Báo cáo sinh học: "Research Article A Note on Symmetric Properties of the Twisted q-Bernoulli Polynomials and the Twisted Generalized q-Bernoulli Polynomials" docx
Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 13 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
13
Dung lượng
515,9 KB
Nội dung
Hindawi Publishing Corporation Advances in Difference Equations Volume 2010, Article ID 801580, 13 pages doi:10.1155/2010/801580 Research ArticleANoteonSymmetricPropertiesoftheTwistedq-BernoulliPolynomialsandtheTwistedGeneralizedq-BernoulliPolynomials L C. Jang, 1 H. Yi, 2 K. Shivashankara, 3 T. Kim, 4 Y. H. Kim, 4 and B. Lee 5 1 Department of Mathematics and Computer Science, KonKuk University, Chungju 138-70, Republic of Korea 2 Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea 3 Department of Mathematics, Yuvaraja’s College, University of Mysore, Mysore 570# 005, India 4 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea 5 Department of Wireless Communications Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea Correspondence should be addressed to H. Yi, hsyi@kw.ac.kr Received 11 September 2009; Revised 14 April 2010; Accepted 31 May 2010 Academic Editor: Abdelkader Boucherif Copyright q 2010 L C. Jang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We define thetwistedq-Bernoullipolynomialsandthetwistedgeneralizedq-Bernoulli polynomi- als attached to χ of higher order and investigate some symmetricpropertiesof them. Furthermore, using these symmetricpropertiesof them, we can obtain some relationships between twisted q- Bernoulli numbers andpolynomialsand between twistedgeneralizedq-Bernoulli numbers and polynomials. 1. Introduction Let p be a fi xed prime number. Throughout this paper Z p , Q p ,andC p will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, andthe completion of algebraic closure of Q p .Letv p be the normalized exponential valuation of C p with |p| p p −v p p p −1 . When one talks of q-extension, q is variously considered as an indeterminate, a complex number q ∈ C, or a p-adic number q ∈ C p .Ifq ∈ C, one normally assumes |q| < 1. If q ∈ C p , then we assume |q − 1| p <p −1/p−1 , so that q x expx log q for |x| p ≤ 1 cf. 1–32. 2 Advances in Difference Equations For N, d ∈ N,weset X X d lim ← N Z dp N Z ,X 1 Z p 1.1 see 1–13. The Bernoulli numbers B n andpolynomials B n x are defined by the generating function as t e t − 1 ∞ n0 B n t n n! , 1.2 t e t − 1 e xt ∞ n0 B n x t n n! 1.3 cf. 17, 18, 21, 24, 26. Let UDX be the set of uniformly differentiable functions on X. For f ∈ UDX,thep-adic invariant integral on Z p is defined as I f X f x dx lim N →∞ 1 dp N dp N −1 x0 f x . 1.4 Note that X fxdx Z p fxdx see 27.Letf n x be a translation with f n xfx n. We note that I f n I f n−1 i0 f i 1.5 cf. 1–32.Kim18 studied thesymmetricpropertiesoftheq-Bernoulli numbers andpolynomials as follows: t log q qe t − 1 e xt ∞ n0 B q n x t n n! . 1.6 In this paper, we define thetwistedq-Bernoullipolynomialsandthetwistedgeneralizedq-Bernoullipolynomials attached to χ of higher order and investigate some symmetricpropertiesof them. Furthermore, using these symmetricpropertiesof them, we can obtain some relationships between thetwistedq-Bernoulli numbers andpolynomialsand between thetwistedgeneralizedq-Bernoulli numbers andpolynomials attached to χ of higher order. Advances in Difference Equations 3 2. TheTwistedq-BernoulliPolynomials Let C p ∞ n≥1 C p n lim n →∞ C p n be the locally constant space, where C p n {ξ | ξ p n 1} is the cyclic group of order p n . For w ∈ C p ∞ , we denote the locally constant function by φ w : Z p −→ C p ,x−→ w x 2.1 cf. 2, 3, 21, 24. If we take fxφ w xq x e tx , then Z p e xt w x q x dx log q t wqe t − 1 . 2.2 Nowwedefinetheq-extension oftwisted Bernoulli numbers andpolynomials as follows: log q t wqe t − 1 ∞ n0 B q n,w t n n! , 2.3 log q t wqe t − 1 e tx ∞ n0 B q n,w x t n n! 2.4 see 31.From1.5, 2.2, 2.3,and2.4, we can derive Z p w y q y x y n dy B q n,w x , Z p w y q y y n dy B q n,w . 2.5 By 1.5, we can see that 1 log q t Z p w nx q nx e nxt dx − Z p w x q x e xt dx w n q n e nt − 1 t log q Z p w x q x e xt dx w n q n e nt − 1 wqe t − 1 n−1 i0 w i q i e it ∞ k0 n−1 i0 i k w i q i t k k! . 2.6 4 Advances in Difference Equations In 1.4,itiseasytoshowthat 1 log q t Z p w nx q nx e nxt dx − Z p w x q x e xt dx n Z p w x q x e xt dx Z p w nx q nx e nxt dx . 2.7 For each integer k ≥ 0, let S q k,w n 0 k 1 k wq 2 k w 2 q 2 ··· n k w n q n . 2.8 From 2.6, 2.7,and2.8, we derive 1 log q t Z p w nx q nx e nxt dx − Z p w x q x e xt dx n Z p w x q x e xt dx Z p w nx q nx e nxt dx ∞ k0 S q k,w n − 1 t k k! . 2.9 From 2.9,wenotethat B q k,w n − B q k,w kS q k−1,w n − 1 log qS q k,w n − 1 , 2.10 for all k, n ∈ N.Letu 1 ,u 2 ∈ N and w ∈ C p ∞ ; then we have Z p w u 1 x 1 u 2 x 2 q u 1 x 1 u 2 x 2 e u 1 x 1 u 2 x 2 dx 1 dx 2 Z p w u 1 u 2 x q u 1 u 2 x e u 1 u 2 xt dx t log q w u 1 u 2 q u 1 u 2 e u 1 t − 1 w u 2 q u 2 e u 2 t − 1 . 2.11 By 2.9,weseethat u 1 Z p w x q x e xt dx Z p w u 1 x q u 1 x e u 1 xt dx ∞ l0 u 1 −1 k0 k l w k q k t l l! ∞ l0 S q l,w u 1 − 1 t l l! . 2.12 Let T w u 1 ,u 2 ; x, t be as follows: T w u 1 ,u 2 ; x, t Z p w u 1 x 1 u 2 x 2 q u 1 x 1 u 2 x 2 e u 1 x 1 u 2 x 2 u 1 u 2 xt dx 1 dx 2 Z p w u 1 u 2 x q u 1 u 2 x e u 1 u 2 xt dx . 2.13 Then we have T w u 1 ,u 2 ; x, t t log q e u 1 u 2 t w u 1 u 2 q u 1 u 2 e u 1 u 2 t − 1 w u 1 q u 1 e u 1 t − 1 w u 2 q u 2 e u 2 t − 1 . 2.14 Advances in Difference Equations 5 From 2.13, we derive T w u 1 ,u 2 ; x, t 1 u 1 Z p w u 1 x 1 q u 1 x 1 e u 1 x 1 u 2 xt dx 1 ⎛ ⎝ u 1 Z p w u 2 x 2 q u 2 x 2 e u 2 x 2 t Z p w u 1 u 2 x q u 1 u 2 x e u 1 u 2 xt dx ⎞ ⎠ . 2.15 By 2.4, 2.12,and2.15, we can see that T w u 1 ,u 2 ; x, t 1 u 1 ∞ i0 B q u 1 i,w u 1 u 2 x u i 1 t i i! ∞ l0 S q u 2 l,w u 2 u 1 − 1 u l 2 t l l! ∞ n0 n i0 n i B q u 1 i,w u 1 u 2 x S q u 2 n−i,w u 2 u 1 − 1 u i−1 1 u n−i 2 t n n! . 2.16 By the symmetry of p-adic invariant integral on Z p ,wealsoseethat T w u 1 ,u 2 ; x, t 1 u 2 Z p w u 2 x 2 q u 2 x 2 e u 2 x 2 u 1 xt dx 2 ⎛ ⎝ u 2 Z p w u 1 x 1 q u 1 x 1 e u 1 x 1 t Z p w u 1 u 2 x q u 1 u 2 x e u 1 u 2 xt dx ⎞ ⎠ ∞ n0 n i0 n i B q u 2 i,w u 2 u 1 x S q u 1 n−i,w u 1 u 2 − 1 u i−1 2 u n−i 1 t n n! . 2.17 By comparing the coefficients of t n /n! on both sides of 2.16 and 2.17,weobtainthe following theorem. Theorem 2.1. Let u 1 ,u 2 ,n∈ N. Then for all x ∈ Z p , n i0 n i B q u 1 i,w u 1 u 2 x S q u 2 n−i,w u 2 u 1 − 1 u i−1 1 u n−i 2 n i0 n i B q u 2 i,w u 2 u 1 x S q u 1 n−i,w u 1 u 2 − 1 u i−1 2 u n−i 1 , 2.18 where n i is the binomial coefficient. From Theorem 2.1, if we take u 2 1, then we have the following corollary. Corollary 2.2. For m ≥ 0, one we has B q i,w u 1 x n i0 n i B q u 1 i,w u 1 x S q n−i,w u 1 − 1 u i−1 1 , 2.19 where n i is the binomial coefficient. 6 Advances in Difference Equations By 2.17, 2.18,and2.19, we can see that T w u 1 ,u 2 ; x, t e u 1 u 2 xt u 1 Z p w u 1 x q u 1 x 1 e u 1 x 1 t dx 1 ⎛ ⎝ u 1 Z p w u 2 x 2 q u 2 x 2 e u 2 x 2 t dx 2 Z p w u 1 u 2 x q u 1 u 2 x e u 1 u 2 xt dx ⎞ ⎠ e u 1 u 2 xt u 1 Z p w u 1 x q u 1 x 1 e u 1 x 1 t dx 1 u 1 −1 i0 w u 2 i q u 2 i e u 2 it 1 u 1 u 1 −1 i0 w u 2 i q u 2 i Z p w u 1 x q u 1 x e x 1 u 2 xu 2 /u 1 itu 1 dx 1 ∞ n0 u 1 −1 i0 B q u 1 n,w u 1 u 2 x u 2 u 1 i u n−1 1 w u 2 i q u 2 i t n n! . 2.20 From the symmetry of T w u 1 ,u 2 ; x, t, we can also derive T w u 1 ,u 2 ; x, t ∞ n0 u 2 −1 i0 B q u 2 n,w u 2 u 1 x u 1 u 2 i u n−1 2 w u 1 i q u 1 i t n n! . 2.21 By comparing the coefficients of t n /n! on both sides of 2.20 and 2.21,weobtainthe following theorem. Theorem 2.3. For m ∈ Z , u 1 ,u 2 ∈ N, we have u 1 −1 i0 B q u 1 n,w u 1 u 2 x u 2 u 1 i u n−1 1 w u 2 i q u 2 i u 2 −1 i0 B q u 2 n,w u 2 u 1 x u 1 u 2 i u n−1 2 w u 1 i q u 1 i . 2.22 We note that by setting u 2 1inTheorem 2.3, we get the following multiplication theorem for thetwistedq-Bernoulli polynomials. Theorem 2.4. For m ∈ Z , u 1 ∈ N, one has B q n,w u 1 x u n−1 1 u 1 −1 i0 B q u 1 n,w u 1 x i u 1 w i q i . 2.23 Remark 2.5. 18, Kim suggested open questions related to finding symmetricproperties for Carlitz q-Bernoulli numbers. In this paper, we give thesymmetric property for q-Bernoulli numbers in the viewpoint to give the answer of Kim’s open questions. 3. TheTwistedGeneralized Bernoulli Polynomials Attached to χ of Higher Order In this section, we consider thegeneralized Bernoulli numbers andpolynomialsand then define thetwistedgeneralized Bernoulli polynomials attached to χ of higher order by using Advances in Difference Equations 7 multivariate p-adic invariant integrals on Z p .Letχ be Dirichlet’s character with conductor d ∈ N. Then thegeneralized Bernoulli numbers B n,χ andpolynomials B n,χ x attached to χ are defined as t d−1 a0 χ a e at e dt − 1 ∞ n0 B n,χ t n n! , 3.1 t d−1 a0 χ a e at e dt − 1 e xt ∞ n0 B n,χ x t n n! 3.2 cf. 2, 18, 23, 27. Let C p ∞ n≥1 C p n lim n →∞ C p n be the locally constant space, where C p n {w | w p n 1} is the cyclic group of order p n . For w ∈ C p ∞ , we denote the locally constant function by φ w : Z p −→ C p ,x−→ w x 3.3 cf. 2, 3, 21, 23, 24. If we take fxχxe tx φ w xq x ,forq ∈ C p with |q − 1| p < 1, then it is obvious from 3.1 that X χ x e tx w x q x dx t log q d−1 a0 χ a w a q a e at w d q d e dt − 1 . 3.4 Now we define thetwistedgeneralized Bernoulli numbers B q n,χ,w andpolynomials B q n,χ,w x attached to χ as follows: t log q d−1 a0 χ a w a q a e at w d q d e dt − 1 ∞ n0 B q n,χ,w t n n! , 3.5 t log q d−1 a0 χ a w a q a e at e xt w d q d e dt − 1 ∞ n0 B q n,χ,w x t n n! 3.6 for each w ∈ C p ∞ see 31, 32.By3.5 and 3.6, X χ x x n w x q x dx B q n,χ,w , X χ y x y n w y q y dy B q n,χ,w x . 3.7 8 Advances in Difference Equations Thus we have 1 log q t X χ x e ndxt w nx q nx dx − X χ x e xt w x q x dx nd X χ x e xt w x q x dx X e ndxt w ndx q ndx dx w nd q nd e ndt − 1 w d q d e dt − 1 d−1 i0 χ i e it w i q i . 3.8 Then 1 log q t X χ x e ndxt w nx q nx dx − X χ x e xt w x q x dx nd−1 l0 χ l e lt w l q l ∞ k0 nd−1 l0 χ l l k w l q l t k k! . 3.9 Let us define the p-adic twisted q-function T q k,w χ, n as follows: T q k,w χ, n n l0 χ l l k w l q l . 3.10 By 3.9 and 3.10,weseethat 1 log q t X χ x e ndxt w ndx q ndx dx − X χ x e xt w x q x dx ∞ k0 T q k,w χ, nd − 1 t k k! . 3.11 Thus, X χ x nd x k w nx q nx dx − X χ x x k w x q x dx t log q T q k,w χ, nd − 1 , 3.12 for all k, n,d ∈ N. This means that B q k,χ,w nd − B q n,χ,w t log q T q k,w χ, nd − 1 , 3.13 Advances in Difference Equations 9 for all k, n,d ∈ N. For all u 1 ,u 2 ,d ∈ N, we have d X X χ x 1 χ x 2 e w 1 x 1 w 2 x 2 t w u 1 x 1 u 2 x 2 q u 1 x 1 u 2 x 2 dx 1 dx 2 X e du 1 u 2 xt w du 1 u 2 x q du 1 u 2 x dx t log q e du 1 u 2 t w du 1 u 2 q du 1 u 2 − 1 e du 1 t w du 1 q du 1 − 1 e du 2 t w du 2 q du 2 − 1 × d−1 a0 χ a e u 1 at w u 1 a q u 1 a d−1 b0 χ b e u 2 bt w u 2 b q u 2 b . 3.14 Thetwistedgeneralized Bernoulli numbers B k,q n,χ,w andpolynomials B k,q n,χ,w x attached to χ of order k are defined as t log q d−1 a0 χ a w a q a e at w d q d e dt − 1 k ∞ n0 B k,q n,χ,w t n n! , 3.15 t log q d−1 a0 χ a w a q a e at w d q d e dt − 1 k e xt ∞ n0 B k,q n,χ,w x t n n! 3.16 for each w ∈ C p ∞ . For u 1 ,u 2 ∈ N,weset K q w m, χ; u 1 ,u 2 d X m m i1 χ x i e m i1 x i u 2 xu 1 t w m i1 x i u 2 xu 1 q m i1 x i u 2 xu 1 dx 1 ···dx m X e du 1 u 2 xt w du 1 u 2 x q du 1 u 2 x dx × X m m i1 χ x i e m i1 x i u 1 yu 2 t w m i1 x i u 1 yu 2 q m i1 x i u 1 yu 1 dx 1 ···dx m , 3.17 where X m fx 1 ···x m dx 1 ···dx m X ··· X fx 1 , ,x m dx 1 ···dx m .In3.17,wenotethat K q w m, χ; u 1 ,u 2 is symmetric in u 1 ,u 2 .From3.17, we have K q w m, χ; u 1 ,u 2 X m m i1 χ x i e m i1 x i u 2 t w m i1 x i u 2 q m i1 x i u 2 dx 1 ···dx m × e u 1 u 2 xt w u 1 u 2 x q u 1 u 2 x d X χ x m e u 2 x m t w u 2 x m q u 2 x m dx m X e du 1 u 2 x q du 1 u 2 x dx × X m−1 m−1 i1 χ x i e m−1 i1 x i u 2 t w m−1 i1 x i u 2 q m−1 i1 x i u 2 dx 1 ···dx m−1 × e u 1 u 2 yt w u 1 u 2 y q u 1 u 2 y . 3.18 10 Advances in Difference Equations Thus we can obtain u 1 d X χ x e xt w x q x dx X e du 2 xt w du 2 x q du 2 x dx ∞ k0 u 1 d−1 i0 χ i i k w i q i t k k! ∞ k0 T q k,w χ, u 1 d − 1 t k k! , e u 1 u 2 xt w u 1 u 2 x q u 1 u 2 x X m m i1 χ x i e m i1 x i u 1 t w m i1 x i u 1 q m i1 x i u 1 dx 1 ···dx m e u 1 u 2 xt w u 1 u 2 x q u 1 u 2 x u 1 e du 1 t w du 1 q du 1 − 1 d−1 a0 χ a e u 1 at w u 1 a q u 1 a ∞ n0 B m,q n,χ,w u 2 x u n 1 t n n! . 3.19 From 3.19, we derive K q w m, χ; u 1 ,u 2 ∞ l0 B m,q l,χ,w u 1 x u l 1 t l l! ∞ k0 T q k,w χ, u 1 d − 1 t k k! ∞ i0 B m−1,q i,χ,w u 1 y u i 2 t i i! 1 u 1 ∞ n0 n j0 n j u j 2 u n−j−1 1 B m,q n−j,χ,w u 2 x × j k0 T q k,w χ, u 1 d − 1 j k B m−1,q j−k,χ,w u 1 y t n n! . 3.20 By the symmetry of K q w m, χ; u 1 ,u 2 in u 1 and u 2 , we can see that K q w m, χ; u 1 ,u 2 ∞ n0 n j0 n j u j 1 u n−j−1 2 B m,q n−j,χ,w u 1 x × j k0 T q k,w χ, u 2 d − 1 j k B m−1,q j−k,χ,w u 2 y t n n! . 3.21 By comparing the coefficients on both sides of 3.20 and 3.21, we see the following theorem. Theorem 3.1. For d, u 1 ,u 2 ,m∈ N, n ∈ Z, one has n j0 n j u j 2 u n−j−1 1 B m,q n−j,χ,w u 2 x j k0 T q k,w χ, u 1 d − 1 j k B m−1,q j−k,χ,w u 1 y n j0 n j u j 1 u n−j−1 2 B m,q n−j,χ,w u 1 x j k0 T q k,w χ, u 2 d − 1 j k B m−1,q j−k,χ,w u 2 y . 3.22 [...]... numbers,” Advanced Studies in Contemporary Mathematics, vol 15, pp 133–138, 2007 12 T Kim, On p-adic interpolating function for q-Euler numbers and its derivatives,” Journal of Mathematical Analysis and Applications, vol 339, no 1, pp 598–608, 2008 13 T Kim, Onthe analogs of Euler numbers andpolynomials associated with p-adic q-integral on Zp at q −1,” Journal of Mathematical Analysis and Applications,... q-integrals,” Advances in Difference Equations, vol 2008, Article ID 738603, 11 pages, 2008 4 L.-C Jang, S.-D Kim, D.-W Park, and Y.-S Ro, Anoteon Euler number and polynomials, ” Journal of Inequalities and Applications, vol 2006, Article ID 34602, 5 pages, 2006 5 L.-C Jang and T Kim, Onthe distribution ofthe q-Euler polynomialsandthe q-Genocchi polynomialsof higher order,” Journal of Inequalities and Applications,... remarks on multiple p-adic q-L-function of two variables,” Advanced Studies in Contemporary Mathematics, vol 14, no 1, pp 49–68, 2007 2 L.-C Jang, Ona q-analogue ofthe p-adic generalizedtwisted L-functions and p-adic q-integrals,” Journal ofthe Korean Mathematical Society, vol 44, no 1, pp 1–10, 2007 3 L.-C Jang, “Multiple twisted q-Euler numbers andpolynomials associated with p-adic q-integrals,”... Contemporary Mathematics, vol 15, no 2, pp 243–252, 2007 23 W Kim, Y.-H Kim, and L.-C Jang, Onthe q-extension of apostol-euler numbers and polynomials, ” Abstract and Applied Analysis, vol 2008, Article ID 296159, 10 pages, 2008 Advances in Difference Equations 13 24 Y Simsek, “Generating functions ofthetwisted Bernoulli numbers andpolynomials associated with their interpolation functions,” Advanced... q-Euler numbers andpolynomials associated with basic q-lfunctions,” Journal of Mathematical Analysis and Applications, vol 336, no 1, pp 738–744, 2007 31 T Kim, “New approach to q-Euler polynomialsof higher order,” Russian Journal of Mathematical Physics, vol 17, no 2, pp 201–207, 2010 32 T Kim, “Barnes-type multiple q-zeta functions and q-Euler polynomials, ” Journal of Physics A, vol 43, Article ID 255201,... Contemporary Mathematics, vol 16, no 2, pp 251– 278, 2008 25 H Ozden, Y Simsek, S.-H Rim, and I N Cangul, Anoteon p-adic q-Euler measure,” Advanced Studies in Contemporary Mathematics, vol 14, pp 233–239, 2007 26 S.-H Rim, Y.-H Kim, B J Lee, and T Kim, “Some identities ofthegeneralizedtwisted Bernoulli numbers andpolynomialsof higher order,” Journal of Computational Analysis and Applications,... 2006 17 T Kim, q-Bernoulli numbers andpolynomials associated with Gaussian binomial coefficients,” Russian Journal of Mathematical Physics, vol 15, no 1, pp 51–57, 2008 18 T Kim, Onthe symmetries oftheq-Bernoulli polynomials, ” Abstract and Applied Analysis, vol 2008, Article ID 914367, 7 pages, 2008 19 T Kim, Noteon Dedekind type DC sums,” Advanced Studies in Contemporary Mathematics, vol 18,... Kim, Anoteon p-adic q-integral on Zp associated with q-Euler numbers,” Advanced Studies in Contemporary Mathematics, vol 15, no 2, pp 133–137, 2007 15 T Kim, “q-Euler numbers andpolynomials associated with p-adic q-integrals,” Journal of Nonlinear Mathematical Physics, vol 14, no 1, pp 15–27, 2007 16 T Kim, Anoteon some formulae for the q-Euler numbers and polynomials, ” Proc Jangjeon Math Soc.,... Applications, vol 2008, Article ID 723615, 9 pages, 2008 6 T Kim, “q-Volkenborn integration,” Russian Journal of Mathematical Physics, vol 9, no 3, pp 288–299, 2002 7 T Kim, On Euler-Barnes multiple zeta functions,” Russian Journal of Mathematical Physics, vol 10, no 3, pp 261–267, 2003 8 T Kim, “Analytic continuation of multiple q-zeta functions and their values at negative integers,” Russian Journal of. .. Kim, Ona q-analogue ofthe p-adic log gamma functions and related integrals,” Journal of Number Theory, vol 76, no 2, pp 320–329, 1999 28 T Kim, Noteonthe Euler q-zeta functions,” Journal of Number Theory, vol 129, no 7, pp 1798–1804, 2009 29 T Kim, A new approach to p-adic q-L-functions,” Advanced Studies in Contemporary Mathematics, vol 12, no 1, pp 61–72, 2006 30 T Kim and S.-H Rim, Onthetwisted . respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of Q p .Letv p be the normalized exponential valuation of C p with. number and polynomials, ” Journal of Inequalities and Applications, vol. 2006, Article ID 34602, 5 pages, 2006. 5 L C. Jang and T. Kim, On the distribution of the q-Euler polynomials and the q-Genocchi polynomials. numbers and its derivatives,” Journal of Mathematical Analysis and Applications, vol. 339, no. 1, pp. 598–608, 2008. 13 T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic