Báo cáo sinh học: "Research Article A Note on Symmetric Properties of the Twisted q-Bernoulli Polynomials and the Twisted Generalized q-Bernoulli Polynomials" docx

13 357 0
Báo cáo sinh học: "Research Article A Note on Symmetric Properties of the Twisted q-Bernoulli Polynomials and the Twisted Generalized q-Bernoulli Polynomials" docx

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Hindawi Publishing Corporation Advances in Difference Equations Volume 2010, Article ID 801580, 13 pages doi:10.1155/2010/801580 Research Article A Note on Symmetric Properties of the Twisted q-Bernoulli Polynomials and the Twisted Generalized q-Bernoulli Polynomials L C. Jang, 1 H. Yi, 2 K. Shivashankara, 3 T. Kim, 4 Y. H. Kim, 4 and B. Lee 5 1 Department of Mathematics and Computer Science, KonKuk University, Chungju 138-70, Republic of Korea 2 Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea 3 Department of Mathematics, Yuvaraja’s College, University of Mysore, Mysore 570# 005, India 4 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea 5 Department of Wireless Communications Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea Correspondence should be addressed to H. Yi, hsyi@kw.ac.kr Received 11 September 2009; Revised 14 April 2010; Accepted 31 May 2010 Academic Editor: Abdelkader Boucherif Copyright q 2010 L C. Jang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We define the twisted q-Bernoulli polynomials and the twisted generalized q-Bernoulli polynomi- als attached to χ of higher order and investigate some symmetric properties of them. Furthermore, using these symmetric properties of them, we can obtain some relationships between twisted q- Bernoulli numbers and polynomials and between twisted generalized q-Bernoulli numbers and polynomials. 1. Introduction Let p be a fi xed prime number. Throughout this paper Z p , Q p ,andC p will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of Q p .Letv p be the normalized exponential valuation of C p with |p| p  p −v p p  p −1 . When one talks of q-extension, q is variously considered as an indeterminate, a complex number q ∈ C, or a p-adic number q ∈ C p .Ifq ∈ C, one normally assumes |q| < 1. If q ∈ C p , then we assume |q − 1| p <p −1/p−1 , so that q x  expx log q for |x| p ≤ 1 cf. 1–32. 2 Advances in Difference Equations For N, d ∈ N,weset X  X d  lim ← N Z dp N Z ,X 1  Z p 1.1 see 1–13. The Bernoulli numbers B n and polynomials B n x are defined by the generating function as t e t − 1  ∞  n0 B n t n n! , 1.2 t e t − 1 e xt  ∞  n0 B n  x  t n n! 1.3 cf. 17, 18, 21, 24, 26. Let UDX be the set of uniformly differentiable functions on X. For f ∈ UDX,thep-adic invariant integral on Z p is defined as I  f    X f  x  dx  lim N →∞ 1 dp N dp N −1  x0 f  x  . 1.4 Note that  X fxdx   Z p fxdx see 27.Letf n x be a translation with f n xfx  n. We note that I  f n   I  f   n−1  i0 f   i  1.5 cf. 1–32.Kim18 studied the symmetric properties of the q-Bernoulli numbers and polynomials as follows: t  log q qe t − 1 e xt  ∞  n0 B q n  x  t n n! . 1.6 In this paper, we define the twisted q-Bernoulli polynomials and the twisted generalized q-Bernoulli polynomials attached to χ of higher order and investigate some symmetric properties of them. Furthermore, using these symmetric properties of them, we can obtain some relationships between the twisted q-Bernoulli numbers and polynomials and between the twisted generalized q-Bernoulli numbers and polynomials attached to χ of higher order. Advances in Difference Equations 3 2. The Twisted q-Bernoulli Polynomials Let C p ∞   n≥1 C p n  lim n →∞ C p n be the locally constant space, where C p n  {ξ | ξ p n  1} is the cyclic group of order p n . For w ∈ C p ∞ , we denote the locally constant function by φ w : Z p −→ C p ,x−→ w x 2.1 cf. 2, 3, 21, 24. If we take fxφ w xq x e tx , then  Z p e xt w x q x dx  log q  t wqe t − 1 . 2.2 Nowwedefinetheq-extension of twisted Bernoulli numbers and polynomials as follows: log q  t wqe t − 1  ∞  n0 B q n,w t n n! , 2.3 log q  t wqe t − 1 e tx  ∞  n0 B q n,w  x  t n n! 2.4 see 31.From1.5, 2.2, 2.3,and2.4, we can derive  Z p w y q y  x  y  n dy  B q n,w  x  ,  Z p w y q y y n dy  B q n,w . 2.5 By 1.5, we can see that 1 log q  t   Z p w nx q nx e nxt dx −  Z p w x q x e xt dx   w n q n e nt − 1 t  log q  Z p w x q x e xt dx  w n q n e nt − 1 wqe t − 1  n−1  i0 w i q i e it  ∞  k0  n−1  i0 i k w i q i  t k k! . 2.6 4 Advances in Difference Equations In 1.4,itiseasytoshowthat 1 log q  t   Z p w nx q nx e nxt dx −  Z p w x q x e xt dx   n  Z p w x q x e xt dx  Z p w nx q nx e nxt dx . 2.7 For each integer k ≥ 0, let S q k,w  n   0 k  1 k wq  2 k w 2 q 2  ··· n k w n q n . 2.8 From 2.6, 2.7,and2.8, we derive 1 log q  t   Z p w nx q nx e nxt dx −  Z p w x q x e xt dx   n  Z p w x q x e xt dx  Z p w nx q nx e nxt dx  ∞  k0 S q k,w  n − 1  t k k! . 2.9 From 2.9,wenotethat B q k,w  n  − B q k,w  kS q k−1,w  n − 1   log qS q k,w  n − 1  , 2.10 for all k, n ∈ N.Letu 1 ,u 2 ∈ N and w ∈ C p ∞ ; then we have  Z p w u 1 x 1 u 2 x 2 q u 1 x 1 u 2 x 2 e u 1 x 1 u 2 x 2 dx 1 dx 2  Z p w u 1 u 2 x q u 1 u 2 x e u 1 u 2 xt dx   t  log q  w u 1 u 2 q u 1 u 2 e u 1 t − 1 w u 2 q u 2 e u 2 t − 1 . 2.11 By 2.9,weseethat u 1  Z p w x q x e xt dx  Z p w u 1 x q u 1 x e u 1 xt dx  ∞  l0  u 1 −1  k0 k l w k q k  t l l!  ∞  l0 S q l,w  u 1 − 1  t l l! . 2.12 Let T w u 1 ,u 2 ; x, t be as follows: T w  u 1 ,u 2 ; x, t    Z p w u 1 x 1 u 2 x 2 q u 1 x 1 u 2 x 2 e u 1 x 1 u 2 x 2 u 1 u 2 xt dx 1 dx 2  Z p w u 1 u 2 x q u 1 u 2 x e u 1 u 2 xt dx . 2.13 Then we have T w  u 1 ,u 2 ; x, t    t  log q  e u 1 u 2 t  w u 1 u 2 q u 1 u 2 e u 1 u 2 t − 1   w u 1 q u 1 e u 1 t − 1  w u 2 q u 2 e u 2 t − 1  . 2.14 Advances in Difference Equations 5 From 2.13, we derive T w  u 1 ,u 2 ; x, t    1 u 1  Z p w u 1 x 1 q u 1 x 1 e u 1 x 1 u 2 xt dx 1  ⎛ ⎝ u 1  Z p w u 2 x 2 q u 2 x 2 e u 2 x 2 t  Z p w u 1 u 2 x q u 1 u 2 x e u 1 u 2 xt dx ⎞ ⎠ . 2.15 By 2.4, 2.12,and2.15, we can see that T w  u 1 ,u 2 ; x, t   1 u 1  ∞  i0 B q u 1 i,w u 1  u 2 x  u i 1 t i i!  ∞  l0 S q u 2 l,w u 2  u 1 − 1  u l 2 t l l!   ∞  n0  n  i0  n i  B q u 1 i,w u 1  u 2 x  S q u 2 n−i,w u 2  u 1 − 1  u i−1 1 u n−i 2  t n n! . 2.16 By the symmetry of p-adic invariant integral on Z p ,wealsoseethat T w  u 1 ,u 2 ; x, t    1 u 2  Z p w u 2 x 2 q u 2 x 2 e u 2 x 2 u 1 xt dx 2  ⎛ ⎝ u 2  Z p w u 1 x 1 q u 1 x 1 e u 1 x 1 t  Z p w u 1 u 2 x q u 1 u 2 x e u 1 u 2 xt dx ⎞ ⎠  ∞  n0  n  i0  n i  B q u 2 i,w u 2  u 1 x  S q u 1 n−i,w u 1  u 2 − 1  u i−1 2 u n−i 1  t n n! . 2.17 By comparing the coefficients of t n /n! on both sides of 2.16 and 2.17,weobtainthe following theorem. Theorem 2.1. Let u 1 ,u 2 ,n∈ N. Then for all x ∈ Z p , n  i0  n i  B q u 1 i,w u 1  u 2 x  S q u 2 n−i,w u 2  u 1 − 1  u i−1 1 u n−i 2  n  i0  n i  B q u 2 i,w u 2  u 1 x  S q u 1 n−i,w u 1  u 2 − 1  u i−1 2 u n−i 1 , 2.18 where  n i  is the binomial coefficient. From Theorem 2.1, if we take u 2  1, then we have the following corollary. Corollary 2.2. For m ≥ 0, one we has B q i,w  u 1 x   n  i0  n i  B q u 1 i,w u 1  x  S q n−i,w  u 1 − 1  u i−1 1 , 2.19 where  n i  is the binomial coefficient. 6 Advances in Difference Equations By 2.17, 2.18,and2.19, we can see that T w  u 1 ,u 2 ; x, t    e u 1 u 2 xt u 1  Z p w u 1 x q u 1 x 1 e u 1 x 1 t dx 1  ⎛ ⎝ u 1  Z p w u 2 x 2 q u 2 x 2 e u 2 x 2 t dx 2  Z p w u 1 u 2 x q u 1 u 2 x e u 1 u 2 xt dx ⎞ ⎠   e u 1 u 2 xt u 1  Z p w u 1 x q u 1 x 1 e u 1 x 1 t dx 1  u 1 −1  i0 w u 2 i q u 2 i e u 2 it   1 u 1 u 1 −1  i0 w u 2 i q u 2 i  Z p w u 1 x q u 1 x e x 1 u 2 xu 2 /u 1 itu 1 dx 1  ∞  n0 u 1 −1  i0 B q u 1 n,w u 1  u 2 x  u 2 u 1 i  u n−1 1 w u 2 i q u 2 i t n n! . 2.20 From the symmetry of T w u 1 ,u 2 ; x, t, we can also derive T w  u 1 ,u 2 ; x, t   ∞  n0 u 2 −1  i0 B q u 2 n,w u 2  u 1 x  u 1 u 2 i  u n−1 2 w u 1 i q u 1 i t n n! . 2.21 By comparing the coefficients of t n /n! on both sides of 2.20 and 2.21,weobtainthe following theorem. Theorem 2.3. For m ∈ Z  , u 1 ,u 2 ∈ N, we have u 1 −1  i0 B q u 1 n,w u 1  u 2 x  u 2 u 1 i  u n−1 1 w u 2 i q u 2 i  u 2 −1  i0 B q u 2 n,w u 2  u 1 x  u 1 u 2 i  u n−1 2 w u 1 i q u 1 i . 2.22 We note that by setting u 2  1inTheorem 2.3, we get the following multiplication theorem for the twisted q-Bernoulli polynomials. Theorem 2.4. For m ∈ Z  , u 1 ∈ N, one has B q n,w  u 1 x   u n−1 1 u 1 −1  i0 B q u 1 n,w u 1  x  i u 1  w i q i . 2.23 Remark 2.5. 18, Kim suggested open questions related to finding symmetric properties for Carlitz q-Bernoulli numbers. In this paper, we give the symmetric property for q-Bernoulli numbers in the viewpoint to give the answer of Kim’s open questions. 3. The Twisted Generalized Bernoulli Polynomials Attached to χ of Higher Order In this section, we consider the generalized Bernoulli numbers and polynomials and then define the twisted generalized Bernoulli polynomials attached to χ of higher order by using Advances in Difference Equations 7 multivariate p-adic invariant integrals on Z p .Letχ be Dirichlet’s character with conductor d ∈ N. Then the generalized Bernoulli numbers B n,χ and polynomials B n,χ x attached to χ are defined as t  d−1 a0 χ  a  e at e dt − 1  ∞  n0 B n,χ t n n! , 3.1 t  d−1 a0 χ  a  e at e dt − 1 e xt  ∞  n0 B n,χ  x  t n n! 3.2 cf. 2, 18, 23, 27. Let C p ∞   n≥1 C p n  lim n →∞ C p n be the locally constant space, where C p n  {w | w p n  1} is the cyclic group of order p n . For w ∈ C p ∞ , we denote the locally constant function by φ w : Z p −→ C p ,x−→ w x 3.3 cf. 2, 3, 21, 23, 24. If we take fxχxe tx φ w xq x ,forq ∈ C p with |q − 1| p < 1, then it is obvious from 3.1 that  X χ  x  e tx w x q x dx   t  log q   d−1 a0 χ  a  w a q a e at w d q d e dt − 1 . 3.4 Now we define the twisted generalized Bernoulli numbers B q n,χ,w and polynomials B q n,χ,w x attached to χ as follows:  t  log q   d−1 a0 χ  a  w a q a e at w d q d e dt − 1  ∞  n0 B q n,χ,w t n n! , 3.5  t  log q   d−1 a0 χ  a  w a q a e at e xt w d q d e dt − 1  ∞  n0 B q n,χ,w  x  t n n! 3.6 for each w ∈ C p ∞ see 31, 32.By3.5 and 3.6,  X χ  x  x n w x q x dx  B q n,χ,w ,  X χ  y  x  y  n w y q y dy  B q n,χ,w  x  . 3.7 8 Advances in Difference Equations Thus we have 1 log q  t   X χ  x  e ndxt w nx q nx dx −  X χ  x  e xt w x q x dx   nd  X χ  x  e xt w x q x dx  X e ndxt w ndx q ndx dx  w nd q nd e ndt − 1 w d q d e dt − 1 d−1  i0 χ  i  e it w i q i . 3.8 Then 1 log q  t   X χ  x  e ndxt w nx q nx dx −  X χ  x  e xt w x q x dx   nd−1  l0 χ  l  e lt w l q l  ∞  k0 nd−1  l0 χ  l  l k w l q l t k k! . 3.9 Let us define the p-adic twisted q-function T q k,w χ, n as follows: T q k,w  χ, n   n  l0 χ  l  l k w l q l . 3.10 By 3.9 and 3.10,weseethat 1 log q  t   X χ  x  e ndxt w ndx q ndx dx −  X χ  x  e xt w x q x dx   ∞  k0 T q k,w  χ, nd − 1  t k k! . 3.11 Thus,   X χ  x  nd  x  k w nx q nx dx −  X χ  x  x k w x q x dx    t  log q  T q k,w  χ, nd − 1  , 3.12 for all k, n,d ∈ N. This means that B q k,χ,w  nd  − B q n,χ,w   t  log q  T q k,w  χ, nd − 1  , 3.13 Advances in Difference Equations 9 for all k, n,d ∈ N. For all u 1 ,u 2 ,d ∈ N, we have d  X  X χ  x 1  χ  x 2  e w 1 x 1 w 2 x 2 t w u 1 x 1 u 2 x 2 q u 1 x 1 u 2 x 2 dx 1 dx 2  X e du 1 u 2 xt w du 1 u 2 x q du 1 u 2 x dx   t  log q  e du 1 u 2 t w du 1 u 2 q du 1 u 2 − 1   e du 1 t w du 1 q du 1 − 1  e du 2 t w du 2 q du 2 − 1  ×  d−1  a0 χ  a  e u 1 at w u 1 a q u 1 a  d−1  b0 χ  b  e u 2 bt w u 2 b q u 2 b  . 3.14 The twisted generalized Bernoulli numbers B k,q n,χ,w and polynomials B k,q n,χ,w x attached to χ of order k are defined as   t  log q   d−1 a0 χ  a  w a q a e at w d q d e dt − 1  k  ∞  n0 B k,q n,χ,w t n n! , 3.15   t  log q   d−1 a0 χ  a  w a q a e at w d q d e dt − 1  k e xt  ∞  n0 B k,q n,χ,w  x  t n n! 3.16 for each w ∈ C p ∞ . For u 1 ,u 2 ∈ N,weset K q w  m, χ; u 1 ,u 2   d  X m  m i1 χ  x i  e   m i1 x i u 2 xu 1 t w   m i1 x i u 2 xu 1 q   m i1 x i u 2 xu 1 dx 1 ···dx m  X e du 1 u 2 xt w du 1 u 2 x q du 1 u 2 x dx ×  X m m  i1 χ  x i  e   m i1 x i u 1 yu 2 t w   m i1 x i u 1 yu 2 q   m i1 x i u 1 yu 1 dx 1 ···dx m , 3.17 where  X m fx 1 ···x m dx 1 ···dx m   X ···  X fx 1 , ,x m dx 1 ···dx m .In3.17,wenotethat K q w m, χ; u 1 ,u 2  is symmetric in u 1 ,u 2 .From3.17, we have K q w  m, χ; u 1 ,u 2    X m m  i1 χ  x i  e   m i1 x i u 2 t w   m i1 x i u 2 q   m i1 x i u 2 dx 1 ···dx m × e u 1 u 2 xt w u 1 u 2 x q u 1 u 2 x  d  X χ  x m  e u 2 x m t w u 2 x m q u 2 x m dx m  X e du 1 u 2 x q du 1 u 2 x dx  ×  X m−1 m−1  i1 χ  x i  e   m−1 i1 x i u 2 t w   m−1 i1 x i u 2 q   m−1 i1 x i u 2 dx 1 ···dx m−1 × e u 1 u 2 yt w u 1 u 2 y q u 1 u 2 y . 3.18 10 Advances in Difference Equations Thus we can obtain u 1 d  X χ  x  e xt w x q x dx  X e du 2 xt w du 2 x q du 2 x dx  ∞  k0  u 1 d−1  i0 χ  i  i k w i q i  t k k!  ∞  k0 T q k,w  χ, u 1 d − 1  t k k! , e u 1 u 2 xt w u 1 u 2 x q u 1 u 2 x  X m m  i1 χ  x i  e   m i1 x i u 1 t w   m i1 x i u 1 q   m i1 x i u 1 dx 1 ···dx m  e u 1 u 2 xt w u 1 u 2 x q u 1 u 2 x  u 1 e du 1 t w du 1 q du 1 − 1 d−1  a0 χ  a  e u 1 at w u 1 a q u 1 a   ∞  n0 B m,q n,χ,w  u 2 x  u n 1 t n n! . 3.19 From 3.19, we derive K q w  m, χ; u 1 ,u 2   ∞  l0 B m,q l,χ,w  u 1 x  u l 1 t l l! ∞  k0 T q k,w  χ, u 1 d − 1  t k k!  ∞  i0 B m−1,q i,χ,w  u 1 y  u i 2 t i i!  1 u 1  ∞  n0 n  j0  n j  u j 2 u n−j−1 1 B m,q n−j,χ,w  u 2 x  × j  k0 T q k,w  χ, u 1 d − 1   j k  B m−1,q j−k,χ,w  u 1 y  t n n! . 3.20 By the symmetry of K q w m, χ; u 1 ,u 2  in u 1 and u 2 , we can see that K q w  m, χ; u 1 ,u 2   ∞  n0 n  j0  n j  u j 1 u n−j−1 2 B m,q n−j,χ,w  u 1 x  × j  k0 T q k,w  χ, u 2 d − 1   j k  B m−1,q j−k,χ,w  u 2 y  t n n! . 3.21 By comparing the coefficients on both sides of 3.20 and 3.21, we see the following theorem. Theorem 3.1. For d, u 1 ,u 2 ,m∈ N, n ∈ Z, one has n  j0  n j  u j 2 u n−j−1 1 B m,q n−j,χ,w  u 2 x  j  k0 T q k,w  χ, u 1 d − 1   j k  B m−1,q j−k,χ,w  u 1 y   n  j0  n j  u j 1 u n−j−1 2 B m,q n−j,χ,w  u 1 x  j  k0 T q k,w  χ, u 2 d − 1   j k  B m−1,q j−k,χ,w  u 2 y  . 3.22 [...]... numbers,” Advanced Studies in Contemporary Mathematics, vol 15, pp 133–138, 2007 12 T Kim, On p-adic interpolating function for q-Euler numbers and its derivatives,” Journal of Mathematical Analysis and Applications, vol 339, no 1, pp 598–608, 2008 13 T Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on Zp at q −1,” Journal of Mathematical Analysis and Applications,... q-integrals,” Advances in Difference Equations, vol 2008, Article ID 738603, 11 pages, 2008 4 L.-C Jang, S.-D Kim, D.-W Park, and Y.-S Ro, A note on Euler number and polynomials, ” Journal of Inequalities and Applications, vol 2006, Article ID 34602, 5 pages, 2006 5 L.-C Jang and T Kim, On the distribution of the q-Euler polynomials and the q-Genocchi polynomials of higher order,” Journal of Inequalities and Applications,... remarks on multiple p-adic q-L-function of two variables,” Advanced Studies in Contemporary Mathematics, vol 14, no 1, pp 49–68, 2007 2 L.-C Jang, On a q-analogue of the p-adic generalized twisted L-functions and p-adic q-integrals,” Journal of the Korean Mathematical Society, vol 44, no 1, pp 1–10, 2007 3 L.-C Jang, “Multiple twisted q-Euler numbers and polynomials associated with p-adic q-integrals,”... Contemporary Mathematics, vol 15, no 2, pp 243–252, 2007 23 W Kim, Y.-H Kim, and L.-C Jang, On the q-extension of apostol-euler numbers and polynomials, ” Abstract and Applied Analysis, vol 2008, Article ID 296159, 10 pages, 2008 Advances in Difference Equations 13 24 Y Simsek, “Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions,” Advanced... q-Euler numbers and polynomials associated with basic q-lfunctions,” Journal of Mathematical Analysis and Applications, vol 336, no 1, pp 738–744, 2007 31 T Kim, “New approach to q-Euler polynomials of higher order,” Russian Journal of Mathematical Physics, vol 17, no 2, pp 201–207, 2010 32 T Kim, “Barnes-type multiple q-zeta functions and q-Euler polynomials, ” Journal of Physics A, vol 43, Article ID 255201,... Contemporary Mathematics, vol 16, no 2, pp 251– 278, 2008 25 H Ozden, Y Simsek, S.-H Rim, and I N Cangul, A note on p-adic q-Euler measure,” Advanced Studies in Contemporary Mathematics, vol 14, pp 233–239, 2007 26 S.-H Rim, Y.-H Kim, B J Lee, and T Kim, “Some identities of the generalized twisted Bernoulli numbers and polynomials of higher order,” Journal of Computational Analysis and Applications,... 2006 17 T Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients,” Russian Journal of Mathematical Physics, vol 15, no 1, pp 51–57, 2008 18 T Kim, On the symmetries of the q-Bernoulli polynomials, ” Abstract and Applied Analysis, vol 2008, Article ID 914367, 7 pages, 2008 19 T Kim, Note on Dedekind type DC sums,” Advanced Studies in Contemporary Mathematics, vol 18,... Kim, A note on p-adic q-integral on Zp associated with q-Euler numbers,” Advanced Studies in Contemporary Mathematics, vol 15, no 2, pp 133–137, 2007 15 T Kim, “q-Euler numbers and polynomials associated with p-adic q-integrals,” Journal of Nonlinear Mathematical Physics, vol 14, no 1, pp 15–27, 2007 16 T Kim, A note on some formulae for the q-Euler numbers and polynomials, ” Proc Jangjeon Math Soc.,... Applications, vol 2008, Article ID 723615, 9 pages, 2008 6 T Kim, “q-Volkenborn integration,” Russian Journal of Mathematical Physics, vol 9, no 3, pp 288–299, 2002 7 T Kim, On Euler-Barnes multiple zeta functions,” Russian Journal of Mathematical Physics, vol 10, no 3, pp 261–267, 2003 8 T Kim, “Analytic continuation of multiple q-zeta functions and their values at negative integers,” Russian Journal of. .. Kim, On a q-analogue of the p-adic log gamma functions and related integrals,” Journal of Number Theory, vol 76, no 2, pp 320–329, 1999 28 T Kim, Note on the Euler q-zeta functions,” Journal of Number Theory, vol 129, no 7, pp 1798–1804, 2009 29 T Kim, A new approach to p-adic q-L-functions,” Advanced Studies in Contemporary Mathematics, vol 12, no 1, pp 61–72, 2006 30 T Kim and S.-H Rim, On the twisted . respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of Q p .Letv p be the normalized exponential valuation of C p with. number and polynomials, ” Journal of Inequalities and Applications, vol. 2006, Article ID 34602, 5 pages, 2006. 5 L C. Jang and T. Kim, On the distribution of the q-Euler polynomials and the q-Genocchi polynomials. numbers and its derivatives,” Journal of Mathematical Analysis and Applications, vol. 339, no. 1, pp. 598–608, 2008. 13 T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic

Ngày đăng: 21/06/2014, 16:20

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan