y control mo d t ribution to the u enc y variation b g nals. n ormalized to 3 0 u ral PDF controll t . A PI controll e n practice) is us e .u.) of the h y dro e t operational. Fi g w hen all six un with the neur a p erational and si x h en a PDF contr o d PI controllers f d e is to power b ut, for 0 0 MW er was e r with e d as a e lectric g ure 11 its are a l PDF x units o ller is f or the NeuralPDFControlStrategyforaHydroelectricStationSimulator 171 pa m o s ys Si m co m tu r fo r in s n o w i m o bl o C u fu n (le th e m o vi e pa o u al g ch a ha ch a Fi g rameters of a s p o dels ma y be ch a s tem and linear o m ulink © power m binin g the f r bine/ g enerator a r this stud y ; the y s tance, there are o nlinear no n -elas t i thout rate limit a o del can be ad j u s o ck has the optio n u stomised Simul i n ctions can be i n arnin g paramete r e plant and its o u o del to be chan ge e wed and assess e rameters. The c u u tput deviatio n fr g orithm takes ar o a n g e) to find th e ve been reache d a n g e. g . 9. Simulink © p o p ecific block can a n g ed. These m o o r nonlinear beh a plant model. T h f our sub-s y ste m a nd sensor filter s y can be select e three models a t ic and nonlinear a tion and satura t s ted to represen t n of classical and i nk © S-functions n corporated wit h r s) and sample ti u tput is the con t e d easil y or the c e d. The neural al u rrent criterion o om the set-point ; o und 10 iteratio n e “best” ran g e o d the parameter s o wer plant mode l be ad j usted. For o dels can represe n a viour ma y be sel h e full h y droel e m s: Guide va n s . Each block is p e d to represent a a vailable to sim u elastic. The g uid e t ion. The sensor t different condi t advanced contr o were develope d h i n Simulink © m o me. Its inputs ar e t rol si g nal. The v c ontrol al g orith m g orithm calculat e o f optimalit y is q ; however this cr i n s (the exact val u o f parameter val u s sta y constant u l . example, the o p n t the power pl a e cted. Fi g ure 9 s h e ctric station m o n e d y namics, p art of the Simu l a diversit y of m o u late the h y drau e vane d y namics filters block is a ions of the natio o llers. d for the neural P o dels. The neur a e the reference a n v ersatilit y of Sim u m to be modifie d e s the optimal v a q uadratic error, i terion can be ch a u e depending o n u es (trainin g ti m u ntil the set-poi n p eratin g point of a nt as a SISO or M h ows a schemati c o del is construc t h y draulic subs y l ink © librar y dev e o des of operati o lic subs y stem - can be selected w a fixed block. T h nal g rid. The g o v P DF al g orithms. a l PDF block ac c n d the output si gn u link © allows th e d and new result s a lues of the cont r where the error a n g ed if necessa r n the ma g nitude m e). When these r n t or the plant linear M IMO c of the t ed by y stem, e loped o n. For linear, w ith or h e g rid v ernor These c epts η n als of e plant s to be r ol law is the ry . The of the r an g es model 6. A s pr o s ys te s Fo an co n pa ba pl a sh o co n co n o p dr i Fi g ca s Simulation re s s discussed previ o vide timel y an d s tem. The actual s tin g , it can be sp e r all simulations , d 50 Hz, and ass u n nected to the n rameters fixed a sis of compariso n a nt under anti- w o ws the small s n nected. In bot h n troller, being r e p erational cases. T i vin g the process g . 10. Small-step s e o f one unit in o s ults ousl y , the role o f d accurate sup p form of the pow e e cified in terms o , the model is e x u mes a Grid s y s t n onlinear model t K=0.1 and T i = 0 n . Figure 10 sho w w indup PI and n e s tep responses ( 0 h cases, the h yd e spectivel y 10% a T he undershoot . response of the o peratio n . f a h y droelectric p l y of its dema n e r demand is rel a o f step, ramp and x pressed in the p t em with infinite of the h y droele c 0 .12 (as currentl y w s the small step r e ural PDF contro l 0 .05 p.u.) of the d roelectric plant a nd 30% faster i n is also reduced i hydro plant wit h station in frequ e n ded power con t a ted to Grid freq u random input si p er-unit s y stem, n busbars. The ne u c tric power plan t y implemented i n r esponses (0.05 p l lers for one uni t power station w performs better n the one unit o p i n both cases w h h neural PDF an d e nc y control mo d t ribution to the u enc y variation b g nals. n ormalized to 3 0 u ral PDF controll t . A PI controll e n practice) is us e .u.) of the h y dro e t operational. Fi g w hen all six un with the neur a p erational and si x h en a PDF contr o d PI controllers f d e is to power b ut, for 0 0 MW er was e r with e d as a e lectric g ure 11 its are a l PDF x units o ller is f or the AUTOMATION&CONTROL-TheoryandPractice172 Fi g ca s Fi g w i re s pe fa s P D T o t= 3 th e an g . 11. Small-step s e o f six units in o g ure 12 shows t h i ndup PI and ne u s ponses (0.35 p. u rformance is be t s ter in, respectiv e D F controller red u o evaluate the cr 3 00 to units 2-6 a e neural PDF res p d a hi g her unde r response of the o peratio n . h e lar g e ramp re s u ral PDF controll e u .) of the power s t ter usin g the n e e ly, the one unit u ces the undersh o oss couplin g int e a nd the perturba p onse has a hi gh r shoot. hydro plant wit h s ponses (0.35 p. u e rs for one unit o s tation when six e ural PDF contr o operational and o ot. e raction a 0.8 p. tion of unit 1 o b h er overshoot, th e h neural PDF an d u .) of the h y dro e o perational. Fi g u r units are gener a o ller, the respon s d six units opera t u. step was ap p b served. Fi g ure 1 4 e PI response ha s d PI controllers f e lectric plant wit h r e 13 shows lar ge a tin g . In both cas s e being 15% a n t ional cases. Aga p lied simultaneo u 4 shows that, al t s a lon g er settli n f or the h anti- e ramp es, the n d 13% in, the u sl y at t hou g h ng time Fi g o n Fi g si x g . 12. The lar g e r a n e unit in operati o g . 13. The lar g e r a x units in operati o a mp response of on . a mp response of on . the hydro plant w the hydro plant w w ith neural PDF w ith neural PDF and PI controlle r and PI controlle r r s with r s with NeuralPDFControlStrategyforaHydroelectricStationSimulator 173 Fi g ca s Fi g w i re s pe fa s P D T o t= 3 th e an g . 11. Small-step s e o f six units in o g ure 12 shows t h i ndup PI and ne u s ponses (0.35 p. u rformance is be t s ter i n , respectiv e D F controller red u o evaluate the cr 3 00 to units 2-6 a e neural PDF res p d a hi g her unde r response of the o peratio n . h e lar g e ramp re s u ral PDF controll e u .) of the power s t ter usin g the n e e l y , the one unit u ces the undersh o oss couplin g int e a nd the perturba p onse has a hi gh r shoot. hydro plant wit h s ponses (0.35 p. u e rs for one unit o s tation when six e ural PDF contr o operational an d o ot. e raction a 0.8 p. tion of unit 1 o b h er overshoot, th e h neural PDF an d u .) of the h y dro e o perational. Fi g u r units are gener a o ller, the respon s d six units opera t u. step was ap p b served. Fi g ure 1 4 e PI response ha s d PI controllers f e lectric plant wit h r e 13 shows lar ge a tin g . In both cas s e being 15% a n t ional cases. A g a p lied simultaneo u 4 shows that, al t s a lon g er settli n f or the h anti- e ramp es, the n d 13% in, the u sl y at t hou g h ng time Fi g o n Fi g si x g . 12. The lar g e r a n e unit in operati o g . 13. The lar g e r a x units in operati o a mp response of on . a mp response of on . the hydro plant w the hydro plant w w ith neural PDF w ith neural PDF and PI controlle r and PI controlle r r s with r s with AUTOMATION&CONTROL-TheoryandPractice174 Fi g 7. In th e pl a o p in c n o th e an T h st o st e ta k be e in fu t 8. T h g . 14. The cross c o Conclusions this chapter a s o e performance o a tform has been i p en architecture m c remental impro o nlinear model o f e Dinorwi g pow e d electrical subs y h e results have s h o ra g e station to i e p response of t h k en into account e n included in t h this application t ure work. Acknowledg m h e authors wish t o o uplin g respons e o ftware tool that f different contr i mportant to gra d m akes possible t h vement of the c f pumped stora ge e r plant. The mo d y stems and conta i h own how the n i mprove its d y n a h e s y stem with n to represent clo s h e nonlinear mo d and encourage u m ents o thank First H yd e of the h y dro pla models a h y dr o ollers has been d ually increasin g h e rapid inclusio n c ontrol approac h e stations has be e d el includes rep r in s the principal f n eural PDF can b a mic response. I n eural PDF is im p s el y the real pla n d el. These are pro m u s to address th e d ro Compan y for n t with PI and n e o power plant an d described. The m g the complexity n of other contro h es and models e n discussed. Thi s r esentation of th e f eatures of the p l b e applied to a h n particular, it h a p roved. Multiva r n t. The coupling b m isin g results fo r e issue of robust n their assistance. e ural PDF contro l d allows compar i m odular nature o of the simulatio n l methods and a l alread y include d s model was ap p e g uide vane, h yd l ant’s d y namics. hy droelectric pu a s been shown t h r iable effects hav e b etween pensto c r the use of neur a n ess of the resp o l lers. i son of o f this n s. The l so the d . The p lied to d raulic mped- h at the e been c ks has a l PDF o nse in 9. References Aguado-Behar, A., “Topics on identification and adaptive control” (in Spanish), Book edited by ICIMAF, La Habana, Cuba. 2000. Bohn, C. and Atherton, D. P., "An analysis package comparing PID anti-windup strategies", IEEE Control Systems Magazine, vol. 15, p.p. 34-40. 1995. Djukanovic, M. B., Calovic, M. S., Vesovic, B. V., and Sobajic, D. J., “Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system”, IEEE Trans. on Energy Conversion , 12, pp. 375-381. 1997. Garcez, J. N., and Garcez, A. R., “A connectionist approach to hydroturbine speed control parameters tuning using artificial neural network”, Paper presented at 38th IEEE Midwest Symposium on Circuits and Systems, pp. 641-644. 1995. Goodwin, G. C., Graebe, S. F. and Salgado, M. E., "Control system design", Prentice Hall, USA. 2001. Gracios, C., Vargas, E. & Diaz-Sanchez A., “Describing an IMS by a FNRTPN definition: a VHDL Approach”, Elsevier Robotics and Computer-Integrated Manufacturing, 21, pp. 241–247. 2005. Kang, J. K., Lee, J. T., Kim, Y. M., Kwon, B. H., and Choi, K. S., “Speed controller design for induction motor drivers using a PDF control and load disturbance observer”, Paper presented at IEEE IECON, Kobe, Japan, pp. 799-803. 1991. Kundur, P., Power System Stability and Control, New York, NY: Mc Graw Hill. 1994. Mansoor, S. P., “Behaviour and Operation of Pumped Storage Hydro Plants”, Bangor, U.K.: PhD. Thesis University of Wales. 2000. Mansoor, S. P., Jones, D. I., Bradley, D. A., and Aris, F. C., “Stability of a pumped storage hydropower station connected to a power system”, Paper presented at IEEE Power Eng. Soc. Winter Meeting, New York, USA, pp. 646-650. 1999. Mansoor, S. P., Jones, D. I., Bradley, D. A., Aris, F. C., and Jones, G. R., “Reproducing oscillatory behaviour of a hydroelectric power station by computer simulation”, Control Engineering Practice, 8, pp. 1261-1272. 2000. Miller T., Sutton S.R. and Werbos P., Neural Networks for Control, Cambridge Massachusetts: The MIT Press. 1991. Minsky, M. L., and Papert, S. A., Perceptrons: Introduction to Computational Geometry. Cambridge, USA: MIT Press. 1988. Munakata, T., Fundamentals of the New Artificial Intelligence: Neural, Evolutionary, Fuzzy and More. London, UK: Springer-Verlag. 2008. Narendra, K. S., and Mukhopadhyay, S. “Adaptive control using neural networks and approximate models”, Paper presented at American Control Conference, Seattle, USA, pp. 355-359. 1996. Peng, Y., Vrancic, D. and Hanus, R., "Anti-windup, bumpless, and conditioned transfer techniques for PID controllers", IEEE Control Systems Magazine, vol. 16, p.p. 48-57. 1996. Rumelhart, D. E., McClelland, J. L., and Group, T. P., Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1). Cambridge, USA: MIT Press.1986. Shu-Qing, W., Zhao-Hui, L., Zhi-Huai, X., and Zi-Peng, Z. “Application of GA-FNN hybrid control system for hydroelectric generating units”, Paper presented at International Conference on Machine Learning and Cybernetics 2, pp. 840-845. 2005. NeuralPDFControlStrategyforaHydroelectricStationSimulator 175 Fi g 7. In th e pl a o p in c n o th e an T h st o st e ta k be e in fu t 8. T h g . 14. The cross c o Conclusions this chapter a s o e performance o a tform has been i p en architecture m c remental impro o nlinear model o f e Dinorwi g pow e d electrical subs y h e results have s h o ra g e station to i e p response of t h k en into account e n included in t h this application t ure work. Acknowledg m h e authors wish t o o uplin g respons e o ftware tool that f different contr i mportant to g ra d m akes possible t h vement of the c f pumped stora ge e r plant. The mo d y stems and conta i h own how the n i mprove its d y n a h e s y stem with n to represent clo s h e nonlinear mo d and encoura g e u m ents o thank First H yd e of the h y dro pla models a h y dr o ollers has been d uall y increasin g h e rapid inclusio n c ontrol approac h e stations has be e d el includes rep r in s the principal f n eural PDF can b a mic response. I n eural PDF is im p s el y the real pla n d el. These are pro m u s to address th e d ro Compan y for n t with PI and n e o power plant an d described. The m g the complexit y n of other contro h es and models e n discussed. Thi s r esentation of th e f eatures of the p l b e applied to a h n particular, it h a p roved. Multiva r n t. The coupling b m isin g results fo r e issue of robust n their assistance. e ural PDF contro l d allows compar i m odular nature o of the simulatio n l methods and a l alread y include d s model was ap p e g uide vane, h yd l ant’s d y namics. hy droelectric pu a s been shown t h r iable effects hav e b etween pensto c r the use of neur a n ess of the resp o l lers. i son of o f this n s. The l so the d . The p lied to d raulic mped- h at the e been c ks has a l PDF o nse in 9. References Aguado-Behar, A., “Topics on identification and adaptive control” (in Spanish), Book edited by ICIMAF, La Habana, Cuba. 2000. Bohn, C. and Atherton, D. P., "An analysis package comparing PID anti-windup strategies", IEEE Control Systems Magazine, vol. 15, p.p. 34-40. 1995. Djukanovic, M. B., Calovic, M. S., Vesovic, B. V., and Sobajic, D. J., “Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system”, IEEE Trans. on Energy Conversion , 12, pp. 375-381. 1997. Garcez, J. N., and Garcez, A. R., “A connectionist approach to hydroturbine speed control parameters tuning using artificial neural network”, Paper presented at 38th IEEE Midwest Symposium on Circuits and Systems, pp. 641-644. 1995. Goodwin, G. C., Graebe, S. F. and Salgado, M. E., "Control system design", Prentice Hall, USA. 2001. Gracios, C., Vargas, E. & Diaz-Sanchez A., “Describing an IMS by a FNRTPN definition: a VHDL Approach”, Elsevier Robotics and Computer-Integrated Manufacturing, 21, pp. 241–247. 2005. Kang, J. K., Lee, J. T., Kim, Y. M., Kwon, B. H., and Choi, K. S., “Speed controller design for induction motor drivers using a PDF control and load disturbance observer”, Paper presented at IEEE IECON, Kobe, Japan, pp. 799-803. 1991. Kundur, P., Power System Stability and Control, New York, NY: Mc Graw Hill. 1994. Mansoor, S. P., “Behaviour and Operation of Pumped Storage Hydro Plants”, Bangor, U.K.: PhD. Thesis University of Wales. 2000. Mansoor, S. P., Jones, D. I., Bradley, D. A., and Aris, F. C., “Stability of a pumped storage hydropower station connected to a power system”, Paper presented at IEEE Power Eng. Soc. Winter Meeting, New York, USA, pp. 646-650. 1999. Mansoor, S. P., Jones, D. I., Bradley, D. A., Aris, F. C., and Jones, G. R., “Reproducing oscillatory behaviour of a hydroelectric power station by computer simulation”, Control Engineering Practice, 8, pp. 1261-1272. 2000. Miller T., Sutton S.R. and Werbos P., Neural Networks for Control, Cambridge Massachusetts: The MIT Press. 1991. Minsky, M. L., and Papert, S. A., Perceptrons: Introduction to Computational Geometry. Cambridge, USA: MIT Press. 1988. Munakata, T., Fundamentals of the New Artificial Intelligence: Neural, Evolutionary, Fuzzy and More. London, UK: Springer-Verlag. 2008. Narendra, K. S., and Mukhopadhyay, S. “Adaptive control using neural networks and approximate models”, Paper presented at American Control Conference, Seattle, USA, pp. 355-359. 1996. Peng, Y., Vrancic, D. and Hanus, R., "Anti-windup, bumpless, and conditioned transfer techniques for PID controllers", IEEE Control Systems Magazine, vol. 16, p.p. 48-57. 1996. Rumelhart, D. E., McClelland, J. L., and Group, T. P., Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1). Cambridge, USA: MIT Press.1986. Shu-Qing, W., Zhao-Hui, L., Zhi-Huai, X., and Zi-Peng, Z. “Application of GA-FNN hybrid control system for hydroelectric generating units”, Paper presented at International Conference on Machine Learning and Cybernetics 2, pp. 840-845. 2005. [...]... process mechanism and main functions of CD, the partial directory can be described as shown in Figure 5 It shows information of CF (lines 1-9 ) and members of cluster (lines 2 0-2 2), the cluster directory also records meta-data about cluster such as cluster name (line 12), cluster description (lines 1 3-1 5), ontology used in cluster (lines 1 6-1 8) , and so on 190 AUTOMATION & CONTROL - Theory and Practice 1 . Conference on Machine Learning and Cybernetics 2, pp. 84 0 -8 45. 2005. AUTOMATION & CONTROL - Theory and Practice1 76 Werbos, P. J., Beyond regression: New Tools for Prediction and Analysis in the Behavioral. plant w w ith neural PDF w ith neural PDF and PI controlle r and PI controlle r r s with r s with AUTOMATION & CONTROL - Theory and Practice1 74 Fi g 7. In th e pl a o p in c n o th e an T h st o st e ta k be e in. Transactions on Energy Conversion, vol. 4, p.p. 45 3-4 58. 1 989 . Yin-Song, W., Guo-Cai, S., & Ong-Xiang, “The PID-type fuzzy neural network control and it's application in the hydraulic turbine

Ngày đăng: 21/06/2014, 18:20

TỪ KHÓA LIÊN QUAN